首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subcellular localization of adenylate cyclase was examined in human skeletal muscle. Three major subcellular membrane fractions, plasmalemma, sarcoplasmic reticulum and mitochondria, were characterized by membrane-marker biochemical studies, by dodecyl sulfate polycrylamide gel electrophoresis and by electron microscopy. About 60% of the adenylate cyclase of the homogenate was found in the plasmalemmal fraction and 10–14% in the sarcoplasmic reticulum and mitochondria. When the plasmalemmal preparation was subjected to discontinuous sucrose gradients, the distribution of adenylate cyclase in different subfractions closely paralleled that of (Na+ + K+)-ATPase. The highest specific activity was found in a fraction which setteled at the 0.6–0.8 M sucrose interface. The electron microscopic study of this fraction revealed the presence of flattened sacs of variable sizes and was devoid of mitochondrial and myofibrillar material. The electron microscopy of each fraction supported the biochemical studies with enzyme markers. The three major membrane fractions also contained a low Km phosphodiesterase activity, the highest specific activity being associated with sarcoplasmic reticulum.The plasmalemmal adenylate cyclase was more sensitive to catecholamine stimulation than that associated with sarcoplasmic reticulum or mitochondria. The catecholamine-sensitive, but not the basal, enzyme was further stimulated by GTP. The plasmalemmal adenylate cyclase had typical Michaelis-Menten kinetics with respect to ATP and the apparent Km for ATP was approx. 0.3. mM. The pH optimum for that enzyme was 7.5. The enzyme required Mg2+, and the concentration to achieve half-maximal stimulation was approx. 3 mM. Higher concentrations of Mg2+ (about 10 mM) were inhibitory. Solubilization of the plasmalemmal membrane fraction with Lubrol-PX resulted in preferential extraction of 106 000- and 40 000-dalton protein components. The solubilized adenylate cyclase lost its sensitivity for catecholamine stimulation, and the extent of fluoride stimulation was reduced to one-sixth of that of the intact membranes. It is concluded that the catalytically active and hormone-sensitive adenylate cyclase is predominantly localized in the surface membranes of the cells within skeletal muscle. (That “plasmalemmal” fraction is considered likely to contain, in addition to plasmalemma of muscle cells, plasmalemma of bloodvessel cells (endothelium, and perhaps smooth muscle) which may be responsible for a certain amount of the adenylate cyclase activity and other propertiesobserved in that fraction.)The method of preparation used in this study provides a convenient material for evaluating the catecholamine-adenylate cyclase interactions in human skeletal muscle.  相似文献   

2.
Activation of adenylate cyclase by guanine nucleotide and catecholamines was examined in plasma membranes prepared from rabbit skeletal muscle. The GTP analog, 5′-guanylyl imidodiphosphate caused a time and temperature-dependent activation of the enzyme which was persistent, the Ka was 0.05 μM. 5′-Guanylyl imidodiphosphate binding to the membranes was time and temperature dependent, KD 0.07 μM. Beta adrenergic amines accelerated the rate of 5′-guanylyl imidodiphosphate activation of the enzyme with an order of potency isoproterenol ≈ soterenol ≈ salbutamol > epinephrine ? norepinephrine. Catecholamine activation was antagonized by propranolol and the β2 antagonist butoxamine; the β1 antagonist practolol was inactive. [3H]Dihydroalprenolol bound to the membranes and binding was antagonized by β adrenergic agonists with an order of potency similar to the activation of adenylate cyclase and was antagonized by butoxamine but not by practolol. The data are consistent with the idea that adenylate cyclase in skeletal muscle plasma membranes is coupled to adrenergic receptors of the β2 type.  相似文献   

