首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Pig heart pyruvate dehydrogenase complex is inactivated by phosphorylation (MgATP2-) of an alpha-chain of the decarboxylase component. Three serine residues may be phosphorylated, one of which (site 1) is the major inactivating site. 2. The relative rates of phosphorylation are site 1 greater than 2 greater than site 3. 3. The kinetics of the inactivating phosphorylation were investigated by measuring inactivation of the complex with MgATP2-. The apparent Km for the Mg complex of ATP was 25.5 microM; ADP was a competitive inhibitor (Ki 69.8 microM) and sodium pyruvate an uncompetitive inhibitor (Ki 2.8 microM). Inactivation was accelerated by increasing concentration ratios of NADH/NAD+ and of acetyl-CoA/CoA. 4. The kinetics of additional phosphorylations (predominantly site 2 under these conditions) were investigated by measurement of 32P incorporation into non-radioactive pyruvate dehydrogenase phosphate containing 3-6% of active complex, and assumed from parrallel experiments with 32P labelling to contain 91% of protein-bound phosphate in site 1 and 9% in site 2. 5. The apparent Km for the Mg complex of ATP was 10.1 microM; ADP was a competitive inhibitor (Ki 31.5 microM) and sodium pyruvate an uncompetitive inhibitor (Ki 1.1 mM). 6. Incorporation was accelerated by increasing concentration ratios of NADH/NAD+ and of acetyl-CoA/CoA, although it was less marked at the highest ratios.  相似文献   

2.
1. When pig heart pyruvate dehydrogenase complex was phosphorylated to completion with [gamma-32P]ATP by its intrinsic kinase, three phosphorylation sites were observed. The amino acid sequences around these sites were: sequence 1, Tyr-Gly-Met-Gly-Thr-Ser(P)-Val-Glu-Arg; and sequence 2, Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser(P)-Tyr-Arg. 2. When phosphorylated to inactivation by repetitive additions of limiting quantities of [gamma-32P]ATP, phosphate was incorporated mainly (more than 90%) into Ser-5 of sequence 2. Phosphorylation of this site thus results in activation of pyruvate dehydrogenase. 3. If Ser-5 is phosphorylated with ATP and the enzyme then incubated with [gamma-32P]ATP, phosphorylation of the remaining sites occurred. Ser-12 of sequence 2 is phosphorylated about twice as rapidly as Ser-6 of sequence 1. 4. Incubation of pyruvate dehydrogenase with excess [gamma-32P]ATP with termination of phosphorylation at about 50% complete inactivation showed that Ser-5 of sequence 2 was phosphorylated most rapidly, but also that Ser-12 of sequence 2 was significantly (15% of total) phosphorylated. Ser-6 sequence 1 contained about 1% total P. 5. These results suggest that addition of limiting amounts of ATP produces primarily phosphorylation of Ser-5 of sequence 2 (inactivating site). This also occurs during incubation with excess ATP before complete inactivation occurs, but a greater occupancy of other sites also occurs during this treatment.  相似文献   

3.
1. Pig heart pyruvate dehydrogenase phosphate complex in which all three sites of phosphorylation were completely phosphorylated was re-activated at a slower rate by phosphatase than complex predominantly phosphorylated in site 1. The ratio of initial rates of re-activation was approx. 1:5 with a comparatively crude preparation of phosphatase and with phosphatase purified by gel filtration and ion-exchange chromatography. 2. The ratio of apparent first-order rate constants during dephosphorylation of fully phosphorylated complex averaged 1/3.8/1.3 for site 1/site 2/site 3. Only site-1 dephosphorylation was linearly correlated with re-activation of the complex throughout dephosphorylation. Dephosphorylation of site 3 was linearly correlated with re-activation after an initial burst of dephosphorylation. 3. Because dephosphorylation of site 1 was always associated with dephosphorylation of site 2, it is concluded that dephosphorylation cannot be purely random. 4. The ratio of apparent first-order rate constants for dephosphorylation of site 1 (partially/fully phosphorylated complexes) averaged 1.72. This ratio is smaller than the ratio of approx. 5 for the initial rates of re-activation. Possible mechanisms involved in the diminished rate of re-activation of fully phosphorylated complex are discussed.  相似文献   

