首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visceral leishmaniasis is a major health problem in Latina America, as well as the Mediterranean region of Europe and Asia. We aimed to develop a vaccine against visceral leishmaniasis targeting the intracellular amastigotes, which is the parasite stage that persists throughout infections with Leishmania parasites. With this in mind, we identified an amastigote specific antigen (A2) that contains an immunogenic epitope for CD4+ T helper (Th) cells and multiple repetitive units encoding CD8+ cytotoxic T lymphocyte (CTL) epitopes. Vaccine formulations containing the recombinant A2 associated with saponin, alum and IL-12 or expressed by attenuated adenovirus were shown to be protective in mice, dogs and nonhuman-primates. We are currently identifying novel amastigote specific immunogenic proteins that could be aggregated to A2 to further improve the level of vaccine-induced cell-mediated immunity and protection against visceral leishmaniasis.  相似文献   

2.
Heterologous vaccination based on priming with a plasmid DNA vector and boosting with an attenuated vaccinia virus MVA recombinant, with both vectors expressing the Leishmania infantum LACK antigen (DNA-LACK and MVA-LACK), has shown efficacy conferring protection in murine and canine models against cutaneus and visceral leishmaniasis, but the immune parameters of protection remain ill defined. Here we performed by flow cytometry an in depth analysis of the T cell populations induced in BALB/c mice during the vaccination protocol DNA-LACK/MVA-LACK, as well as after challenge with L. major parasites. In the adaptive response, there is a polyfunctional CD4(+) and CD8(+) T cell activation against LACK antigen. At the memory phase the heterologous vaccination induces high quality LACK-specific long-term CD4(+) and CD8(+) effector memory cells. After parasite challenge, there is a moderate boosting of LACK-specific CD4(+) and CD8(+) T cells. Anti-vector responses were largely CD8(+)-mediated. The immune parameters induced against LACK and triggered by the combined vaccination DNA/MVA protocol, like polyfunctionality of CD4(+) and CD8(+) T cells with an effector phenotype, could be relevant in protection against leishmaniasis.  相似文献   

3.
The available evidence suggests that protective immunity to Leishmania is achieved by priming the CD4(+) Th1 response. Therefore, we utilised a reverse genetics strategy to generate influenza A viruses to deliver an immunogenic Leishmania peptide. The single, immunodominant Leishmania-specific LACK(158-173) CD4(+) peptide was engineered into the neuraminidase stalk of H1N1 and H3N2 influenza A viruses. These recombinant viruses were used to vaccinate susceptible BALB/c mice to determine whether the resultant LACK(158-173)-specific CD4(+) T cell responses protected against live L. major infection. We show that vaccination with influenza-LACK(158-173) triggers LACK(158-173)-specific Th1-biased CD4(+) T cell responses within an appropriate cytokine milieu (IFN-γ, IL-12), essential for the magnitude and quality of the Th1 response. A single intraperitoneal exposure (non-replicative route of immunisation) to recombinant influenza delivers immunogenic peptides, leading to a marked reduction (2-4 log) in parasite burden, albeit without reduction in lesion size. This correlated with increased numbers of IFN-γ-producing CD4(+) T cells in vaccinated mice compared to controls. Importantly, the subsequent prime-boost approach with a serologically distinct strain of influenza (H1N1->H3N2) expressing LACK(158-173) led to a marked reduction in both lesion size and parasite burdens in vaccination trials. This protection correlated with high levels of IFN-γ producing cells in the spleen, which were maintained for 6 weeks post-challenge indicating the longevity of this protective effector response. Thus, these experiments show that Leishmania-derived peptides delivered in the context of recombinant influenza viruses are immunogenic in vivo, and warrant investigation of similar vaccine strategies to generate parasite-specific immunity.  相似文献   