3.
[3H]Dihydroalprenolol, a potent ß-adrenergic antagonist, was used to identify the adenylate cyclase-coupled ß-adrenoceptors in isolated membranes of rat skeletal muscle. The receptor sites, as revealed [3H]dihydroalprenolol binding, were predominantly localized in plasmalemmal fraction. That skeletal muscle fraction may also contain the plasmalemma of other intramuscular cells, especially that of blood vessels. Hence, the [3H]dihydroalprenolol binding observed in that fraction may be due partly to its binding to the plasmalemma of blood vessels. Small but consistent binding was also observed in sarcoplasmic reticulum and mitochondria. The level of [3H]dihydroalprenolol binding in different subcellular fractions closely correlated with the level of adenylate cyclase present in those fractions.The binding of [3H]dihydroalprenolol to plasmalemma exhibited saturation kinetics. The binding was rapid, reaching equilibrium within 5 min, and it was readily dissociable. From the kinetics of binding, association (K1) and dissociation (K2) rate constants of 2.21 · M? · min?1 and 3.21 · 10?1, respectively, were obtained. The dissociation constant (Kd) of 15 nM for [3H]dihydroalprenolol obtained from saturation binding data closely agreed with the (Kd) derived from the ratio of dissociation and association rate constants (K2/K1).Several β-adrenergic agents known to be active on intact skeletal muscle also competed for [3H]dihydroalprenolol binding sites in isolated plasmalemma with essentially similar selectivity and stereospecificity. Catecholamines competed for [3H]dihydroalprenolol binding sites with a potency of isoproterenol > epinephrine > norepinephrine. A similar order of potency was noted for catecholamines in the activation of adenylate cyclase. Effects of catecholamines were stereospecific, (?)-isomers being more than potent than (+)-isomers. Phenylephrine, an α-adrenergic agonist, showed no effect either on [3H]dihydroalprenolol binding or on adenylate cyclase. Known ß-adrenergic antagonists, propranolol and alprenolol, stereospecifically inhibited the [3H]dihydroalprenolol binding and the isoproterenol-stimulated adenylate cyclase. The (Ki) values for the antagonists determined from inhibition of [3H]dihydroalprenolol binding agreed closely with the (Ki) values obtained from the inhibition of adenylate cyclase. The data suggest that the binding of [3H]dihydroalprenolol in skeletal muscle membranes possess the characteristics of a substance binding to the ß-adrenergic receptor.  相似文献   

4.
Pyruvate, Pi dikinase in extracts of chloroplasts from mesophyll cells of Zea mays is inactivated by incubation with ADP plus ATP. This inactivation was associated with phosphorylation of a threonine residue on a 100 kDa polypeptide, the major polypeptide of the mesophyll chloroplast stroma, which was identified as the subunit of pyruvate, Pi dikinase. The phosphate originated from the beta-position of ADP as indicated by the labelling of the enzyme during inactivation in the presence of [beta-32P]ADP. During inactivation of the enzyme up to 1 mole of phosphate was incorporated per mole of pyruvate, Pi dikinase subunit inactivated. 32P label was lost from the protein during the Pi-dependent reactivation of pyruvate, Pi dikinase.  相似文献   

5.
6.
7.
8.
Adenylate cyclase (EC 4.6.1.1) was studied in membrane preparations of reticulocyte-rich blood obtained from phenylhydrazine-treated rabbits and compared to that of untreated animals.Basal and fluoride-stimulated activities were decreased 2- and 4-fold, respectively, during the process of maturation.Catalytic parameters such as time course, protein, ATP, Mg2+ concentration curves and Km have been determined and were found to be similar in the reticulocyte and the erythrocyte.Adenylate cyclase was sensitive to GTP, 5′-guanylyl imidodiphosphate, prostaglandin E1 and prostaglandin E2. Activation by prostaglandin E1 was higher than that produced by prostaglandin E2. Only additive effect was found when 5′-guanylyl imidodiphosphate or GTP was added to hormone-stimulated activity. The sensitivity of the enzyme to these effectors was decreased over the transition reticulocyte-erythrocyte.In either cell the enzyme was not activated by catecholamines (epinephrine, norepinephrine, isoproterenol).  相似文献   

9.
After treatment of intact human erythrocytes with SH-oxidizing agents (e.g. tetrathionate and diamide) phospholipase A2 cleaves approx. 30% of the phosphatidylserine and 50% of the phosphatidylethanolamine without causing hemolysis (Haest, C.W.M. and Deuticke, B. (1976) Biochim. Biophys. Acta 436, 353–365). These phospholipids are scarcely hydrolysed in fresh erythrocytes and are assumed to be located in the inner lipid layer of the membrane (Verkleij, A.J., Zwaal, R.F.A., Roelofsen, B., Comfurius, P., Kastelijn, D. and van Deenen, L.L.M. (1973) Biochim. Biophys. Acta 323, 178–193). The enhancement of the phospholipid cleavage is now shown to be accompanied by a 50% decrease of the membrane SH-groups and a cross-linking of spectrin, located at the inner surface of the membrane, to oligomers of < 106 dalton.Blocking approx. 10% of the membrane SH groups with N-ethylmaleimide suppresses both the polymerization of spectrin and the enhancement of the phospholipid cleavage. N-Ethylmaleimide, under these conditions, reacts with three SH groups per molecule of spectrin, 0.7 SH groups per major intrinsic 100 000 dalton protein (band 3) and 1.1 SH groups per molecule of an extrinsic protein of 72 000 daltons (band 4.2). Blocking studies with iodoacetamide demonstrate that the SH groups of the 100 000-dalton protein are not involved in the effects of the SH-oxidizing agents.It is suggested that a release of constraints imposed by spectrin enables phosphatidylserine and phosphatidylethanolamine to move from the inner to the outer lipid layer of the erythrocyte membrane and that spectrin, in the native erythrocyte, stabilizes the orientation of these phospholipids to the inner surface of the membrane.  相似文献   