4.
1. The molecular weights of the subunits of purified pig heart pyruvate dehydrogenase complex were determined by sodium dodecyl sulphate/polyacrylamide-disc-gel electrophoresis and were: pyruvate decarboxylase, α-subunit 40600, β-subunit 35100; dihydrolipoyl acetyltransferase 76100; dihydrolipoyl dehydrogenase 58200. 2. Inactivation of the pyruvate dehydrogenase complex by its integral kinase corresponded to the incorporation of 0.46nmol of P/unit of complex activity inactivated. 3. Further incorporation of phosphate into the complex occurred to a limit of 1.27nmol of P/unit of complex inactivated (approx. 3 times that required for inactivation). 4. Phosphate was incorporated only into the α-subunit of the decarboxylase. 5. The molar ratio of phosphate to α-subunits of the decarboxylase was estimated by radioamidination of amino groups of pyruvate dehydrogenase [32P]phosphate complex by using methyl [1-14C]acetimidate, followed by separation of α-subunits by sodium dodecyl sulphate/polyacrylamide-disc-gel electrophoresis. Inactivation of the complex (0.46nmol of P/unit of complex inactivated) corresponded to a molar ratio of one phosphate group per two α-chains (i.e. one phosphate group/α2β2 tetramer). Complete phosphorylation corresponded to three phosphate groups per α2β2 tetramer. 6. Subunit molar ratios in the complex were also estimated by the radioamidination technique. Results corresponded most closely to molar ratios of 4 α-subunits:4 β-subunits:2 dihydrolipoyl acetyltransferase subunits:1 dihydrolipoyl dehydrogenase subunit.  相似文献   

5.
6.
7.
8.
The ATP-dependent inactivation of the pyruvate dehydrogenase complex (PDC) was examined using ruptured mitochondria and partially purified pyruvate dehydrogenase complex isolated from broccoli and cauliflower (Brassica oleracea) bud mitochondria. The ATP-dependent inactivation was temperature- and pH-dependent. [(32)P]ATP experiments show a specific transphosphorylation of the gamma-PO(4) of ATP to the complex. The phosphate attached to the PDC was labile under mild alkaline but not under mild acidic conditions. The inactivated-phosphorylated PDC was not reactivated by 20 mm MgCl(2), dialysis, Sephadex G-25 treatment, apyrase action, or potato acid phosphatase action. However, partially purified bovine heart PDC phosphatase catalyzed the reactivation and dephosphorylation of the isolated plant PDC. The ATP-dependent inactivation-phosphorylation of the PDC was inhibited by pyruvate. It is concluded that the ATP-dependent inactivation-phosphorylation of broccoli and cauliflower mitochondrial PDC is catalyzed by a PDC kinase. It is further concluded that the PDC from broccoli and cauliflower mitochondria is capable of interconversion between an active (dephosphorylated) and an inactive (phosphorylated) form.  相似文献   

9.
The pyruvate dehydrogenase multienzyme complex (PDC) is a key regulatory point in cellular metabolism linking glycolysis to the citric acid cycle and lipogenesis. Reversible phosphorylation of the pyruvate dehydrogenase enzyme is a critical regulatory mechanism and an important point for monitoring metabolic activity. To directly determine the regulation of the PDC by phosphorylation, we developed a complete set of phospho-antibodies against the three known phosphorylation sites on the E1 alpha subunit of pyruvate dehydrogenase (PDHE1α). We demonstrate phospho-site specificity of each antibody in a variety of cultured cells and tissue extracts. In addition, we show sensitivity of these antibodies to PDH activity using the pyruvate dehydrogenase kinase-specific inhibitor dichloroacetate. We go on to use these antibodies to assess PDH phosphorylation in a patient suffering from Leigh’s syndrome. Finally, we observe changes in individual phosphorylation states following a small molecule screen, demonstrating that these reagents should be useful for monitoring phosphorylation of PDHE1α and, therefore, overall metabolism in the disease state as well as in response to a myriad of physiological and pharmacological stimuli.  相似文献   

