首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: BACKGROUND: Multi-locus sequence typing (MLST) has become the gold standard for population analyses of bacterial pathogens. This method focuses on the sequences of a small number of loci (usually seven) to divide the population and is simple, robust and facilitates comparison of results between laboratories and over time. Over the last decade, researchers and population health specialists have invested substantial effort in building up public MLST databases for nearly 100 different bacterial species, and these databases contain a wealth of important information linked to MLST sequence types such as time and place of isolation of isolation, host or niche, serotype and even clinical or drug resistance profiles. Recent advances in sequencing technology mean it is increasingly feasible to perform bacterial population analysis at the whole genome level. This offers massive gains in resolving power and genetic profiling compared to MLST, and will eventually replace MLST for bacterial typing and population analysis. However given the wealth of data currently available in MLST databases, it is crucial to maintain backwards compatibility with MLST schemes so that new genome analyses can be understood in their proper historical context. RESULTS: We present a software tool, SRST, for quick and accurate retrieval of sequence types from short read sets, using inputs easily downloaded from public databases. SRST assigns alleles using read mapping and an allele assignment score incorporating sequence coverage and variability, to determine the most likely allele. Analysis of over 3,500 loci in more than 500 publicly accessible Illumina read sets showed SRST to be highly accurate at allele assignment. SRST output is compatible with common analysis tools such as eBURST, Clonal Frame or PhyloViz, allowing easy comparison between novel genome data and MLST data. Alignment, fastq and pileup files can also be generated for novel alleles. CONCLUSIONS: SRST is a novel software tool for accurate assignment of sequence types using short read data. Several uses for the tool are demonstrated, including quality control for high-throughput sequencing projects, plasmid MLST and analysis of genomic data during outbreak investigation. SRST is open-source, requires Python, BWA and SamTools, and is available from http://srst.sourceforge.net.  相似文献   

2.
Comparative characterization (molecular typing) of isolates within a bacterial species is one of the major problems in microbiology and epidemiology. However, it is rather difficult to correlate data obtained in various laboratories, because traditional, including molecular, methods employed in typing pathogenic microorganisms cannot be standardized. In 1998, Maiden et al. proposed multilocus sequence typing (MLST); through which alleles of several housekeeping genes are directly assessed by nucleotide sequencing, each unique allele combination determining a sequence type of a strain. The advantages of this approach are that the culturing of pathogenic microorganisms is avoided, as their gene fragments are amplified directly from biological samples, and that the sequencing data are unambiguous, easy to standardize, and electronically portable. The latter makes it possible to generate an expandable global database for each species at an Internet site, in order to use it for the purposes of genotyping pathogenic bacteria (and other infectious agents). MLST protocols have been elaborated for Neisseria meningitidis, Streptococcus pneumoniae, and Helicobacter pylori; those for Streptococcus pyogenes, Staphylococcus aureus, and Haemophilus influenzae are now being developed. Basic principles and the first results of MLST have been reviewed, including data on the distribution and microevolution of N. meningitidis clones causing epidemic meningococcal infection, the relative recombination and mutation rates in the N. meningitidis genome, the identification of antibiotic-resistant S. pneumoniae clones causing severe generalized infection, the grouping of H. pylori isolates from various geographic regions, etc.  相似文献   

3.
Multilocus sequence typing (MLST) is a recently developed nucleotide sequence-based method for the definitive assignment of isolates within bacterial populations to specific clones. MLST uses the same principles as multilocus enzyme electrophoresis and provides data that can be used to investigate aspects of the population genetics and evolution of bacterial species. We used an MLST data set consisting of the sequences of approximately 450-bp fragments from seven housekeeping loci from a large strain collection of Neisseria meningitidis to estimate the relative impact of recombination compared with point mutation in the diversification of N. meningitidis clonal complexes. 126 meningococcal isolates were assigned to 10 clonal complexes, 9 of which contained minor clonal variants. The allelic variation within each complex was classified as a recombinational exchange or a putative point mutation through a comparison of the sequences of each variant allele with that of the allele typically found in the clonal complex. The nine clonal complexes contained a total of 23 allelic variants, and analysis of the sequences of these variant alleles revealed that a single nucleotide site in a meningococcal housekeeping gene is at least 80-fold more likely to change as a result of recombination than as a result of mutation. This value is estimated to be 10-50-fold for Escherichia coli and approximately 50-fold for Streptococcus pneumoniae.  相似文献   

