首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The content of viral structural (gag) protein sequences in polypeptides encoded by replication-defective avian erythroblastosis virus (AEV) and myelocytomatosis virus MC29 was assessed by immunological and peptide analyses. Direct comparison with gag proteins of the associated helper viruses revealed that MC29 110K polypeptide contained p19, p12, and p27, whereas the AEV 75K polypeptide had sequences related only to p19 and p12. Both of these polypeptides contained some information that was unrelated to gag, pol, or env gene products. In addition, no homology was detected between these unique peptides of MC29 110K and AEV 75K. The AEV 75K polypeptide shared strain-specific tryptic peptides with the p19 encoded by its naturally occurring helper virus; this observation suggests that gag-related sequences in 75K were originally derived from the helper viral gag gene. Digestion of oxidized MC29 110K and AEV 75K proteins with the Staphylococcus aureus V8 protease generated a fragment which comigrated with N-acetylmethionylsulfoneglutamic acid, a blocked dipeptide which is the putative amino-terminal sequence of structural protein p19 and gag precursor Pr76gag. This last finding is evidence that the gag sequences are located at the N-terminal end of the MC29 110K and AEV 75K polypeptides.  相似文献   

2.
The gag gene-related, nonstructural proteins of three avian acute leukemia viruses (namely, myelocytomatosis viruses MC29 and CMII and avian erythroblastosis virus) and of avian Fujinami sarcoma virus (FSV) isolated by immunoprecipitation from cellular lysates with anti-gag serum were shown to be phosphoproteins in vivo. The specific 32P radioactivity of the nonstructural proteins of MC29, CMII, and FSV was significantly higher than that of helper viral, intracellular gag proteins. Two of these proteins, i.e., the 140,000-dalton FSV and the 110,000-dalton MC29 proteins, were also phosphorylated in vitro by a kinase activity associated with immunocomplexes. This kinase activity is either separated from these proteins or inactivated by incubation of cellular lysates with normal serum followed by adsorption to staphylococcal protein A or sedimentation at 100,000 x g or both. It remains to be resolved whether the 110,000-dalton MC29 and 140,000-dalton FV proteins, in addition to being substrates for phosphorylation, also have intrinsic kinase activity.  相似文献   

3.
4.
The viral RNAs of three nonconditional mutants of avian myelocytomatosis virus MC29 were analyzed. These mutants, which were originally isolated from the quail producer line Q10 and were designated 10A, 10C, and 10H, have lost most of the ability to transform hematopoietic cells in vitro and to induce tumors in vivo, but they still transform cultured fibroblasts with the same efficiency as wild-type (wt) MC29. Electrophoretic analyses showed that the mutant genomic RNAs were smaller than the 5.7-kilobase genome of wt MC29; the genomes of mutants 10A, 10C, and 10H were about 5.5, 5.3, and 5.1 kilobases long, respectively. Analyses of the transformation-specific sequences of these mutant RNAs by a combination of T(1) oligonucleotide fingerprinting and hybridization with cDNA from the transformation-specific sequences myc of wt MC29 or competition hybridization including wt MC29 RNA revealed that deletions of myc-specific sequences had occurred. The deletions in all three mutants overlapped, since they all had lost one particular myc-specific oligonucleotide. In agreement with the size of the genomic RNAs, mutants 10C and 10H had lost two additional myc oligonucleotides, and mutant 10A contained a modified myc oligonucleotide. The locations of the deletions were deduced from comparisons with previously established oligonucleotide maps of several members of the MC29 subgroup of acute leukemia viruses and by hybridization of wt and mutant RNAs to molecularly cloned subgenomic fragments of wt MC29 proviral DNA, representing the 5' and 3' domains of the myc sequence. We found that the deleted sequences represented overlapping internal segments of the myc sequence and that the borders of myc with the partial complements of the virion genes gag and env appeared to be conserved in mutant and wt MC29 RNAs. The correlation between the altered transforming potential for hematopoietic cells and the partial deletion of myc in the mutant RNAs provided direct genetic evidence for the involvement of myc in oncogenesis. However, the unaffected efficiency of these mutants in fibroblast transformation suggested that the deleted sequences are not essential for the fibroblast-transforming potential of the onc gene of MC29.  相似文献   

