首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoinositide 3-kinase (PI 3-kinase) activity is required for growth factor-induced cytoskeletal regulation and cell migration. We previously found that in MTLn3 rat adenocarcinoma cells, EGF-stimulated induction of actin barbed ends and lamellipod extension specifically requires the p85/p110alpha isoform of PI 3-kinase. To further characterize signaling by distinct PI 3-kinase isoforms, we have developed MTLn3 cells that transiently or stably overexpress either p110alpha or p110beta. Transient overexpression of p110beta inhibited EGF-stimulated lamellipod extension, whereas p110alpha-transfected cells showed normal EGF-stimulated lamellipod extension. Similar results were obtained by overexpression of kinase-dead p110beta, suggesting that effects on cytoskeletal signaling were due to competition with p85/p110alpha complexes. Stable overexpression of p110alpha appeared to be toxic, based on the difficulty in obtaining stable overexpressing clones. In contrast, cells expressing a 2-fold increase in p110beta were readily obtainable. Interestingly, cells stably expressing p110beta showed a marked inhibition of EGF-stimulated lamellipod extension. Using computer-assisted analysis of time-lapse images, we found that overexpression of p110beta caused a nearly complete inhibition of motility. Cells overexpressing p110beta showed normal activation of Akt and Erk, suggesting that overall PI 3-kinase signaling was intact. A chimeric p110 molecule containing the p85-binding and Ras-binding domains of p110alpha and the C2, helical, and kinase domains of p110beta, was catalytically active yet also inhibited EGF-stimulated lamellipod extension. These data highlight the differential signaling by distinct p110 isoforms. Identification of effectors that are differently regulated by p110alpha versus p110beta will be important for understanding cell migration and its role in metastasis.  相似文献   

2.
Phosphatidylinositol (PI) 3-kinase is a heterodimeric enzyme of 85-kDa (p85) and 110-kDa (p110) subunits implicated in mitogenic signal transduction by virtue of its activation in cells transformed by diverse viral oncoproteins and treated with various growth factors. We have identified a domain in p110 that mediates association with p85 in vitro and in intact cells. A glutathione S-transferase fusion protein containing the N-terminal 171 amino-acids of p110 beta bound to free p85 in cell lysates. This fusion protein also bound directly to p85 immobilized on nitrocellulose filters. An epitope-tagged fragment containing amino acids 31 to 150 of p110 beta associated with p85 upon expression in intact cells. Expression of either an N-terminal fragment of p110 beta or the p85 inter-SH2 domain, which mediates association with p110, reduced the association of endogenous PI 3-kinase activity with the activated platelet-derived growth factor receptor in intact cells. Hence, these defined regions of p85 and p110 mediate the interaction between the two subunits of PI 3-kinase.  相似文献   

3.
Inactivation of PI 3-kinase (PI3K) signalling is critical for tumour suppression by PTEN. This is thought to be a unidirectional relationship in which PTEN degrades the lipids produced by PI3K, thus controlling cell proliferation, survival and migration. We now show that this relationship is in fact bidirectional, whereby PI3K reciprocally controls PTEN. We report that the p110delta PI3K negatively regulates PTEN, through a pathway involving inhibition of RhoA. Inactivation of p110delta in macrophages led to reduced Akt and Rac1 activation, but paradoxically to increased RhoA and PTEN activity. Partial inactivation of p190RhoGAP and a reduced binding of cytoplasmic RhoA to the cyclin-dependent kinase inhibitor p27 both contributed to the increased RhoA-GTP levels upon p110delta inactivation. Pharmacological inhibition of ROCK, a downstream effector kinase of RhoA, restored all signalling and functional defects of p110delta inactivation, including Akt phosphorylation, chemotaxis and proliferation. This work identifies the RhoA/ROCK pathway as a major target of p110delta-mediated PI3K signalling, and establishes for the first time that PI3K controls itself, via a feedback loop involving PTEN.  相似文献   

4.
A variety of genetic and inhibitor studies have shown that phosphoinositide 3-kinase gamma (PI3Kgamma) plays an essential role in a number of physiological responses, including neutrophil chemotaxis, mast cell degranulation, and cardiac function []. PI3Kgamma is currently thought to be composed of a p110gamma catalytic subunit and a single regulatory subunit, p101. The binding of p110gamma to p101 dramatically increases the activation of the complex by Gbetagamma subunits and, hence, is thought to be critical for the coupling of PI3Kgamma to G protein coupled receptors []. Here, we characterize a new regulatory subunit for PI3Kgamma. p84 is present in human, mouse, chicken, frog, and fugu genomes and is located beside the p101 locus. It is broadly expressed in cells of the murine immune system. Both recombinant and endogenous p84 bind p110gamma specifically and with high affinity. Binding of p84 to p110gamma substantially increases the ability of Gbetagamma to stimulate phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) production both in vitro and in vivo. However, the p84/p110gamma heterodimer is approximately 4-fold less sensitive to Gbetagammas than p101/p110gamma. Endogenous murine p84 expression is substantially reduced in the absence of p110gamma expression. We conclude that p110gamma has two potential regulatory subunits in vivo, p84 and p101.  相似文献   