4.
Feil EJ  Smith JM  Enright MC  Spratt BG 《Genetics》2000,154(4):1439-1450
Multilocus sequence typing (MLST) is a highly discriminatory molecular typing method that defines isolates of bacterial pathogens using the sequences of approximately 450-bp internal fragments of seven housekeeping genes. This technique has been applied to 575 isolates of Streptococcus pneumoniae and identifies a number of discrete clonal complexes. These clonal complexes are typically represented by a single group of isolates sharing identical alleles at all seven loci, plus single-locus variants that differ from this group at only one out of the seven loci. As MLST is highly discriminatory, the members of each clonal complex can be assumed to have a recent common ancestor, and the molecular events that give rise to the single-locus variants can be used to estimate the relative contributions of recombination and mutation to clonal divergence. By comparing the sequences of the variant alleles within each clonal complex with the allele typically found within that clonal complex, we estimate that recombination has generated new alleles at a frequency approximately 10-fold higher than mutation, and that a single nucleotide site is approximately 50 times more likely to change through recombination than mutation. We also demonstrate how to estimate the average length of recombinational replacements from MLST data.  相似文献   

5.
Multilocus sequence typing (MLST) is a widely used system for typing microorganisms by sequence analysis of housekeeping genes. The main advantage of MLST in comparison to other typing techniques is the unambiguity and transferability of sequence data. However, a main disadvantage is the high cost of DNA sequencing. Here we introduce a high-throughput MLST (HiMLST) method that employs next-generation sequencing (NGS) technology (Roche 454), to generate large quantities of high-quality MLST data at low costs. The HiMLST protocol consists of two steps. In the first step MLST target genes are amplified by PCR in multi-well plates. During this PCR the amplicons of each bacterial isolate are provided with a unique DNA barcode, the multiplex identifier (MID). In the second step all amplicons are pooled and sequenced in a single NGS-run. The MLST profile of each individual isolate can be retrieved easily using its unique MID. With HiMLST we have profiled 575 isolates of Legionella pneumophila, Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pneumoniae in mixed species HiMLST experiments. In conclusion, the introduction of HiMLST paves the way for a broad employment of the MLST as a high-quality and cost-effective method for typing microbial species.  相似文献   

6.
Multilocus sequence typing (MLST) identifies and groups bacterial strains based on DNA sequence data from (typically) seven housekeeping genes. MLST has also been employed to estimate the relative contributions of recombination and point mutation to clonal divergence. We applied MLST to the plant pathogen Xylella fastidiosa using an initial set of sequences for 10 loci (9.3 kb) of 25 strains from five different host plants, grapevine (PD strains), oleander (OLS strains), oak (OAK strains), almond (ALS strains), and peach (PP strains). An eBURST analysis identified six clonal complexes using the grouping criterion that each member must be identical to at least one other member at 7 or more of the 10 loci. These clonal complexes corresponded to previously identified phylogenetic clades; clonal complex 1 (CC1) (all PD strains plus two ALS strains) and CC2 (OLS strains) defined the X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi clades, while CC3 (ALS strains), CC4 (OAK strains), and CC5 (PP strains) were subclades of X. fastidiosa subsp. multiplex. CC6 (ALS strains) identified an X. fastidiosa subsp. multiplex-like group characterized by a high frequency of intersubspecific recombination. Compared to the recombination rate in other bacterial species, the recombination rate in X. fastidiosa is relatively low. Recombination between different alleles was estimated to give rise to 76% of the nucleotide changes and 31% of the allelic changes observed. The housekeeping loci holC, nuoL, leuA, gltT, cysG, petC, and lacF were chosen to form the basis of a public database for typing X. fastidiosa (www.mlst.net). These loci identified the same six clonal complexes using the strain grouping criterion of identity at five or more loci with at least one other member.  相似文献   

7.
The introduction of molecular diagnostic methods is crucial for improved understanding of the aetiology and epidemiology of bacterial infections in communities in resource poor settings. A blood sample from a 7 month old patient diagnosed with malaria in 2001 in a Gambian outpatient clinic was reported as culture negative after it was subjected to traditional bacterial culture protocols. We re-addressed the analysis of the blood sample from this case more recently (after 6.5 years in archival storage) in pilot work establishing 16S rRNA PCR in our molecular laboratory. Initial 16S rRNA PCR results confirmed the presence of bacterial DNA in the sample. 16S rRNA sequence analysis identified the organism as Campylobacter spp. In light of the molecular evidence we successfully grew the organism using appropriate culture conditions and subsequently biochemically confirmed that the isolate was Campylobacter jejuni. PCR and DNA sequencing of a set of seven C. jejuni housekeeping genes and in silico Multilocus Sequence Typing (MLST) analysis revealed that the isolate exhibits a novel sequence type (ST) of C. jejuni (ST 2928) and belongs to ST-443 clonal complex. This study demonstrates the potential for molecular tools to enhance the diagnosis of bacterial infections, which remain a major killer globally, not least in children in the developing world. Improvements in diagnostics are needed, and will be important not only for sick individuals but also for populations, where better measures of disease burden will contribute significantly to the improvement of public health policy.  相似文献   