5.
Molecularly cloned proviral DNA of avian oncogenic retrovirus CMII was isolated by screening a genomic library of a CMII-transformed quail cell line with a myc-specific probe. On a 10.4-kilobase EcoRI fragment, the cloned DNA contained 4.4 kilobases of CMII proviral sequences extending from the 5' long terminal repeat to the EcoRI site within the partial (delta) complement of the env gene. The gene order of CMII proviral DNA is 5'-delta gag-v-myc-delta pol-delta env-3'. All three structural genes are partially deleted: the gag gene at the 3' end, the env gene at the 5' end, and the pol gene at both ends. The delta gag (0.83 kilobases)-v-myc (1.50 kilobases) sequences encode the p90gag-myc transforming protein of CMII. In comparison with the p110gag-myc protein of acute leukemia virus MC29, p90gag-myc lacks amino acids corresponding to additional 516 bases of gag sequences and 12 bases of 5' v-myc sequences present in the MC29 genome. Nucleotide sequence analysis of CMII proviral DNA at the delta gag-v-myc and the v-myc-delta pol junctions revealed significant homologies between avian retroviral structural genes and the cellular oncogene c-myc precisely at the positions corresponding to the gene junctions in CMII. Furthermore, the delta gag-v-myc junction in CMII corresponds to sequence elements in gag and C-myc that are possible splicing signals. The data suggest that transduction of cellular oncogenes may involve RNA splicing and recombination with homologous sequences on retroviral vectors. Different sequence elements of both the retroviral vectors and the c-myc gene recombined during genesis of highly oncogenic retroviruses CMII, MC29, or MH2.  相似文献   

6.
The putative transforming protein of avian myelocytomatosis virus MC29 is a 110,000 dalton (P110gag-myc) polyprotein comprised of sequences derived from both the gag region and the MC29-specific myc region. Two approaches have been taken to determine the location of the MC29 gag-related proteins in transformed cells: subcellular fractionation and immunofluorescence. Analysis of subcellular fractions of MC29-transformed cells by immunoprecipitation indicates that the majority of the gag-myc polyprotein is found in the nuclear fractions of Q8 cells (a nonproducer line of MC29-transformed quail embryo fibroblasts) and nonproducer cells derived from a liver tumor of MC20-infected quail. This is in contrast to the distribution of gag-related helper virus proteins lacking myc, which are found only in nonnuclear fractions of superinfected Q8 cells. The purity of unlabeled nuclei was assessed by electron microscopy and enzyme assays, revealing little contaminating material from other subcellular fractions. Immunofluorescence experiments using monospecific anti-gag serum showed specific, intense immunofluorescence in the nuclei of fixed Q8 cells. In contrast, the majority of P75gag-erb, a candidate transforming protein produced by avian erythroblastosis virus (AEV), is absent from the nuclei of nonproducer AEV-transformed chick embryo fibroblasts. The nuclear association of the MC29 transforming protein may be related to some of the unique properties of MC29-transformed cells.  相似文献   

7.
H Beug  M J Hayman    T Graf 《The EMBO journal》1982,1(9):1069-1073
Avian leukemia virus E26 contains the myb oncogene and transforms erythroid and myeloid hematopoietic cells in vivo and in vitro. E26-transformed nonproducer myeloblasts but not avian erythroleukemia virus (AEV)-transformed erythroblasts nor MC29-transformed macrophages were shown to be dependent for growth on factor(s) present in supernatants from Concanavalin A-stimulated chicken spleen cells. The same factor enhanced the synthesis of p135 E26, the candidate transforming protein of E26, but did not induce the synthesis of the transforming proteins of AEV and MC29 viruses nor that of helper virus-derived structural proteins. P135 E26 was shown to contain sequences related to the viral gag gene as well as sequences which may be related to the myb gene product. P135 E26 might constitute the first example of a viral onc protein whose synthesis is regulated directly or indirectly by an exogenous hematopoietic growth factor.  相似文献   

8.
Recently, we isolated three mutants of MC29 virus which, although able to transform fibroblasts with the same efficiency as wild-type MC29, were 100-fold less efficient at transforming macrophages. In this study we found that MC29-transformed quail producer cell line Q10 was able to generate these partially transformation defective mutants at a high frequency. Using tryptic peptide mapping, we determined that the smaller gag-myc polyproteins encoded by the transformation-defective viruses had lost myc-specific tryptic peptides. This suggested that the mutations which resulted in the transformation-defective viruses being inefficient at transforming macrophages were located in the v-myc sequence and thus directly implicated v-myc and the gag-myc polyprotein in transformation by MC29.  相似文献   