5.
The expression and function of the 8 distinct catalytic isoforms of PI 3-kinase (PI3K) in the nervous system are unknown. Whereas most PI3Ks have a broad tissue distribution, the tyrosine kinase-linked p110delta isoform has previously been shown to be enriched in leukocytes. Here we report that p110delta is also highly expressed in the nervous system. Inactivation of p110delta in mice did not affect gross neuronal development but led to an increased vulnerability of dorsal root ganglia neurons to exhibit growth cone collapse and decreases in axonal extension. Loss of p110delta activity also dampened axonal regeneration following peripheral nerve injury in adult mice and impaired functional recovery of locomotion. p110delta inactivation resulted in reduced neuronal signaling through the Akt protein kinase, and increased activity of the small GTPase RhoA. Pharmacological inhibition of ROCK, a downstream effector of RhoA, restored axonal extension defects in neurons with inactive p110delta, suggesting a key role of RhoA in p110delta signaling in neurons. Our data identify p110delta as an important signaling component for efficient axonal elongation in the developing and regenerating nervous system.  相似文献   

6.
The phosphoinositide 3-kinase (PI3K) catalytic subunit p110delta, the most recently discovered member of the heterodimeric Class IA PI3K family, has been detected uniquely in leukocytes, but not in one member of the leukocyte family: platelets. We have examined freshly prepared isolates of human platelets for the presence of this enzyme, realizing that p110delta is highly susceptible to proteolytic degradation. We have utilized p110delta-directed Western blotting, RT-PCR, PI3K activity assays, and immunoprecipitations of PI3K Class IA subunits p85alpha, p85beta, and p110delta from lysed human platelets, as well as Triton X-100-insoluble cytoskeletal preparations from resting and thrombin receptor-activated platelets. We report that p110delta is present in association with p85alpha and p85beta in platelets, both in cytosolic and cytoskeletal fractions. The latter finding is consistent with the proposed role of p110delta in cytoskeletal function.  相似文献   

7.
CD4 serves as a receptor for major histocompatibility complex class II antigens and as a receptor for the human immunodeficiency virus type 1 (HIV-1) viral coat protein gp120. It is coupled to the protein-tyrosine kinase p56lck, an interaction necessary for an optimal response of certain T cells to antigen. In addition to the protein-tyrosine kinase domain, p56lck possesses Src homology 2 and 3 (SH2 and SH3) domains as well as a unique N-terminal region. The mechanism by which p56lck generates intracellular signals is unclear, although it has the potential to interact with various downstream molecules. One such downstream target is the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase), which has been found to bind to activated pp60src and receptor-tyrosine kinases. In this study, we verified that PI 3-kinase associates with the CD4:p56lck complex as judged by the presence of PI 3-phosphate generated from anti-CD4 immunoprecipitates and detected by high-pressure liquid chromatographic analysis. However, surprisingly, CD4-p56lck was also found to associate with another lipid kinase, phosphatidylinositol 4-kinase (PI 4-kinase). The level of associated PI 4-kinase was generally higher than PI 3-kinase activity. HIV-1 gp120 and antibody-mediated cross-linking induced a 5- to 10-fold increase in the level of CD4-associated PI 4- and PI 3-kinases. The use of glutathione S-transferase fusion proteins carrying Lck-SH2, Lck-SH3, and Lck-SH2/SH3 domains showed PI 3-kinase binding to the SH3 domain of p56lck, an interaction facilitated by the presence of an adjacent SH2 domain. PI 4-kinase bound to neither the SH2 nor the SH3 domain of p56lck. CD4-p56lck contributes PI 3- and PI 4-kinase to the activation process of T cells and may play a role in HIV-1-induced immune defects.  相似文献   

8.
Phosphoinositide 3-kinases (PI3Ks) play an important role in a variety of cellular functions, including phagocytosis. PI3Ks are activated during phagocytosis induced by several receptors and have been shown to be required for phagocytosis through the use of inhibitors such as wortmannin and LY294002. Mammalian cells have multiple isoforms of PI3K, and the role of the individual isoforms during phagocytosis has not been addressed. The class I PI3Ks consist of a catalytic p110 isoform associated with a regulatory subunit. Mammals have three genes for the class IA p110 subunits encoding p110alpha, p110beta, and p110delta and one gene for the class IB p110 subunit encoding p110gamma. Here we report a specific recruitment of p110beta and p110delta (but not p110alpha) isoforms to the nascent phagosome during apoptotic cell phagocytosis by fibroblasts. By microinjecting inhibitory antibodies specific to class IA p110 subunits, we have shown that p110beta is the major isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary mouse macrophages. Macrophages from mice expressing a catalytically inactive form of p110delta showed no defect in the phagocytosis of apoptotic cells and IgG-opsonized particles, confirming the lack of a major role for p110delta in this process. Similarly, p110gamma-deficient macrophages phagocytosed apoptotic cells normally. Our findings demonstrate that p110beta is the major class I catalytic isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary macrophages.  相似文献   

