首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The hedgehog family of intercellular signalling molecules have essential functions in patterning both Drosophila and vertebrate embryos. Drosophila has a single hedgehog gene, while vertebrates have evolved at least three types of hedgehog genes (the Sonic, Desert and Indian types) by duplication and divergence of a single ancestral gene. Vertebrate Sonic-type genes typically show conserved expression in the notochord and floor plate, while Desert- and Indian-type genes have different patterns of expression in vertebrates from different classes. To determine the ancestral role of hedgehog in vertebrates, I have characterised the hedgehog gene family in amphioxus. Amphioxus is the closest living relative of the vertebrates and develops a similar body plan, including a dorsal neural tube and notochord. A single amphioxus hedgehog gene, AmphiHh, was identified and is probably the only hedgehog family member in amphioxus, showing the duplication of hedgehog genes to be specific to the vertebrate lineage. AmphiHh expression was detected in the notochord and ventral neural tube, tissues that express Sonic-type genes in vertebrates. This shows that amphioxus probably patterns its ventral neural tube using a molecular pathway conserved with vertebrates. AmphiHh was also expressed on the left side of the pharyngeal endoderm, reminiscent of the left-sided expression of Sonic hedgehog in chick embryos which forms part of a pathway controlling left/right asymmetric development. These data show that notochord, floor plate and possibly left/right asymmetric expression are ancestral sites of hedgehog expression in vertebrates and amphioxus. In vertebrates, all these features have been retained by Sonic-type genes. This may have freed Desert-type and Indian-type hedgehog genes from selective constraint, allowing them to diverge and take on new roles in different vertebrate taxa. Received: 20 July 1998 / Accepted: 23 September 1998  相似文献   

2.
With the acquisition of complete genome sequences from several animals, there is renewed interest in the pattern of genome evolution on our own lineage. One key question is whether gene number increased during chordate or vertebrate evolution. It is argued here that comparing the total number of genes between a fly, a nematode and human is not appropriate to address this question. Extensive gene loss after duplication is one complication; another is the problem of comparing taxa that are phylogenetically very distant. Amphioxus and tunicates are more appropriate animals for comparison to vertebrates. Comparisons of clustered homeobox genes, where gene loss can be identified, reveals a one to four mode of evolution for Hox and ParaHox genes. Analyses of other gene families in amphioxus and vertebrates confirm that gene duplication was very widespread on the vertebrate lineage. These data confirm that vertebrates have more genes than their closest invertebrate relatives, acquired through gene duplication. abbreviations IHGSC, International Human Genome Sequencing Consortium; TCESC, The C. elegans Sequencing Consortium.  相似文献   

3.
Cephalochordates (amphioxus), the closest living invertebrate relatives of the vertebrates, are key to understanding the evolution of developmental mechanisms during the invertebrate-to-vertebrate transition. However, a major impediment to amphioxus as a model organism for developmental biology has been the inability to introduce transgenes or other macromolecules into the embryos. Here, we report the development of a reproducible method for microinjection of amphioxus eggs. Specifically, we show that expression of a LacZ reporter construct including 6.3 kb of AmphiFoxD upstream regulatory DNA recapitulates expression of the endogenous gene in the nerve cord, somites, and notochord. We have also identified the 1.6 kb at the 5' end of this region as essential for expression in the first two of these domains and the 4.7 kb at the 3' end as sufficient for expression in the notochord. This study, which is the first report of a method for introduction of large molecules such as DNA into amphioxus embryos, opens the way for studies of gene regulation and function in amphioxus and for comparative studies with vertebrates to understand the relationship between the extensive gene duplications that occurred within the vertebrate lineage and the evolution of vertebrate innovations such as neural crest.  相似文献   

4.
5.
6.
Chen Y  Ding Y  Zhang Z  Wang W  Chen JY  Ueno N  Mao B 《遗传学报》2011,38(12):577-584
The evolution of the central nervous system (CNS) is one of the most striking changes during the transition from invertebrates to vertebrates. As a major source of genetic novelties, gene duplication might play an important role in the functional innovation of vertebrate CNS. In this study, we focused on a group of CNS-biased genes that duplicated during early vertebrate evolution. We investigated the tempo-spatial expression patterns of 33 duplicate gene families and their orthologs during the embryonic development of the vertebrate Xenopus laevis and the cephalochordate Brachiostoma belcheri. Almost all the identified duplicate genes are differentially expressed in the CNS in Xenopus embryos, and more than 50% and 30% duplicate genes are expressed in the telencephalon and mid-hindbrain boundary, respectively, which are mostly considered as two innovations in the vertebrate CNS. Interestingly, more than 50% of the amphioxus orthologs do not show apparent expression in the CNS in amphioxus embryos as detected by in situ hybridization, indicating that some of the vertebrate CNS-biased duplicate genes might arise from non-CNS genes in invertebrates. Our data accentuate the functional contribution of gene duplication in the CNS evolution of vertebrate and uncover an invertebrate non-CNS history for some vertebrate CNS-biased duplicate genes.  相似文献   