9.
We screened a recombinant chicken DNA/lambda phage library for sequences homologous to the transformation-specific sequences of the avian acute leukemia virus MC29 by hybridization with molecularly cloned MC29 proviral DNA. Three cellular DNA clones were found and compared with each other and with the viral genome by physical mapping with restriction endonucleases and by heteroduplex analysis. These experiments indicated that the three cellular clones overlap and represent a single cellular locus. The RNA genome of MC29 and normal cell DNA share a homologous region of 1.6 kilobases which is interrupted in the cellular DNA by 1.0 kilobase of sequences not present in the viral genome. Hybridization of the cloned cellular DNA to viral RNA and analysis of the protected viral RNA by fingerprinting techniques indicated that there is extensive sequence homology between the helper virus-unrelated mcv sequences of the viral RNA and the cellular DNA, with only minor base differences. The cellular mcv locus, however, lacks all helper virus-related sequences of MC29, including those of the partial viral gag gene which, together with mcv, encodes the probable transforming protein of MC29. We conclude that although the mcv locus of the normal cell does not represent a complete structural homolog to the onc gene of MC29, it is probably the precursor to the onc-specific sequence in the virus.  相似文献   

10.
Phosphorylation of SNARE proteins may provide a critical link between cell activation and secretory processes. Platelets contain all three members of the SNAP-23/25/29 gene family, but by comparison to brain tissue, SNAP-23 is the most highly enriched of these proteins in platelets. SNAP-23 function is required for exocytosis from platelet alpha, dense, and lysosomal granules. SNAP-23 was phosphorylated largely on serine residues in platelets activated with thrombin. Phosphorylation kinetics paralleled or preceded granule secretion. Inhibition studies suggested that SNAP-23 phosphorylation proceeds largely through a protein kinase C (PKC) mechanism and purified PKC directly phosphorylated recombinant (r-) SNAP-23 (up to 0.3 mol of phosphate/mol of protein). Five major tryptic phosphopeptides were identified in cellular SNAP-23 isolated from activated platelets; three phosphopeptides co-migrated with those identified in PKC-phosphorylated r-SNAP-23. In contrast, only one major phosphopeptide was identified when SNAP-23, engaged in a ternary SNARE complex, was phosphorylated by PKC. Ion trap mass spectrometry revealed that platelet SNAP-23 was phosphorylated at Ser23/Thr24 and Ser161, after cell activation by thrombin; these sites were also identified in PKC-phosphorylated r-SNAP-23. SNAP-23 mutants that mimic phosphorylation at Ser23/Thr24 inhibited syntaxin 4 interactions, whereas a phosphorylation mutant of Ser161 had only minor effects. Taken together these studies show that SNAP-23 is phosphorylated in platelets during cell activation through a PKC-related mechanism at two or more sites with kinetics that parallel or precede granule secretion. Because mutants that mimic SNAP-23 phosphorylation affect syntaxin 4 interactions, we hypothesize that SNAP-23 phosphorylation may be important for modulating SNARE-complex interactions during membrane trafficking and fusion.  相似文献   

11.
Viral RNA, molecularly cloned proviral DNA, and virus-specific protein of avian retrovirus MH2 were analyzed. The complexity and sequence conservation of the transformation-specific v-myc sequences of MH2 RNA were compared with those of the other members of the MC29 subgroup of acute leukemia viruses, MC29, CMII, and OK10, and with chicken cellular c-myc sequences. All T1 oligonucleotides mapping within the 1.3-kilobase coding region of MC29 v-myc have homologous counterparts in the RNAs of all MC29 subgroup viruses and in c-myc. These counterparts are either identical in composition or altered by single point mutations. Hence, the 47,000-dalton carboxy-terminal sequences of the transforming proteins of these viruses and of the cellular gene product are probably highly conserved but may contain single amino acid substitutions. T1 oligonucleotide mapping of MH2 RNA indicated that the MH2 v-myc sequences map close to the 3' end of viral RNA. A genomic library of an MH2-transformed quail cell line was prepared by using the Charon 4A vector system. By screening with an myc-specific probe, a clone containing the entire MH2 provirus (lambda MH2-1) was isolated. Digestion of cloned DNA with KpnI yielded a 5.1-kilobase fragment hybridizing to both gag- and myc-specific probes. Further restriction mapping of lambda MH2-1 DNA showed that about 1.6 kilobases of the gag gene are present near the 5' end of proviral DNA, and the conserved part of v-myc, i.e., 1.3 kilobases, is present near the 3' end of proviral DNA. These two domains are separated by a segment of at least 1 kilobase of different genetic origin, including additional unique sequences unrelated to virion genes. Tryptic peptide analysis of the gag-related protein of MH2, p100, revealed gag-specific peptides and several unique methionine-containing peptides. One of the latter is possibly shared with the polymerase precursor protein Pr180gag-pol, but no myc-specific peptides, defined for the MC29 protein p110gag-myc, appear to be present in MH2 p100. The data on viral RNA, proviral DNA, and protein of MH2 reveal a unique genetic structure for this virus of the MC29 subgroup and suggest that its v-myc gene is not expressed as a gag-related protein.  相似文献   