4.
The development of an effective vaccine against Mycobacterium tuberculosis is a research area of intense interest. Mounting evidence suggests that protective immunity to M. tuberculosis relies on both MHC class II-restricted CD4(+) T cells and MHC class I-restricted CD8(+) T cells. By purifying polypeptides present in the culture filtrate of M. tuberculosis and evaluating these molecules for their ability to stimulate PBMC from purified protein derivative-positive healthy individuals, we previously identified a low-m.w. immunoreactive T cell Ag, Mtb 8.4, which elicited strong Th1 T cell responses in healthy purified protein derivative-positive human PBMC and in mice immunized with recombinant Mtb 8.4. Herein we report that Mtb 8.4-specific T cells can be detected in mice immunized with the current live attenuated vaccine, Mycobacterium bovis-bacillus Calmette-Guérin as well as in mice infected i.v. with M. tuberculosis. More importantly, immunization of mice with either plasmid DNA encoding Mtb 8.4 or Mtb 8.4 recombinant protein formulated with IFA elicited strong CD4(+) T cell and CD8(+) CTL responses and induced protection on challenge with virulent M. tuberculosis. Thus, these results suggest that Mtb 8.4 is a potential candidate for inclusion in a subunit vaccine against TB.  相似文献   

5.
Leishmaniasis is a complex of diseases caused by protozoan parasites belonging to the genus Leishmania. The development of specific resistance against re-infection after cure suggests that a vaccine approach is feasible. Various studies in humans and experimental animals strongly suggest that Th1 type of cell-mediated immune response is important for protection against the disease. A defined antigen that could elicit a specific T-cell-mediated immune response in the host would be an ideal candidate for the vaccine against this parasite. In order to select a candidate antigen, we established a screening system to identify the recombinant clone, expressing antigen having T-cell epitopes from a cDNA library. We screened the library using an established Leishmania specific cell line (LSCL) from a naive healthy human subject. The cell line with predominantly CD4+ cells behaved in a Leishmania specific manner. Fifty-two immuno-reactive clones were screened against the LSCL in vitro and we identified three cDNA clones expressing recombinant antigens that could induce proliferation of these cells to produce INFgamma. The protective efficacy of one of these recombinant proteins was investigated in a hamster model of experimental visceral leishmaniasis and showed protection against a virulent challenge. The identified antigens might be potential candidates for vaccine against Leishmania.  相似文献   

6.
The abundant Leishmania promastigote surface Ag gp63 and Leishmania promastigote lipophosphoglycan were reconstituted into liposomes and used as a vaccine against the agent of New World cutaneous leishmaniasis, Leishmania mexicana. The Ag were inoculated s.c., i.p., and i.v. into CBA/ca and BALB/c mice. Even at low Ag dosages, 8 to 10 micrograms/mouse, the Ag induced appreciable levels of protection. In CBA/ca mice complete protection was obtained by s.c. inoculation of antigen-containing liposomes. Protection could be transferred with T cells to naive mice. Interestingly, the Ag-containing liposomes did not cause the disease exacerbation observed in previous vaccine studies with crude parasite extracts.  相似文献   

7.
The emergence of an increasing number of Leishmania donovani strains resistant to pentavalent antimonials (SbV), the first line of treatment for visceral leishmaniasis worldwide, accounts for decreasing efficacy of chemotherapeutic interventions. A kinetoplastid membrane protein-11 (KMP-11)-encoding construct protected extremely susceptible golden hamsters from both pentavalent antimony responsive (AG83) and antimony resistant (GE1F8R) virulent L. donovani challenge. All the KMP-11 DNA vaccinated hamsters continued to survive beyond 8 mo postinfection, with the majority showing sterile protection. Vaccinated hamsters showed reversal of T cell anergy with functional IL-2 generation along with vigorous specific anti-KMP-11 CTL-like response. Cytokines known to influence Th1- and Th2-like immune responses hinted toward a complex immune modulation in the presence of a mixed Th1/Th2 response in conferring protection against visceral leishmaniasis. KMP-11 DNA vaccinated hamsters were protected by a surge in IFN-gamma, TNF-alpha, and IL-12 levels along with extreme down-regulation of IL-10. Surprisingly the prototype candidature of IL-4, known as a disease exacerbating cytokine, was found to have a positive correlation to protection. Contrary to some previous reports, inducible NO synthase was actively synthesized by macrophages of the protected hamsters with concomitant high levels of NO production. This is the first report of a vaccine conferring protection to both antimony responsive and resistant Leishmania strains reflecting several aspects of clinical visceral leishmaniasis.  相似文献   