8.
Staphylococcus equorum, the predominant bacterial species detected in Saeu-jeotgal, a Korean high-salt fermented seafood, is a candidate starter bacterium for Saeu-jeotgal fermentation. A multilocus sequence typing (MLST) scheme was developed to evaluate the genetic diversity and background of S. equorum strains isolated from Saeu-jeotgal. A total of 135 strains, including 117 isolates from Saeu-jeotgal, and others from Myeolchi-jeotgal, sausage, cheese and horse skin, were subjected to MLST, and the internal fragments of seven housekeeping genes, aroE, dnaJ, glpF, gmk, hsp60, mutS, and pta, were compared. This MLST scheme produced 45 sequence types (STs) and the eBURST algorithm clustered the STs into nine clonal groups and seven singletons. Clonal group 1, the major group, consisted of 30 isolates from cheese, Saeu-jeotgal and sausages, which were classified into 12 STs. The predominant ST, ST26, comprised 25 isolates and presented as a singleton. Most of the isolates from Myeolchi-jeotgal and sausages clustered on two different branches of a phylogenetic tree generated with a cluster analysis using the maximum likelihood algorithm. This MLST scheme established the genetic backgrounds of S. equorum strains isolated from different types of food. Among the housekeeping genes used for MLST, gmk had the fewest allele types and fairly low sequence identities (74.0–90.0 %) within the Staphylococcus species. Therefore, sequence analyses of the gmk gene and 16S rRNA gene can be used for the accurate and rapid identification of S. equorum.  相似文献   

9.
In Gram-negative bacteria, the O-antigen-encoding genes may be transferred between lineages, although mechanisms are not fully understood. To assess possible lateral gene transfer (LGT), 21 Argentinean Vibrio cholerae O-group 1 (O1) isolates were examined using multilocus sequence typing (MLST) to determine the genetic relatedness of housekeeping genes and genes from the O1 gene cluster. MSLT analysis revealed that 4.4% of the nucleotides in the seven housekeeping loci were variable, with six distinct genetic lineages identified among O1 isolates. In contrast, MLST analysis of the eight loci from the O1 serogroup region revealed that 0.24% of the 4943 nucleotides were variable. A putative breakpoint was identified in the JUMPstart sequence. Nine conserved nucleotides differed by a single nucleotide from a DNA uptake signal sequence (USS) also found in Pastuerellaceae . Our data indicate that genes in the O1 biogenesis region are closely related even in distinct genetic lineages, indicative of LGT, with a putative DNA USS identified at the defined boundary for the DNA exchange.  相似文献   

10.
11.
Population biology of Haemophilus influenzae can be studied by multilocus sequence typing (MLST), and isolates are assigned sequence types (STs) based on nucleotide sequence variations in seven housekeeping genes, including fucK. However, the ST cannot be assigned if one of the housekeeping genes is absent or cannot be detected by the current protocol. Occasionally, strains of H. influenzae have been reported to lack the fucK gene. In this study, we examined the prevalence of this mutation among our collection of H. influenzae isolates. Of the 704 isolates studied, including 282 encapsulated and 422 nonencapsulated isolates, nine were not typeable by MLST owing to failure to detect the fucK gene. All nine fucK-negative isolates were nonencapsulated and belonged to various biotypes. DNA sequencing of the fucose operon region confirmed complete deletion of genes in the operon in seven of the nine isolates, while in the remaining two isolates, some of the genes were found intact or in parts. The significance of these findings is discussed.  相似文献   