9.
Tumor necrosis factor (TNFalpha) is an incomplete secretagogue in neutrophils and requires the engagement of beta integrins to trigger secretion of superoxide anion (O(-)(2)). The p60 TNF receptor (p60TNFR) is responsible for signal transduction for activation of O(-)(2) generation. Activation of TNFalpha-triggered O(-)(2) generation in neutrophils adherent to fibrinogen-coated surfaces involves the beta2 integrin receptor CD11b/CD18. Phosphoinositide 3-kinase (PI 3-kinase) is essential for activation of O(-)(2) generation; wortmannin, an inhibitor of PI 3-kinase, inhibited TNFalpha-elicited O(-)(2) generation. p60TNFR immunoprecipitated from neutrophils was associated with immunoreactivity to PI 3-kinase in adherent neutrophils exposed to TNFalpha, but not in TNFalpha-treated neutrophils in suspension. In addition, PI 3-kinase immunoprecipitated from TNFalpha-activated neutrophils showed enhanced activity in adherent but not in nonadherent neutrophils. These findings suggest that synergism between CD11b/CD18 and p60TNFR in the presence of TNFalpha is required to elicit assembly of a signaling complex involving association of p60TNFR with PI 3-kinase, activation of PI 3-kinase, and generation of O(-)(2).  相似文献   

10.
Phosphatidylinositol 3,4,5-trisphosphate (PIP3) is an important lipid second messenger that mediates various cell responses. We have searched for the nuclear PIP3 binding proteins using PIP3 analogue beads. A 33 kD protein was detected in this method, which was identified as ribosomal protein S3a by the mass spectrometric analysis. The recombinant S3a protein bound specifically to PIP3. S3a localized not only in the cytosol but also in the nucleus. Interestingly, not cytosolic but nuclear S3a bound to PIP3, suggesting different roles of S3a in the cytosol and the nucleus. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Receptor-regulated class I phosphoinositide 3-kinases (PI3K) phosphorylate the membrane lipid phosphatidylinositol (PtdIns)-4,5-P2 to PtdIns-3,4,5-P3. This, in turn, recruits and activates cytosolic effectors with PtdIns-3,4,5-P3-binding pleckstrin homology (PH) domains, thereby controlling important cellular functions such as proliferation, survival, or chemotaxis. The class IB p110 gamma/p101 PI3K gamma is activated by G beta gamma on stimulation of G protein-coupled receptors. It is currently unknown whether in living cells G beta gamma acts as a membrane anchor or an allosteric activator of PI3K gamma, and which role its noncatalytic p101 subunit plays in its activation by G beta gamma. Using GFP-tagged PI3K gamma subunits expressed in HEK cells, we show that G beta gamma recruits the enzyme from the cytosol to the membrane by interaction with its p101 subunit. Accordingly, p101 was found to be required for G protein-mediated activation of PI3K gamma in living cells, as assessed by use of GFP-tagged PtdIns-3,4,5-P3-binding PH domains. Furthermore, membrane-targeted p110 gamma displayed basal enzymatic activity, but was further stimulated by G beta gamma, even in the absence of p101. Therefore, we conclude that in vivo, G beta gamma activates PI3K gamma by a mechanism assigning specific roles for both PI3K gamma subunits, i.e., membrane recruitment is mediated via the noncatalytic p101 subunit, and direct stimulation of G beta gamma with p110 gamma contributes to activation of PI3K gamma.  相似文献   

12.
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases which also possess an in vitro protein kinase activity towards themselves or their adaptor proteins. The physiological relevance of these phosphorylations is unclear at present. Here, the protein kinase activity of the tyrosine kinase-linked PI3K, p110delta, is characterized and its functional impact assessed. In vitro autophosphorylation of p110delta completely down-regulates its lipid kinase activity. The single site of autophosphorylation was mapped to Ser1039 at the C-terminus of p110delta. Antisera specific for phospho-Ser1039 revealed a very low level of phosphorylation of this residue in cell lines. However, p110delta that is recruited to activated receptors (such as CD28 in T cells) shows a time-dependent increase in Ser1039 phosphorylation and a concomitant decrease in associated lipid kinase activity. Treatment of cells with okadaic acid, an inhibitor of Ser/Thr phosphatases, also dramatically increases the level of Ser1039-phosphorylated p110delta. LY294002 and wortmannin blocked these in vivo increases in Ser1039 phosphorylation, consistent with the notion that PI3Ks, and possibly p110delta itself, are involved in the in vivo phosphorylation of p110delta. In summary, we show that PI3Ks are subject to regulatory phosphorylations in vivo similar to those identified under in vitro conditions, identifying a new level of control of these signalling molecules.  相似文献   