8.
Upon loading with microbial Ag and adoptive transfer, dendritic cells (DC) are able to induce immunity to infections. This offers encouragement for the development of DC-based vaccination strategies. However, the mechanisms underlying the adjuvant effect of DC are not fully understood, and there is a need to identify Ag with which to arm DC. In the present study, we analyzed the role of DC-derived IL-12 in the induction of resistance to Leishmania major, and we evaluated the protective efficacy of DC loaded with individual Leishmania Ag. Using Ag-pulsed Langerhans cells (LC) from IL-12-deficient or wild-type mice for immunization of susceptible animals, we showed that the inability to release IL-12 completely abrogated the capacity of LC to mediate protection against leishmaniasis. This suggests that the availability of donor LC-derived IL-12 is a requirement for the development of protective immunity. In addition, we tested the protective effect of LC loaded with Leishmania homolog of receptor for activated C kinase, gp63, promastigote surface Ag, kinetoplastid membrane protein-11, or Leishmania homolog of eukaryotic ribosomal elongation and initiation factor 4a. The results show that mice vaccinated with LC that had been pulsed with selected molecularly defined parasite proteins are capable of controlling infection with L. major. Moreover, the protective potential of DC pulsed with a given Leishmania Ag correlated with the level of their IL-12 expression. Analysis of the cytokine profile of mice after DC-based vaccination revealed that protection was associated with a shift toward a Th1-type response. Together, these findings emphasize the critical role of IL-12 produced by the sensitizing DC and suggest that the development of a DC-based subunit vaccine is feasible.  相似文献   

9.
Apical membrane Ag 1 (AMA1) is one of the leading candidate Ags for inclusion in a subunit vaccine against blood-stage malaria. However, the efficacy of Ab-inducing recombinant AMA1 protein vaccines in phase IIa/b clinical trials remains disappointing. In this article, we describe the development of recombinant human adenovirus serotype 5 and modified vaccinia virus Ankara vectors encoding AMA1 from the Plasmodium chabaudi chabaudi strain AS. These vectors, when used in a heterologous prime-boost regimen in BALB/c mice, are capable of inducing strong transgene-specific humoral and cellular immune responses. We show that this vaccination regimen is protective against a nonlethal P. chabaudi chabaudi strain AS blood-stage challenge, resulting in reduced peak parasitemias. The role of vaccine-induced, AMA1-specific Abs and T cells in mediating the antiparasite effect was investigated by in vivo depletion of CD4(+) T cells and adoptive-transfer studies into naive and immunodeficient mice. Depletion of CD4(+) T cells led to a loss of vaccine-induced protection. Adoptive-transfer studies confirmed that efficacy is mediated by both CD4(+) T cells and Abs functioning in the context of an intact immune system. Unlike previous studies, these results confirm that Ag-specific CD4(+) T cells, induced by a clinically relevant vaccine-delivery platform, can make a significant contribution to vaccine blood-stage efficacy in the P. chabaudi model. Given that cell-mediated immunity may also contribute to parasite control in human malaria, these data support the clinical development of viral-vectored vaccines that induce both T cell and Abs against Plasmodium falciparum blood-stage malaria Ags like AMA1.  相似文献   

10.
Leishmaniases are vector-borne diseases for which no vaccine exists. These diseases are caused by the Leishmania species complex. Activation of the CD8+ T cell is crucial for protection against intracellular pathogens, and peptide antigens are attractive strategies for the precise activation of CD8+ T in vaccine development against intracellular infections. The traditional approach to mine the epitopes is an arduous task. However, with the advent of immunoinformatics, in silico epitope prediction tools are available to expedite epitope identification. In this study, we employ different immunoinformatics tools to predict CD8+ T cell specific 9 mer epitopes presented by HLA-A*02 and HLA-B40 within the highly conserved 3′-ectonucleotidase of Leishmania donovani. We identify five promiscuous epitopes, which have no homologs in humans, theoretically cover 85% of the world's population and are highly conserved (100%) among Leishmania species. Presentation of selected peptides was confirmed by T2 cell line based HLA-stabilization assay, and three of them were found to be strong binders. The in vitro peptide stimulation of peripheral blood mononuclear cells (PBMC) from cured HLA-A02+ visceral leishmaniasis (VL) subjects produced significantly higher IFN-γ, IL-2 and IL-12 compared to no peptide control healthy subjects. Further, CD8+ cells from treated VL subjects produced significantly higher intracellular IFN-γ, lymphocyte proliferation and cytotoxic activity against selected peptides from the PBMCs of treated HLA-A02+ VL subjects. Thus, the CD8+ T cell specific epitopes shown in this study will speed up the development of polytope vaccines for leishmaniasis.  相似文献   