10.
The major protein released into the medium by human skin fibroblasts in culture has been shown to be a fucosylated glycoprotein (designated MFGP). Analysis by gel filtration chromatography and polyacrylamide gel electrophoresis demonstrated that under reducing conditions MFGP has a molecular weight of approx. 250,000, but occurs as a disulphide-linked aggregate in the medium. Three lines of evidence are presented to establish that MFGP is a non-collagenous molecule.  相似文献   

11.
Subunit interactions in human plasma fibronectin   总被引:1,自引:0,他引:1  
The fibronectin molecule was split chemically into its two constituent chains (mol. wt. 220,000) by mild reduction with dithiothreitol. However, physical properties (molecular weight and diffusion coefficient from light scattering, and elution in gel exclusion chromatography) remained those of intact fibronectin, except (reversibly) in the presence of denaturants which also change the conformation of non-reduced fibronectin to a more open form. Similarly, during digestion of fibronectin by plasmin to fragments of molecular weight less than 200,000, the light scattering intensity drops to roughly half in 30% glycerol but not in the absence of glycerol. These results suggest that the compact conformation of native fibronectin is stabilized by specific noncovalent contacts between constituent chains.  相似文献   

12.
An arylamidase hydrolysing L-leucine-4-nitroanilide was extracted from rat skeletal muscle homogenate and furified by means of anion-exchange chromatography on DEAE-Sephadex A-50 followed by gel filtration on Sephadex G-150 and Sepharose 6B. The enzyme was isolated in the form of three different protein complexes that differ in molecular weight, kinetic data, and sensitivity to metal ions. As studied by SDS-gel electrophoresis and repeated gel chromatography on Sepharose 6B these forms are: 1. a stable monomer (A1) of Mr 122 000; 2. a stable dimer (A2) of Mr 244 000; and 3. a stable polymer (A3) of more than Mr 4·106. The arylamidase was optimally active at pH 7.3 and did not require metal ions. Treatment with 1,10-phenanthroline resulted in complete inactivation, the activity could be restored by the addition of manganous chloride. The sulphhydryl-blocking reagent 4-hydroxymercuribenzoate strongly inactivated the arylamidase, this inhibition could be reversed by the addition of 2-mercaptoethanol. Addition of phenylmethylsulfonyl fluoride had no effect on the enzyme activity. Furthermore, the influence of metal ions as well as the substrate specificity were investigated and compared for all three forms of arylamidase.  相似文献   

13.
The RNA from the mitochondrial fraction of animal cells contains a polyadenylic acid sequence, approximately 55 nucleotides in length, which migrates at about 4 S in gel electrophoresis and which is attached to high molecular weight RNA. The experiments reported here indicate that: (a) the 4 S poly(A) sequence is found only in the mitochondrial fraction; (b) the RNA containing 4 S poly(A) is located within structures (presumably mitochondria) which protect it from pancreatic ribonuclease; (c) no RNA containing the longer poly(A) of nuclear origin appears to be located in mitochondria; (d) the 4 S poly(A), but not the longer poly(A), is attached to RNA which hybridizes to mitochondrial DNA; and (e) this poly(A) sequence is located at the 3′ end of the RNA molecule.The poly(A)-containing RNA can be isolated by affinity to oligodeoxyribothymidylic acid cellulose and resolved into approximately eight distinct species by acrylamide gel electrophoresis. These may correspond to individual mitochondrial messenger RNA molecules.  相似文献   