12.
Streptococcus mutans, consisting of serotypes c, e, f and k, is an oral aciduric organism associated with the initiation and progression of dental caries. A total of 135 independent Streptococcus mutans strains from caries-free and caries-active subjects isolated from various geographical locations were examined in two versions of an MLST scheme consisting of either 6 housekeeping genes [accC (acetyl-CoA carboxylase biotin carboxylase subunit), gki (glucokinase), lepA (GTP-binding protein), recP (transketolase), sodA (superoxide dismutase), and tyrS (tyrosyl-tRNA synthetase)] or the housekeeping genes supplemented with 2 extracellular putative virulence genes [gtfB (glucosyltransferase B) and spaP (surface protein antigen I/II)] to increase sequence type diversity. The number of alleles found varied between 20 (lepA) and 37 (spaP). Overall, 121 sequence types (STs) were defined using the housekeeping genes alone and 122 with all genes. However π, nucleotide diversity per site, was low for all loci being in the range 0.019–0.007. The virulence genes exhibited the greatest nucleotide diversity and the recombination/mutation ratio was 0.67 [95% confidence interval 0.3–1.15] compared to 8.3 [95% confidence interval 5.0–14.5] for the 6 concatenated housekeeping genes alone. The ML trees generated for individual MLST loci were significantly incongruent and not significantly different from random trees. Analysis using ClonalFrame indicated that the majority of isolates were singletons and no evidence for a clonal structure or evidence to support serotype c strains as the ancestral S. mutans strain was apparent. There was also no evidence of a geographical distribution of individual isolates or that particular isolate clusters were associated with caries. The overall low sequence diversity suggests that S. mutans is a newly emerged species which has not accumulated large numbers of mutations but those that have occurred have been shuffled as a consequence of intra-species recombination generating genotypes which can be readily distinguished by sequence analysis.  相似文献   

13.
The characterization of pathogenic isolates plays a pivotal role in the epidemiology of infectious diseases, generating the information necessary for identifying, tracking, and intervening against disease outbreaks. In 1998 multi-locus sequence typing (MLST) was proposed as a nucleotide sequence-based approach that could be applied to many bacterial pathogens. It combined developments in high-throughput sequencing and bioinformatics with established population genetics techniques to provide a portable, reproducible, and scalable typing system that reflected the population and evolutionary biology of bacterial pathogens. MLST schemes have been developed for a variety of procaryotic and eucaryotic pathogens and the data generated have contributed to both epidemiological surveillance and fundamental studies of pathogen biology.  相似文献   

14.
Enterobacter cloacae is an important emerging pathogen, which sometime causes respiratory infection, surgical site infection, urinary infection, sepsis, and outbreaks at neonatal units. We have developed a multilocus sequence typing (MLST) scheme utilizing seven housekeeping genes and evaluated the performance in 101 clinical isolates. The MLST scheme yielded 83 sequence types (ST) including 78 novel STs found in the clinical isolates. These findings supported the robustness of the MLST scheme developed in this study.  相似文献   

15.
AIMS: To provide new insights into the population and genomic structure of the Bacillus cereus group of bacteria. METHODS AND RESULTS: The genetic relatedness among B. cereus group strains was assessed by multilocus sequence typing (MLST) using an optimized scheme based on seven chromosomal housekeeping genes. A set of 48 strains from different clinical sources was included, and six clonal complexes containing several genetically similar isolates from unrelated patients were identified. Interestingly, several clonal groups contained strains that were isolated from similar human sources. Furthermore, comparative whole genome sequence analysis of 16 strains led to the discovery of novel ubiquitous genome features of the B. cereus group, such as atypical group II introns, IStrons, and hitherto uncharacterized repeated elements. CONCLUSIONS: The B. cereus group constitutes a coherent population unified by the presence of ubiquitous and specific genetic elements which do not show any pattern, either in their sequences or genomic locations, which allows to differentiate between the member species of the group. Nevertheless, the population is very dynamic, as particular lineages of clinical origin can evolve to form clonal complexes. At the genome level, the dynamic behaviour is indicated by the presence of numerous mobile and repeated elements. SIGNIFICANCE AND IMPACT OF THE STUDY: The B. cereus group of bacteria comprises species that are of medical and economic importance. The MLST data, along with the primers and protocols used, will be available in a public, web-accessible database (http://mlstoslo.uio.no).  相似文献   

16.
Yersinia ruckeri is the causative agent of enteric redmouth in fish and one of the major bacterial pathogens causing losses in salmonid aquaculture. Previously typing methods, including restriction enzyme analysis, pulsed-field gel electrophoresis and multilocus enzyme electrophoresis (MLEE) have indicated a clonal population structure. In this work, we describe a multilocus sequence typing (MLST) scheme for Y.ruckeri based on the internal fragment sequence of six housekeeping genes. This MLST scheme was applied to 103 Y.ruckeri strains from diverse geographic areas and hosts as well as environmental sources. Sequences obtained from this work were deposited and are available in a public database (http://publmst.org/yruckeri/). Thirty different sequence types (ST) were identified, 21 of which were represented by a single isolate, evidencing high genetic diversity. ST2 comprised more than one-third of the isolates and was most frequently observed among isolates from trout. Two major clonal complexes (CC) were identified by eBURST analysis showing a common evolutionary origin for 94 isolates forming 21 STs into CC1 and for 6 isolates of 6 STs in the CC2. It was also possible to associate some unique ST with isolates from recent outbreaks in vaccinated salmonid fish.  相似文献   