11.
12.
Vascular cell adhesion molecule-1 (VCAM-1) interacts with its major ligand very late antigen-4 (VLA-4) to mediate cell adhesion and transendothelial migration of leukocytes. We report an important role for VCAM-1/VLA-4 interactions in the generation of immune responses during experimental visceral leishmaniasis caused by Leishmania donovani. Our studies demonstrate that these molecules play no direct role in the recruitment of leukocytes to the infected liver, but instead contribute to IL-12p40-production by splenic CD8(+) dendritic cells (DC). Blockade of VCAM-1/VLA-4 interactions using whole antibody or anti-VCAM-1 Fab' fragments reduced IL-12p40 mRNA accumulation by splenic DC 5 hours after L. donovani infection. This was associated with reduced anti-parasitic CD4(+) T cell activation in the spleen and lowered hepatic IFNgamma, TNF and nitric oxide production by 14 days post infection. Importantly, these effects were associated with enhanced parasite growth in the liver in studies with either anti-VCAM-1 or anti-VLA-4 antibodies. These data indicate a role for VCAM-1 and VLA-4 in DC activation during infectious disease.  相似文献   

13.
Vaccination against cancer or intracellular pathogens requires stimulation of class I-restricted CD8(+) T cells. It is therefore important to develop Ag delivery vectors that will promote cross-presentation by APCs and stimulate appropriate inflammatory responses. Toward this goal, we tested the potential of Escherichia coli as an Ag delivery vector in in vitro human culture. Bacteria expressing enhanced green fluorescent protein were internalized efficiently by dendritic cells, as shown by flow cytometry and fluorescence microscopy. Phenotypic changes in DC were observed, including up-regulation of costimulatory molecules and IL-12p40 production. We tested whether bacteria expressing recombinant Ags could stimulate human T cells using the influenza matrix protein as a model Ag. Specific responses against an immunodominant epitope were seen using IFN-gamma ELISPOT assays when the matrix protein was coexpressed with listeriolysin O, but not when expressed alone. THP-1 macrophages were also capable of stimulating T cells after uptake of bacteria, but showed slower kinetics and lower overall levels of T cell stimulation than dendritic cells. Increased phagocytosis of bacteria induced by differentiation of THP-1 increased their ability to stimulate T cells, as did opsonization. Presentation was blocked by proteasome inhibitors, but not by lysosomal protease inhibitors leupeptin and E64. These results demonstrate that recombinant E. coli can be engineered to direct Ags to the cytosol of human phagocytic APCs, and suggest possible vaccine strategies for generating CD8(+) T cell responses against pathogens or tumors.  相似文献   

14.
LIGHT (TNFSF14) is a member of the TNF superfamily involved in inflammation and defence against infection. LIGHT signals via two cell-bound receptors; herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTβR). We found that LIGHT is critical for control of hepatic parasite growth in mice with visceral leishmaniasis (VL) caused by infection with the protozoan parasite Leishmania donovani. LIGHT-HVEM signalling is essential for early dendritic cell IL-12/IL-23p40 production, and the generation of IFNγ- and TNF-producing T cells that control hepatic infection. However, we also discovered that LIGHT-LTβR interactions suppress anti-parasitic immunity in the liver in the first 7 days of infection by mechanisms that restrict both CD4(+) T cell function and TNF-dependent microbicidal mechanisms. Thus, we have identified distinct roles for LIGHT in infection, and show that manipulation of interactions between LIGHT and its receptors may be used for therapeutic advantage.  相似文献   