7.
Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm.  相似文献   

8.
9.
10.
Vertebrate Hairy genes are highly pleiotropic and have been implicated in numerous functions, such as somitogenesis, neurogenesis and endocrine tissue development. In order to gain insight into the timing of acquisition of these roles by the Hairy subfamily, we have cloned and studied the expression pattern of the Hairy gene(s) in amphioxus. The cephalochordate amphioxus is widely believed to be the living invertebrate more closely related to vertebrates, the genome of which has not undergone the massive gene duplications that took place early during vertebrate evolution. Surprisingly, we have isolated eight Hairy genes from the 'pre-duplicative' amphioxus genome. In situ hybridisation on amphioxus embryos showed that Hairy genes had experienced a process of subfunctionalisation that is predicted in the DDC model (for duplication-degeneration-complementation). Only the summation of four out of the eight Amphi-Hairy genes expression resembles the expression pattern of vertebrate Hairy genes, i.e. in the central nervous system, presomitic mesoderm, somites, notochord and gut. In addition, Amphi-Hairy genes expression suggest that amphioxus early somites are molecularly prefigured in an anteroposterior sequence in the dorsolateral wall of the archenteron, and the presence of a midbrain/hindbrain boundary. The expansion of the amphioxus Hairy subfamily request for caution when deducing the evolutionary history of a gene family in chordates based in the singularity of the amphioxus genome. Amphioxus may resemble the ancestor of the vertebrates, but it is not the ancestor, only its closest living relative, a privileged position that should not assume the freezing of its genome.  相似文献   

11.
 The embryonic development of amphioxus (cephalochordates) has much in common with that of vertebrates, suggesting a close phylogenetic relationship between the two chordate groups. To gain insight into alterations in the genetic cascade that accompanied the evolution of vertebrate embryogenesis, we investigated the formation of the chordamesoderm in amphioxus embryos using the genes Brachyury and fork head/HNF-3 as probes. Am(Bb)Bra1 and Am(Bb)Bra2 are homologues of the mouse Brachyury gene isolated from Branchiostoma belcheri. Molecular phylogenetic analysis suggests that the genes are independently duplicated in the amphioxus lineage. Both genes are initially expressed in the involuting mesoderm of the gastrula, then in the differentiating somites of neurulae, followed by the differentiating notochord and finally in the tail bud of ten-somite stage embryos. On the other hand, Am(Bb)fkh/HNF3-1, an amphioxus (B. belcheri) homologue of the fork head/HNF-3 gene, is initially expressed in the invaginating endoderm and mesoderm, then later in the differentiating notochord and in the tail bud. With respect to these two types of genes, the formation of the notochord and tail bud in amphioxus embryos shows similarity and dissimilarity with that of the notochord and tail bud in vertebrate embryos. Received: 21 November 1996 / Accepted: 24 January 1997  相似文献   

12.
The new discipline of Evolutionary Developmental Biology (Evo-Devo) is facing the fascinating paradox of explaining morphological evolution using conserved pieces or genes to build divergent animals. The cephalochordate amphioxus is the closest living relative to the vertebrates, with a simple, chordate body plan, and a genome directly descended from the ancestor prior to the genome-wide duplications that occurred close to the origin of vertebrates. Amphioxus morphology may have remained relatively invariant since the divergence from the vertebrate lineage, but the amphioxus genome has not escaped evolution. We report the isolation of a second Emx gene (AmphiEmxB) arising from an independent duplication in the amphioxus genome. We also argue that a tandem duplication probably occurred in the Posterior part of the Hox cluster in amphioxus, giving rise to AmphiHox14, and discuss the structure of the chordate and vertebrate ancestral clusters. Also, a tandem duplication of Evx in the amphioxus lineage produced a prototypical Evx gene (AmphiEvxA) and a divergent gene (AmphiEvxB), no longer involved in typical Evx functions. These examples of specific gene duplications in amphioxus, and other previously reported duplications summarized here, emphasize the fact that amphioxus is not the ancestor of the vertebrates but 'only' the closest living relative to the ancestor, with a mix of prototypical and amphioxus-specific features in its genome.  相似文献   