12.
Abelson murine leukemia virus encodes a transforming protein which contains tyrosine kinase activity and is phosphorylated in vivo and in vitro. We found that P160 and P160-derived virus strains expressed an additional, altered v-abl protein which could not be phosphorylated. The altered v-abl protein (L-v-abl) differed from the phosphorylated form (K-v-abl) in that it was glycosylated and localized exclusively to the membrane fraction. Tunicamycin inhibition of N-linked carbohydrate addition did not restore phosphorylation. It did, however, reveal that L-v-abl had additional sequences relative to K-v-abl. The coding sequences required for this region and for the expression of L-v-abl were identified by replacing sequences in the P120 virus genome, which did not express L-v-abl, with sequences from the P160 virus genome. The necessary sequences were localized to the Moloney murine leukemia virus-derived gag gene. Comparison between the in vitro altered P120 and wild-type P120 virus strains indicated that expression of L-v-abl did not increase the efficiency of lymphoid transformation. Although the biological role of L-v-abl is not clear, our analyses have revealed that a specific amino terminal gag sequence can prevent v-abl from acting as a kinase substrate and can alter the cellular localization and modification of v-abl. These properties distinguish L-v-abl from previously reported v-abl proteins.  相似文献   

13.
S M Jong  L H Wang 《Journal of virology》1990,64(12):5997-6009
The transforming protein P68gag-ros of avian sarcoma virus UR2 is a transmembrane tyrosine protein kinase molecule with the gag portion protruding extracellularly. To investigate the role of the gag moiety in the biochemical properties and biological functions of the P68gag-ros fusion protein, retroviruses containing the ros coding sequence of UR2 were constructed and analyzed. The gag-free ros protein was expressed from one of the mutant retroviruses at a level 10 to 50% of that of the wild-type UR2. However, the gag-free ros-containing viruses were not able to either transform chicken embryo fibroblasts or induce tumors in chickens. The specific tyrosine protein kinase activity of gag-free ros protein is about 10- to 20-fold reduced as judged by in vitro autophosphorylation. The gag-free ros protein is still capable of associating with membrane fractions including the plasma membrane, indicating that sequences essential for recognition and binding membranes must be located within ros. Upon passages of the gag-free mutants, transforming and tumorigenic variants occasionally emerged. The variants were found to have regained the gag sequence fused to the 5' end of the ros, apparently via recombination with the helper virus or through intramolecular recombination between ros and upstream gag sequences in the same virus construct. All three variants analyzed code for gag-ros fusion protein larger than 68 kDa. The gag-ros recombination junction of one of the transforming variants was sequenced and found to consist of a p19-p10-p27-ros fusion sequence. We conclude that the gag sequence is essential for the transforming activity of P68gag-ros but is not important for its membrane association.  相似文献   