15.
The virulence of Leishmania donovani in mammals depends at least in part on cysteine proteases because they play a key role in CD4(+) T cell differentiation. A 6-fold increase in NO production was observed with 0.5 microM chicken cystatin, a natural cysteine protease inhibitor, in IFN-gamma-activated macrophages. In a 45-day BALB/c mouse model of visceral leishmaniasis, complete elimination of spleen parasite burden was achieved by cystatin in synergistic activation with a suboptimal dose of IFN-gamma. In contrast to the case with promastigotes, cystatin and IFN-gamma inhibited the growth of amastigotes in macrophages. Although in vitro cystatin treatment of macrophages did not induce any NO generation, significantly enhanced amounts of NO were generated by macrophages of cystatin-treated animals. Their splenocytes secreted soluble factors required for the induction of NO biosynthesis, and the increased NO production was paralleled by a concomitant increase in antileishmanial activity. Moreover, splenocyte supernatants treated with anti-IFN-gamma or anti-TNF-alpha Abs suppressed inducible NO generation, whereas i.v. administration of these anticytokine Abs along with combined therapy reversed protection against infection. mRNA expression and flow cytometric analysis of infected spleen cells suggested that cystatin and IFN-gamma treatment, in addition to greatly reducing parasite numbers, resulted in reduced levels of IL-4 but increased levels of IL-12 and inducible NO synthase. Not only was this treatment curative when administered 15 days postinfection, but it also imparted resistance to reinfection. These studies provide a promising alternative for protection against leishmaniasis with a switch of CD4(+) differentiation from Th2 to Th1, indicative of long-term resistance.  相似文献   

16.
Protection from cutaneous leishmaniasis, a chronic ulcerating skin lesion affecting millions, has been achieved historically using live virulent preparations of the parasite. Killed or recombinant Ags that could be safer as vaccines generally require an adjuvant for induction of a strong Th1 response in murine models. Murine rIL-12 as an adjuvant with soluble Leishmania Ag has been shown to protect susceptible mice. We used 48 rhesus macaques to assess the safety, immunogenicity, and efficacy of a vaccine combining heat-killed Leishmania amazonensis with human rIL-12 (rhIL-12) and alum (aluminum hydroxide gel) as adjuvants. The single s.c. vaccination was found to be safe and immunogenic, although a small transient s.c. nodule developed at the site. Groups receiving rhIL-12 had an augmented in vitro Ag-specific IFN-gamma response after vaccination, as well as increased production of IgG. No increase in IL-4 or IL-10 was found in cell culture supernatants from either control or experimental groups. Delayed hypersensitivity reactions were not predictive of protection. Intradermal forehead challenge infection with 107 metacyclic L. amazonensis promastigotes at 4 wk demonstrated protective immunity in all 12 monkeys receiving 2 microgram rhIL-12 with alum and Ag. Partial efficacy was seen with lower doses of rhIL-12 and in groups lacking either adjuvant. Thus, a single dose vaccine with killed Ag using rhIL-12 and alum as adjuvants was safe and fully effective in this primate model of cutaneous leishmaniasis. This study extends the murine data to primates, and provides a basis for further human trials.  相似文献   

17.
The gp63 gene of Leishmania major was transformed into the AroA- vaccine strain of Salmonella typhimurium (SL3261). The construct (SL3261-gp63), which stably expresses the gp63 Ag in vitro, was used to immunize CBA mice by the oral route. Spleen cells from mice inoculated with SL3261-gp63 developed antibody and proliferative T cell response to L. major. They did not express detectable delayed-type hypersensitivity reactivity. The activated T cells are mainly CD4+ and secrete IL-2 and IFN-gamma but no IL-4. The orally immunized mice developed significant resistance against a challenge L. major infection. We have, therefore, demonstrated the feasibility of oral vaccination against leishmaniasis and that the oral route of antigen delivery via the heterologous carrier may preferentially induce Th1 subsets of CD4+ cells.  相似文献   