10.
The pyruvate dehydrogenase (E1) and acetyltransferase (E2) components of pig heart and ox kidney pyruvate dehydrogenase (PDH) complex were separated and purified. The E1 component was phosphorylated (alpha-chain) and inactivated by MgATP. Phosphorylation was mainly confined to site 1. Addition of E2 accelerated phosphorylation of all three sites in E1 alpha and inactivation of E1. On the basis of histone H1 phosphorylation, E2 is presumed to contain PDH kinase, which was removed (greater than 98%) by treatment with p-hydroxymercuriphenylsulphonate. Stimulation of ATP-dependent inactivation of E1 by E2 was independent of histone H1 kinase activity of E2. The effect of E2 is attributed to conformational change(s) induced in E1 and/or E1-associated PDH kinase. PDH kinase activity associated with E1 could not be separated from it be gel filtration or DEAE-cellulose chromatography. Subunits of PDH kinase were not detected on sodium dodecyl sulphate/polyacrylamide gels of E1 or E2, presumably because of low concentration. The activity of pig heart PDH complex was increased by E2, but not by E1, indicating that E2 is rate-limiting in the holocomplex reaction. ATP-dependent inactivation of PDH complex was accelerated by E1 or by phosphorylated E1 plus associated PDH kinase, but not by E2 plus presumed PDH kinase. It is suggested that a substantial proportion of PDH kinase may accompany E1 when PDH complex is dissociated into its component enzymes. The possibility that E1 may possess intrinsic PDH kinase activity is considered unlikely, but may not have been fully excluded.  相似文献   

11.
The kinetic behavior of pig heart pyruvate dehydrogenase complex (PDC) containing bound endogenous thiamin pyrophosphate (TPP) was affected by exogenous TPP. In the absence of exogenous TPP, a lag phase of the PDC reaction was observed. TPP added to the PDC reaction medium containing Mg2+ led to a disappearance of the lag phase, inducing strong reduction of the Km value for pyruvate (from 76.7 to 19.0 microM) but a more moderate decrease of Km for CoA (from 12.2 to 4.3 microM) and Km for NAD+ (from 70.2 to 33.6 microM), with no considerable change in the maximum reaction rate. Likewise, thiamin monophosphate (TMP) decreased the Km value of PDC for pyruvate, but to a lesser extent (from 76.7 to 57.9 microM) than TPP. At the unsaturating level of pyruvate, the A50 values for TPP and TMP were 0.2 microM and 0.3 mM, respectively. This could mean that the effect of TPP on PDC was more specific. In addition, exogenous TPP changed the UV spectrum and lowered the fluorescence emission of the PDC containing bound endogenous TPP in its active sites. The data obtained suggest that TPP plays, in addition to its catalytic function, the important role of positive regulatory effector of pig heart PDC.  相似文献   

12.
13.
The E. coli pyruvate dehydrogenase complex was inhibited by pyruvate in absence of its cofactor, NAD+. The inhibition was found to increase with pH and phosphate concentration of the buffer and decrease with its ionic strength. The inhibition profile was different with MOPS buffer. No radioactivity was found in the enzyme, when the latter was incubated with 2-14C-pyruvate. The results suggest that covalent adduct formation is not necessary for the observed inhibition.  相似文献   

14.
15.
We have shown that the active form of the pyruvate dehydrogenase (PDHa) component exhibits at least a 9-fold greater affinity for sites on the dihydrolipoyl transacetylase core of the pyruvate dehydrogenase complex than does the inactive (phosphorylated) form of pyruvate dehydrogenase (PDHb). Consistent with a higher rate of dissociation for PDHb than for PDHa, free PDHa rapidly replaces PDHb whereas, even at high levels, free PDHb only slowly replaces PDHa. Dissociation of newly formed PDHb, during phosphorylation by the immobile PDHa kinase, leads to an increased association of free PDHa as observed by protection against inactivation of the complex, even though PDHa kinase activity is increased.  相似文献   