14.
In this study, we employed TiO? enrichment and high accuracy liquid chromatography-mass spectrometry-mass spectrometry to identify the phosphoproteome of Clostridium acetobutyicum ATCC824 in acidogenesis and solventogenesis. As many as 82 phosphopeptides in 61 proteins, with 107 phosphorylated sites on serine, threonine, or tyrosine, were identified with high confidence. We detected 52 phosphopeptides from 44 proteins in acidogenesis and 70 phosphopeptides from 51 proteins in solventogenesis, respectively. Bioinformatic analysis revealed most of the phosphoproteins located in cytoplasm and participated in carbon metabolism. Based on comparison between the two stages, we found 27 stage-specific phosphorylated proteins (10 in acidogenesis and 17 in solventogenesis), some of which were solvent production-related enzymes and metabolic regulators, showed significantly different phosphorylated status. Further analysis indicated that protein phosphorylation could be involved in the shift of stages or in solvent production pathway directly. Comparison against several other organisms revealed the evolutionary diversity among them on phosphorylation level in spite of their high homology on protein sequence level.  相似文献   

15.
The localization of the transformation-specific proteins was analyzed in quail embryo fibroblast cell lines transformed by wild-type avian myelocytomatosis virus MC29 and by three of its deletion mutants, Q10A , Q10C , and Q10H , with altered transforming capacities, and in a chicken fibroblast cell line transformed by the avian erythroblastosis virus (AEV). These viruses code for polyproteins consisting of part of the gag gene and of a transformation-specific region, myc for MC29 and erb A for AEV. Analysis by indirect immunofluorescence using monoclonal antibodies against p19, the N-terminal region of the polyprotein, showed that the gag-myc proteins in cells transformed by the wild-type MC29 as well as by the three deletion mutants are located in the nucleus. In contrast, cells transformed by AEV, which express the gag-erb A protein, give rise to cytoplasmic fluorescence. Fractionation of cells into nuclear and cytoplasmic fractions and analysis by immunoprecipitation and gel electrophoresis confirmed these results. About 60% of the gag-myc proteins of wild-type as well as of mutant origin were found in the nucleus, while 90% of the gag-erb A protein was present in the cytoplasm. Also, pulse-chase analysis indicated that the gag-myc protein rapidly accumulates in the nucleus in just 30 min. Further, it was shown that the wild-type and also mutant gag-myc proteins are associated with isolated chromatin. Association to chromatin was also observed for the gag-myc protein from MC29-transformed bone marrow cells, which are believed to be the target cells for MC29 virus in vivo.  相似文献   

16.
Phosphorylated sites of calf thymus H2B histone were investigated with a catalytic fragment of 72 kDa protein-tyrosine kinase (p72syk). Three of five tyrosine residues in H2B histone can be phosphorylated by this kinase. In this analysis, H2B histone was thoroughly phosphorylated in vitro with [gamma-32P]ATP and the kinase, and then digested with a lysylendopeptidase. The resulting radioactive phosphopeptides were separated by a reverse-phase column on high performance liquid chromatography. Subsequent sequential Edman degradation of the purified phosphopeptides revealed that 40Y, 83Y and 121Y were phosphorylated. 121Y is the major phosphorylated residue in H2B histone. No phosphorylation was detected in 37Y and 42Y. Although the consensus sequence was not defined from these analyses, our data suggest that higher-order structure(s) in addition to primary one may participate in recognition of H2B histone by this protein kinase.  相似文献   

17.
A common strategy in proteomics to improve the number and quality of peptides detected by mass spectrometry (MS) is to desalt and concentrate proteolytic digests using reversed phase (RP) chromatography prior to analysis. However, this does not allow for detection of small or hydrophilic peptides, or peptides altered in hydrophilicity such as phosphopeptides. We used microcolumns to compare the ability of RP resin or graphite powder to retain phosphopeptides. A number of standard phosphopeptides and a biologically relevant phosphoprotein, dynamin I, were analyzed. MS revealed that some phosphopeptides did not bind the RP resin but were retained efficiently on the graphite. Those that did bind the RP resin often produced much stronger signals from the graphite powder. In particular, the method revealed a doubly phosphorylated peptide in a tryptic digest of dynamin I purified from rat brain nerve terminals. The detection of this peptide was greatly enhanced by graphite micropurification. Sequencing by tandem MS confirmed the presence of phosphate at both Ser-774 and Ser-778, while a singly phosphorylated peptide was predominantly phosphorylated only on Ser-774. The method further revealed a singly and doubly phosphorylated peptide in dynamin III, analogous to the dynamin I sequence. A pair of dynamin III phosphorylation sites were found at Ser-759 and Ser-763 by tandem MS. The results directly define the in vivo phosphorylation sites in dynamins I and III for the first time. The findings indicate a large improvement in the detection of small amounts of phosphopeptides by MS and the approach has major implications for both small- and large-scale projects in phosphoproteomics.  相似文献   