18.
Oral immunization with a Salmonella vaccine vector expressing enterotoxigenic Escherichia coli colonization factor Ag I (CFA/I) can protect against collagen-induced arthritis (CIA) by dampening IL-17 and IFN-γ via enhanced IL-4, IL-10, and TGF-β. To identify the responsible regulatory CD4(+) T cells making the host refractory to CIA, Salmonella-CFA/I induced CD39(+)CD4(+) T cells with enhanced apyrase activity relative to Salmonella vector-immunized mice. Adoptive transfer of vaccine-induced CD39(+)CD4(+) T cells into CIA mice conferred complete protection, whereas CD39(-)CD4(+) T cells did not. Subsequent analysis of vaccinated Foxp3-GFP mice revealed the CD39(+) T cells were composed of Foxp3-GFP(-) and Foxp3-GFP(+) subpopulations. Although each adoptively transferred Salmonella-CFA/I-induced Foxp3(-) and Foxp3(+)CD39(+)CD4(+) T cells could protect against CIA, each subset was not as efficacious as total CD39(+)CD4(+) T cells, suggesting their interdependence for optimal protection. Cytokine analysis revealed Foxp3(-) CD39(+)CD4(+) T cells produced TGF-β, and Foxp3(+)CD39(+)CD4(+) T cells produced IL-10, showing a segregation of function. Moreover, donor Foxp3-GFP(-) CD4(+) T cells converted to Foxp3-GFP(+) CD39(+)CD4(+) T cells in the recipients, showing plasticity of these regulatory T cells. TGF-β was found to be essential for protection because in vivo TGF-β neutralization reversed activation of CREB and reduced the development of CD39(+)CD4(+) T cells. Thus, CD39 apyrase-expressing CD4(+) T cells stimulated by Salmonella-CFA/I are composed of TGF-β-producing Foxp3(-) CD39(+)CD4(+) T cells and support the stimulation of IL-10-producing Foxp3(+) CD39(+)CD4(+) T cells.  相似文献   

19.
Sterile immunity can be provided against the pre-erythrocytic stages of malaria by IFN-gamma-secreting CD8(+) T cells that recognize parasite-infected hepatocytes. In this study, we have investigated the use of attenuated fowlpox virus (FPV) strains as recombinant vaccine vectors for eliciting CD8(+) T cells against Plasmodium berghei. The gene encoding the P. berghei circumsporozoite (PbCS) protein was inserted into an FPV vaccine strain licensed for use in chickens, Webster's FPV, and the novel FPV vaccine strain FP9 by homologous recombination. The novel FP9 strain proved more potent as a vaccine for eliciting CD8(+) T cell responses against the PbCS Ag. Sequential immunization with rFP9 and recombinant modified vaccinia virus Anakara (MVA) encoding the PbCS protein, administered by clinically acceptable routes, elicited potent CD8(+) T cell responses against the PbCS protein. This immunization regimen elicited substantial protection against a stringent liver-stage challenge with P. berghei and was more immunogenic and protective than DNA/MVA prime/boost immunization. However, further improvement was not achieved by sequential (triple) immunization with a DNA vaccine, FP9, and MVA.  相似文献   

20.
IL-10 is believed to underlie many of the immunologic defects in human visceral leishmaniasis (VL). We have identified CD4(+)CD25(-)Foxp3(-) T cells as the major source of IL-10 in the VL spleen. IL-27, a member of the IL-6/IL-12 cytokine family, has been shown to promote development of IL-10-producing T cells, in part by upregulating their production of autocrine IL-21. We investigated whether IL-27 and IL-21 are associated with human VL. IL-27 was elevated in VL plasma, and at pretreatment, spleen cells showed significantly elevated mRNA levels of both IL-27 subunits, IL-27p28 and EBI-3, as well as IL-21, compared with posttreatment biopsies. CD14(+) spleen cells were the main source of IL-27 mRNA, whereas CD3(+) T cells were the main source of IL-21. IL-27 mRNA could be strongly upregulated in normal donor macrophages with IFN-γ and IL-1β, conditions consistent with those in the VL spleen. Last, a whole-blood assay revealed that most VL patients could produce Ag-specific IFN-γ and IL-10 and that the IL-10 could be augmented with recombinant human IL-21. Thus, proinflammatory cytokines acting on macrophages in the VL spleen have the potential to upregulate IL-27, which in turn can induce IL-21 to expand IL-10-producing T cells as a mechanism of feedback control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号