14.
Adenylate cyclase was measured in skeletal muscle plasma membranes incubated with subtilisin. Under specific conditions the protease preferentially inactivated flouride and guanylnucleotide sensitivity. Following protease treatment, membranes were solubilized with Lubrol 12A9 and subjected to ion-exchange chromatography. Adenylate cyclase was eluted with 200 mM NaCl; the enzyme recovered was completely unresponsive to either NaF or guanylyl imidodiphosphate. Responsiveness to the two ligands was restored by adding a heart fraction in which basal activity had been destroyed by heating at 40°C or by adding a soluble skeletal muscle fraction in which basal activity had been largely destroyed by N-ethylmaleimide. The solubilized subtilisin-treated skeletal muscle preparation may serve as a source of catalytic activity for the study and purification of regulatory factors for adenylate cyclase.  相似文献   

15.
Effects of guanine nucleotides on the adenylate cyclase activity of thyroid plasma membranes were investigated by monitoring metabolism of the radiolabeled nucleotides by thin-layer chromatography (TLC). When ATP was used as substrate with a nucleotide-regeneratign system, TSH stimulated the adenylate cyclase activity in the absence of exogenous guanine nucleotide. Addition of GTP and GDP equally enhanced the TSH stimulation. Effects of GTP and GDP were indistinguishable in regard to their inhibitory effects on NaF-stimulated activities. The results from TLC suggested that GDP could be converted to GTP by a nucleotide-regenerating system. Even in the absence of nucleotide-regenerating system, addition of GDP to the adenylate cyclase assay mixture int he parallel decrease in ATP levels and formation of GTP indicating that thyroid plasma membrane preparatiosn possessed a transphosphorylating activity. When an ATP analog, App[NH]p, was used as substrate without a nucleotide-regenerating system, no conversion of GDP to GTP was observed. Under such conditions, TSH did not stimulate the adenylate cyclase activity unless exogenous GTP or Gpp[NH]p was added. GDP no longer supported TSH stimulation and caused a slight decrease in the activity. GDP was less inhibitory than Gpp(NH)p to the NaF-stimulated adenylate cyclase activity. These results suggest: (1) TSH stimulation of thyroid adenylate cyclase is absolutely dependent on the regulatory nucleotides. (2) In contrst to GTP, GDP cannot support the coupling of the receptor-TSH complex to the catalytic componenet of adenylate cyclase. (3) The nucleotide regulatory site is more inhibitory to the stimulation of the enzyme by NaF when occupied by Gpp[NH]p than GDP.  相似文献   

16.
Soluble factors obtained from human, rat and rabbit erythroid cell lysates are capable to stimulate basal and hormone activated adenylate cyclase of erythroid cell membranes from homologous sources. Extensive dialysis and removal of hemoglobin from the soluble factors do not modify their activity. Human erythrocyte soluble factors stimulate the human reticulocyte enzyme. Nevertheless human erythrocyte adenylate cyclase is not stimulated by either of the soluble factors. The presence of active soluble factors in human erythrocytes where the adenylate cyclase is no longer sensitive to these factors, as well as to guanylnucleotides or protaglandins, indicates that the enzyme has been altered during the maturation processes.  相似文献   

17.
A rapid method of purifying snake venom phosphodiesterase has been developed using Blue Sepharose or blue dextran/Sepharose as an affinity adsorbent. A sixty-fold purification of the enzyme from commercial preparations is achieved in a single step with a yield of 60%. The purified enzyme preparation is essentially free from phosphatase activities and exhibits a major protein band on SDS-polyacrylamide gel electrophoresis. Chain length analysis of poly(ADP-ribose) exemplifies the usefulness of this technique.  相似文献   

18.
An mRNA fraction from dog liver translated with a rabbit reticulocyte protein synthesizing system in the presence of [35S]-methionine produces fibrinogen-related proteins which are immunoprecipitated with rabbit antiserum to dog fibrinogen. Analyses of these radioactive proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography indicate that the three fibrinogen chains (Aα, Bβ and γ) are synthesized separately as larger precursors. The putative pre Aα and pre Bβ chains were characterized by their susceptibility to treatment with thrombin and batroxobin. Thrombin degraded the pre Aα and pre Bβ chains, while batroxobin only acted on the pre Aα chain. The pre γ chain was not degraded by these enzymes.  相似文献   

19.
Human plasma alpha-1-proteinase inhibitor (α1-antitrypsin) has been re-isolated from its complex with porcine trypsin. The re-isolated protein (α1-PI*) was found to be non-inhibitory and 8,000 lower in molecular weight than the native inhibitor. Sequence analysis of α1-PI* showed that an amino terminal peptide had been lost, apparently the result of cleavage at a Lys-Thr bond. These data indicate that limited proteolysis is the first step in the inhibitory mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号