16.
The alpha-ketoglutarate dehydrogenase complex of Escherichia coli utilizes pyruvate as a poor substrate, with an activity of 0.082 units/mg of protein compared with 22 units/mg of protein for alpha-ketoglutarate. Pyruvate fully reduces the FAD in the complex and both alpha-keto[5-14C]glutarate and [2-14C]pyruvate fully [14C] acylate the lipoyl groups with approximately 10 nmol of 14C/mg of protein, corresponding to 24 lipoyl groups. NADH-dependent succinylation by [4-14C]succinyl-CoA also labels the enzyme with approximately 10 nmol of 14C/mg of protein. Therefore, pyruvate is a true substrate. However, the pyruvate and alpha-ketoglutarate activities exhibit different thiamin pyrophosphate dependencies. Moreover, 3-fluoropyruvate inhibits the pyruvate activity of the complex without affecting the alpha-ketoglutarate activity, and 2-oxo-3-fluoroglutarate inhibits the alpha-ketoglutarate activity without affecting the pyruvate activity. 3-Fluoro[1,2-14C]pyruvate labels about 10% of the E1 components (alpha-ketoacid dehydrogenases). The dihydrolipoyl transsuccinylase-dihydrolipoyl dehydrogenase subcomplex (E2E3) is activated as a pyruvate dehydrogenase complex by addition of E. coli pyruvate dehydrogenase, the E1 component of the pyruvate dehydrogenase complex. All evidence indicates that the alpha-ketoglutarate dehydrogenase complex purified from E. coli is a hybrid complex containing pyruvate dehydrogenase (approximately 10%) and alpha-ketoglutarate dehydrogenase (approximately 90%) as its E1 components.  相似文献   

17.
The regulatory effects of alpha-ketoisovalerate on purified bovine heart pyruvate dehydrogenase complex and endogenous pyruvate dehydrogenase kinase were investigated. Incubation of pyruvate dehydrogenase complex with 0.125 to 10 mM alpha-ketoisovalerate caused an initial lag in enzymatic activity, followed by a more linear but inhibited rate of NADH production. Incubation with 0.0125 or 0.05 mM alpha-ketoisovalerate caused pyruvate dehydrogenase inhibition, but did not cause the initial lag in pyruvate dehydrogenase activity. Gel electrophoresis and fluorography demonstrated the incorporation of acyl groups from alpha-keto[2-14C]isovalerate into the dihydrolipoyl transacetylase component of the enzyme complex. Acylation was prevented by pyruvate and by arsenite plus NADH. Endogenous pyruvate dehydrogenase kinase activity was stimulated specifically by K+, in contrast to previous reports, and kinase stimulation by K+ correlated with pyruvate dehydrogenase inactivation. Maximum kinase activity in the presence of K+ was inhibited 62% by 0.1 mM thiamin pyrophosphate, but was inhibited only 27% in the presence of 0.1 mM thiamin pyrophosphate and 0.1 mM alpha-ketoisovalerate. Pyruvate did not affect kinase inhibition by thiamin pyrophosphate at either 0.05 or 2 mM. The present study demonstrates that alpha-ketoisovalerate acylates heart pyruvate dehydrogenase complex and suggests that acylation prevents thiamin pyrophosphate-mediated kinase inhibition.  相似文献   