13.
14.
Amphioxus is the closest relative to vertebrates but lacks key vertebrate characters, like rhombomeres, neural crest cells, and the cartilaginous endoskeleton. This reflects major differences in the developmental patterning of neural and mesodermal structures between basal chordates and vertebrates. Here, we analyse the expression pattern of an amphioxus FoxB ortholog and an amphioxus single-minded ortholog to gain insight into the evolution of vertebrate neural segmentation. AmphiFoxB expression shows cryptic segmentation of the cerebral vesicle and hindbrain, suggesting that neuromeric segmentation of the chordate neural tube arose before the origin of the vertebrates. In the forebrain, AmphiFoxB expression combined with AmphiSim and other amphioxus gene expression patterns shows that the cerebral vesicle is divided into several distinct domains: we propose homology between these domains and the subdivided diencephalon and midbrain of vertebrates. In the Hox-expressing region of the amphioxus neural tube that is homologous to the vertebrate hindbrain, AmphiFoxB shows the presence of repeated blocks of cells along the anterior-posterior axis, each aligned with a somite. This and other data lead us to propose a model for the evolution of vertebrate rhombomeric segmentation, in which rhombomere evolution involved the transfer of mechanisms regulating neural segmentation from vertical induction by underlying segmented mesoderm to horizontal induction by graded retinoic acid signalling. A consequence of this would have been that segmentation of vertebrate head mesoderm would no longer have been required, paving the way for the evolution of the unsegmented head mesoderm seen in living vertebrates.  相似文献   

15.
16.
17.
18.
Ruvinsky I  Silver LM  Gibson-Brown JJ 《Genetics》2000,156(3):1249-1257
The duplication of preexisting genes has played a major role in evolution. To understand the evolution of genetic complexity it is important to reconstruct the phylogenetic history of the genome. A widely held view suggests that the vertebrate genome evolved via two successive rounds of whole-genome duplication. To test this model we have isolated seven new T-box genes from the primitive chordate amphioxus. We find that each amphioxus gene generally corresponds to two or three vertebrate counterparts. A phylogenetic analysis of these genes supports the idea that a single whole-genome duplication took place early in vertebrate evolution, but cannot exclude the possibility that a second duplication later took place. The origin of additional paralogs evident in this and other gene families could be the result of subsequent, smaller-scale chromosomal duplications. Our findings highlight the importance of amphioxus as a key organism for understanding evolution of the vertebrate genome.  相似文献   

19.
Aromatic amino acid hydroxylase (AAAH) genes and insulin-like genes form part of an extensive paralogy region shared by human chromosomes 11 and 12, thought to have arisen by tetraploidy in early vertebrate evolution. Cloning of a complementary DNA (cDNA) for an amphioxus (Branchiostoma floridae) hydroxylase gene (AmphiPAH) allowed us to investigate the ancestry of the human chromosome 11/12 paralogy region. Molecular phylogenetic evidence reveals that AmphiPAH is orthologous to vertebrate phenylalanine (PAH) genes; the implication is that all three vertebrate AAAH genes arose early in metazoan evolution, predating vertebrates. In contrast, our phylogenetic analysis of amphioxus and vertebrate insulin-related gene sequences is consistent with duplication of these genes during early chordate ancestry. The conclusion is that two tightly linked gene families on human chromosomes 11 and 12 were not duplicated coincidentally. We rationalize this paradox by invoking gene loss in the AAAH gene family and conclude that paralogous genes shared by paralogous chromosomes need not have identical evolutionary histories.  相似文献   

20.
An amphioxus Msx gene expressed predominantly in the dorsal neural tube   总被引:2,自引:0,他引:2  
 Genomic and cDNA clones of an Msx class homeobox gene were isolated from amphioxus (Branchiostoma floridae). The gene, AmphiMsx, is expressed in the neural plate from late gastrulation; in later embryos it is expressed in dorsal cells of the neural tube, excluding anterior and posterior regions, in an irregular reiterated pattern. There is transient expression in dorsal cells within somites, reminiscent of migrating neural crest cells of vertebrates. In larvae, mRNA is detected in two patches of anterior ectoderm proposed to be placodes. Evolutionary analyses show there is little phylogenetic information in Msx protein sequences; however, it is likely that duplication of Msx genes occurred in the vertebrate lineage. Received: 12 October 1998 / Accepted: 26 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号