13.
14.
15.
We investigated the involvement of ANG II and phosphatidylinositol 3-kinase (PI3-K) in the enhanced aortic contractile responses induced by hyperinsulinemia in chronic insulin-treated Type 1 diabetic rats. Plasma ANG II levels were elevated in untreated compared with control diabetic rats and further increased in insulin-treated diabetic rats. Aortic contractile responses and systolic blood pressure were significantly enhanced in chronic insulin-treated diabetic rats compared with the other groups. These insulin-induced increases were largely prevented by cotreatment with losartan (an ANG II type 1 receptor antagonist) or enalapril (an angiotensin-converting enzyme inhibitor). LY-294002 (a PI3-K inhibitor) diminished the increases in contractile responses in ANG II-incubated aortas and aortas from chronic insulin-treated diabetic rats. The norepinephrine (NE)-stimulated levels of p110 delta-associated PI3-K activity and p110 delta protein expression were increased in aortas from insulin-treated diabetic compared with control and untreated diabetic rats, and chronic administration of losartan blunted these increases. Contractions were significantly larger in aortas from diabetic rats incubated with a low concentration (inducing approximately 10% of the maximum contraction) of ANG II or with NE or isotonic K+ than in aortas from nonincubated diabetic rats. NE-stimulated p110 PI3-K activity was elevated in aortas from diabetic rats coincubated with a noncontractile dose of ANG II. These results suggest that, in insulin-treated Type 1 diabetic rats with hyperinsulinemia, chronic ANG II type 1 receptor blockade blunts the increases in vascular contractility and blood pressure via a decrease in p110 delta-associated PI3-K activity.  相似文献   

16.
Phosphatidylinositol 3-kinase (PI3K), one member of lipid kinase family, has been demonstrated to play a key role in regulating cell proliferation, adhesion, survival, and motility. Recent studies indicate that PI3K related signaling pathway is one of the most commonly activated pathways in human cancers. Accordingly, pharmacological inhibition of key nodes in this signaling cascade has been a focus in developmental therapeutics. To date, Inhibitors targeting PI3K or nodes in this pathway, AKT and mTOR, are best studied and have reached clinical trials. In this review, we will focus on recent progress on understanding of PI3Ks signaling pathway and the development of PI3K inhibitors.  相似文献   

17.
18.
19.
20.
Three groups of phosphatidylinositol (PI) kinases convert PI into PI(3)phosphate, PI(4)phosphate, PI(4,5) bisphosphate, and PI(3,4,5)trisphosphate. These phosphoinositides have been shown to function in vesicle-mediated protein sorting, and they serve as second-messenger signaling molecules for regulating cell growth. To further elucidate the mechanism of regulation and function of phosphoinositides, we cloned genes encoding five putative PI kinases from Dictyostelium discoideum. Database analysis indicates that D. discoideum PIK1 (DdPIK1), -2, and -3 are most closely related to the mammalian p110 PI 3-kinase, DdPIK5 is closest to the yeast Vps34p PI 3-kinase, and DdPIK4 is most homologous to PI 4-kinases. Together with other known PI kinases, a superfamily of PI kinase genes has been defined, with all of the encoded proteins sharing a common highly conserved catalytic core domain. DdPIK1, -2, and -3 may have redundant functions because disruption of any single gene had no effect on D. discoideum growth or development. However, strains in which both of the two most highly related genes, DdPIK1 and DdPIK2, were disrupted showed both growth and developmental defects, while double knockouts of DdPIK1 and DdPIK3 and DdPIK2 and DdPIK3 appear to be lethal. The delta Ddpik1 delta Ddpik2 null cells were smaller than wild-type cells and grew slowly both in association with bacteria and in axenic medium when attached to petri plates but were unable to grow in suspension in axenic medium. When delta Ddpik1 delta Ddpik2 null cells were plated for multicellular development, they formed aggregates having multiple tips and produced abnormal fruiting bodies. Antisense expression of DdPIK5 (a putative homolog of the Saccharomyces cerevisiae VPS34) led to a defect in the growth of D. discoideum cells on bacterial lawns and abnormal development. DdPIK5 complemented the temperature-sensitive growth defect of a Schizosaccharomyces pombe delta Svps34 mutant strain, suggesting DdPIK5 encodes a functional homolog of yeast Vps34p. These observations indicate that in D. discoideum, different PI kinases regulate distinct cellular processes, including cell growth, development, and protein trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号