17.
Multiple locus sequence typing (MLST) was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR). Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap), encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.  相似文献   

18.
The Gram-positive bacterium Propionibacterium acnes is a member of the normal human skin microbiota and is associated with various infections and clinical conditions. There is tentative evidence to suggest that certain lineages may be associated with disease and others with health. We recently described a multilocus sequence typing scheme (MLST) for P. acnes based on seven housekeeping genes (http://pubmlst.org/pacnes). We now describe an expanded eight gene version based on six housekeeping genes and two 'putative virulence' genes (eMLST) that provides improved high resolution typing (91eSTs from 285 isolates), and generates phylogenies congruent with those based on whole genome analysis. When compared with the nine gene MLST scheme developed at the University of Bath, UK, and utilised by researchers at Aarhus University, Denmark, the eMLST method offers greater resolution. Using the scheme, we examined 208 isolates from disparate clinical sources, and 77 isolates from healthy skin. Acne was predominately associated with type IA(1) clonal complexes CC1, CC3 and CC4; with eST1 and eST3 lineages being highly represented. In contrast, type IA(2) strains were recovered at a rate similar to type IB and II organisms. Ophthalmic infections were predominately associated with type IA(1) and IA(2) strains, while type IB and II were more frequently recovered from soft tissue and retrieved medical devices. Strains with rRNA mutations conferring resistance to antibiotics used in acne treatment were dominated by eST3, with some evidence for intercontinental spread. In contrast, despite its high association with acne, only a small number of resistant CC1 eSTs were identified. A number of eSTs were only recovered from healthy skin, particularly eSTs representing CC72 (type II) and CC77 (type III). Collectively our data lends support to the view that pathogenic versus truly commensal lineages of P. acnes may exist. This is likely to have important therapeutic and diagnostic implications.  相似文献   

19.
Population structure and evolutionary dynamics of pathogenic bacteria   总被引:21,自引:0,他引:21  
Evidence concerning the significance of recombination within natural bacterial populations has historically come from two main sources: multilocus enzyme electrophoresis (MLEE) and nucleotide sequence data. Here we discuss evidence from a third method, multilocus sequence typing (MLST), which is a development of MLEE based on nucleotide sequencing that combines the advantages of both approaches. MLST has confirmed both the existence of clones and the high rates of recombination for several bacterial pathogens. The data are consistent with "epidemic" population structures, where clones are superimposed upon a backdrop of frequent recombination, thus, in the short term, resisting the homogenising effect of recombination. The nature of the selective advantage of clones, however, and how this advantage relates to virulence are unclear. The current evidence also has broader implications concerning bacterial species definition, the management of antibiotic-resistant bacteria and the assessment of the dangers of releasing genetically modified organisms into the environment.  相似文献   

20.
Single locus variants (SLVs) are bacterial sequence types that differ at only one of the seven canonical multilocus sequence typing (MLST) loci. Estimating the relative roles of recombination and point mutation in the generation of new alleles that lead to SLVs is helpful in understanding how organisms evolve. The relative rates of recombination and mutation for Campylobacter jejuni and Campylobacter coli were estimated at seven different housekeeping loci from publically available MLST data. The probability of recombination generating a new allele that leads to an SLV is estimated to be roughly seven times more than that of mutation for C. jejuni, but for C. coli recombination and mutation were estimated to have a similar contribution to the generation of SLVs. The majority of nucleotide differences (98?% for C. jejuni and 85?% for C. coli) between strains that make up an SLV are attributable to recombination. These estimates are much larger than estimates of the relative rate of recombination to mutation calculated from more distantly related isolates using MLST data. One explanation for this is that purifying selection plays an important role in the evolution of Campylobacter. A simulation study was performed to test the performance of our method under a range of biologically realistic parameters. We found that our method performed well when the recombination tract length was longer than 3?kb. For situations in which recombination may occur with shorter tract lengths, our estimates are likely to be an underestimate of the ratio of recombination to mutation, and of the importance of recombination for creating diversity in closely related isolates. A parametric bootstrap method was applied to calculate the uncertainty of these estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号