18.
HBI is a recombinant avian retrovirus with novel pathogenic properties that was derived from the myc-containing virus MC29. In contrast to MC29, which causes endotheliomas in chickens, HBI induces lymphoid tumors. The results of molecular cloning and nucleotide sequencing of HBI reported here show that the virus contains sequences derived from both c-myc and ring-neck pheasant virus, in addition to MC29. The 3' half of the myc gene was largely replaced by c-myc sequences, and most of the long terminal repeat and gag regions were replaced by ring-neck pheasant virus sequences. The long terminal repeat contained a triplicate sequence which was homologous to the core enhancer sequence of the simian virus 40 72-base-pair repeat. The significance of these changes in relation to the unusual biological properties of the virus are discussed.  相似文献   

19.
G Weinmaster  M J Zoller  M Smith  E Hinze  T Pawson 《Cell》1984,37(2):559-568
The 130 kd transforming protein of Fujinami sarcoma virus (FSV P130gag -fps) possesses a tyrosine-specific protein kinase activity and is itself phosphorylated at several tyrosine and serine residues in FSV-transformed cells. We have used oligonucleotide-directed mutagenesis of the FSV genome to change the TAT codon for tyrosine (1073), the major site of P130gag -fps phosphorylation, to a TTT codon for phenylalanine that cannot be phosphorylated. This mutant FSV induces the transformation of rat-2 cells but with a long latent period as compared with wild-type FSV. The P130gag -fps protein encoded by the mutant retains the ability to phosphorylate tyrosine, but is five times less active as a kinase in vitro than wild-type FSV P130gag -fps. These data indicate that tyrosine phosphorylation stimulates the biochemical and biological activities of FSV P130gag -fps, and they set a precedent for the ability of this amino acid modification to modulate protein function.  相似文献   

20.
RNA and protein of the defective avian acute leukemia virus CMII, which causes myelocytomas in chickens, and of CMII-associated helper virus (CMIIAV) were investigated. The RNA of CMII measured 6 kilobases (kb) and that of CMIIAV measured 8.5 kb. By comparing more than 20 mapped oligonucleotides of CMII RNA with mapped and nonmapped oligonucleotides of acute leukemia viruses MC29 and MH2 and with mapped oligonucleotides of CMIIAV and other nondefective avian tumor viruses, three segments were distinguished in the oligonucleotide map of CMII RNA: (i) a 5' group-specific segment of 1.5 kb which was conserved among CMII, MC29, and MH2 and also homologous with gag-related oligonucleotides of CMIIAV and other helper viruses (hence, group specific); (ii) an internal segment of 2 kb which was conserved specifically among CMII, MC29, and MH2 and whose presence in CMII lends new support to the view that this class of genetic elements is essential for oncogenicity, because it was absent from an otherwise isogenic, nontransforming helper, CMIIAV; and (iii) a 3' group-specific segment of 2.5 kb which shared 13 of 14 oligonucleotides with CMIIAV and included env oligonucleotides of other nondefective viruses of the avian tumor virus group (hence, group specific). This segment and analogous map segments of MC29 and MH2 were not conserved at the level of shared oligonucleotides. CMII-transformed cells contained a nonstructural, gag gene-related protein of 90,000 daltons, distinguished by its size from 110,000-daltom MC29 and 100,000-dalton MH2 counterparts. The gag relatedness and similarity to the 110,000-dalton MC29 counterpart indicated that the 90,000-dalton CMII protein is translated from the 5' and internal segments of CMII RNA. The existence of conserved 5' and internal RNA segments and conserved nonstructural protein products in CMII, MC29, and MH2 indicates that these viruses belong to a related group, termed here the MC29 group. Viruses of the MC29 group differ from one another mainly in their 3' RNA segments and in minor variations of their conserved RNA segments as well as by strain-specific size markers of their gag-related proteins. Because (i) the conserved 5' gag-related and internal RNA segments and their gag-related, nonvirion protein products correlate with the conserved oncogenic spectra of the MC29 group of viruses and because (ii) the internal RNA sequences and nonvirion proteins are not found in nondefective viruses, we propose that the conserved RNA and protein elements are necessary for oncogenicity and probably are the onc gene products of the MC29 group of viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号