18.
In the progress curve of the reaction of the pyruvate dehydrogenase complex, a lag phase was observed when the concentration of thiamin diphosphate was lower than usual (about 0.2-1 mM) in the enzyme assay. The length of the lag phase was dependent on thiamin diphosphate concentration, ranging from 0.2 min to 2 min as the thiamin diphosphate concentration varied from 800 nM to 22 nM. The lag phase was also observed in the elementary steps catalyzed by the pyruvate dehydrogenase component. A Km value of 107 nM was found for thiamin diphosphate with respect to the steady-state reaction rate following the lag phase. The pre-steady-state kinetic data indicate that the resulting lag phase was the consequence of a slow holoenzyme formation from apoenzyme and thiamin diphosphate. The thiamin diphosphate can bind to the pyruvate dehydrogenase complex in the absence of pyruvate, but the presence of 2 mM pyruvate increases the rate constant of binding from 1.4 X 10(4) M-1 S-1 to 1.3 X 10(5) M-1 S-1 and decreases the rate constant of dissociation from 2.3 X 10(-2) S-1 to 4.1 X 10(-3) S-1. On the other hand, the effect of pyruvate on the thiamin diphosphate binding revealed the existence of a thiamin-diphosphate-independent pyruvate-binding site in the pyruvate dehydrogenase complex. Direct evidence was also obtained with fluorescence techniques for the existence of this binding site and the dissociation constant of pyruvate was found to be 0.38 mM. On the basis of these data we have proposed a random mechanism for the binding of pyruvate and thiamin diphosphate to the complex. Binding of substrates to the enzyme complex caused an increase in the fluorescence of the dansylaziridine-labelled pyruvate dehydrogenase complex, showing that binding of substrates to the complex is accompanied by structural changes.  相似文献   

19.
1. A method is described using trypsin/formic acid cleavage for unambiguously measuring occupancies of phosphorylation sites in rat heart pyruvate dehydrogenase [32P]phosphate complexes. 2. In mitochondria oxidizing 2-oxoglutarate+l-malate relative initial rates of phosphorylation were site 1>site 2>site 3. 3. Dephosphorylation and reactivation of fully phosphorylated complex was initiated in mitochondria by inhibiting the kinase reaction. Using dichloroacetate relative rates of dephosphorylation were site 2>(1=3). Using sodium dithionite or sodium pyruvate or uncouplers+sodium arsenite or steady state turnover (31P replacing 32P in inactive complex) relative rates were site 2>site 1>site 3. With dithionite reactivation was faster than site 3 dephosphorylation, i.e. site 3 is apparently not inactivating. 4. The steady state proportion of inactive complex was varied (92–48%) in mitochondria oxidizing 2-oxoglutarate/l-malate by increasing extramitochondrial Ca2+ (0–2.6μm). This action of Ca2+ induced dephosphorylation (site 3>site 2>site 1). These experiments enable prediction of site occupancies in vivo for given steady state proportions of inactive complexes. 5. The proportion of inactive complex was related linearly to occupancy of site 1. 6. Sodium dithionite (10mm) and Ca2+ (0.5μm) together resulted in faster dephosphorylations of each site than either agent alone; relative rates were site 2>(1=3). 7. Dephosphorylation and possibly phosphorylation of sites 1 and 2 was not purely sequential as shown by detection of complexes phosphorylated in site 2 but not in site 1. Estimates of the contribution of site 2 phosphorylation to inactivation ranged from 0.7 to 6.4%. 8. It is concluded that the primary function of site 1 phosphorylation is inactivation, phosphorylation of site 2 is not primarily concerned with inactivation and that phosphorylation of site 3 is non-inactivating.  相似文献   

20.
The lactate dehydrogenase-catalyzed reduction of pyruvate by NADH was studied using a spectroscopic method. The inhibitory effect exhibited by high concentrations of pyruvate was investigated in phosphate and 2,2-diethylmalonate buffers. Kinetic studies were carried out in which the rate of the enzyme-catalyzed reaction was monitored at various stages of pyruvate hydration, H2O + CH3COCO2? ? CH3C(OH)22C02?. Buffered solutions of different initial relative amounts of ketopyruvate and hydrated pyruvate (2,2-dihydroxypropanoic acid) were also preincubated with the enzyme and NAD+. Kinetic runs were initiated in the resultant solutions at various stages of incubation by the introduction of NADH. The results of the present investigation indicate that hydrated pyruvate is a major inhibitor of lactate dehydrogenase and forms an inhibitory complex with the enzyme and oxidized coenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号