首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of permanent IL-3-dependent cell lines have been established from normal BALB/c or C3H bone marrow using alpha-thioglycerol-supplemented culture medium and PWM-stimulated spleen cell-conditioned medium as a source of IL-3. The cell lines and derivatives cloned in agar resembled "mucosal type" mast cells with respect to phenotypic and functional properties. In this report we demonstrate that in vitro growth of these mast cell lines was not only dependent on IL-3 and synergistically enhanced by IL-4, but in addition regulated by alpha-thioglycerol which could be replaced by 2-ME or cysteamine. We show that these thiol-sensitive mast cell lines respond to a mast cell growth enhancing activity (MEA) present in spleen cell-conditioned medium and acting in concert with IL-3. Partially purified MEA was not able to stimulate the growth of IL-3-dependent 32Dcl.23 cells, IL-2-dependent CTLL-2 cells or the mouse T cell line F4/4K.6 (L3T4+) adapted to grow in purified IL-4. Moreover, 11B11 hybridoma-derived anti-IL-4 mAb specifically neutralizing mouse Il-4 were unable to abolish the bioactivity of MEA. PWM, CSF-1, GM-CSF, IL-1, IL-2, IL-5, IL-6, IL-7, IFN-gamma, TGF-alpha, TNF-alpha, NGF, or EPO did not substitute for MEA in our standard proliferation assay.  相似文献   

2.
3.
4.
We have identified a novel growth factor, stem cell factor (SCF), for primitive hematopoietic progenitors based on its activity on bone marrow cells derived from mice treated with 5-fluorouracil. The protein was isolated from the medium conditioned by Buffalo rat liver cells. It is heavily glycosylated, with both N-linked and O-linked carbohydrate. Amino acid sequence following removal of N-terminal pyroglutamate is presented. The protein has potent synergistic activities in semisolid bone marrow cultures in conjunction with colony-stimulating factors. It is also a growth factor for mast cells. In two companion papers, we present the sequences of partial SCF cDNAs, identify SCF as a c-kit ligand, and map the SCF gene to the Sl locus of the mouse.  相似文献   

5.
Increased release of IL-18 in the skin causes atopic dermatitis (AD)-like skin lesions, suggesting a role of IL-18 in the pathogenesis of AD. Caspase-1 is a well-known activator of IL-18, but caspase-1 knockout mice still have biologically active IL-18. Normal human keratinocyte constitutively produces pro-IL-18, but it is unable to activate it, suggesting the existence of an alternative pathway for IL-18 in the skin. Dermal accumulation of mast cells is commonly observed in AD patients and in experimental mouse models of AD. Connective tissue mast cells contain high amounts of chymase and tryptase in their cytoplasmic granules. In the present study, we demonstrated that activation of IL-18 is a novel function of human mast cell chymase. Human mast cell chymase rapidly cleaves recombinant pro-IL-18 at 56-phenylalanine and produces a biologically active IL-18 fragment that is smaller than any other reported IL-18-derived species. The human mast cell chymase and the novel IL-18-derived active peptide may be novel therapeutic targets in AD- and IL-18-associated diseases.  相似文献   

6.
gp49 is a Mr 49,000 glycoprotein expressed on the surface of mouse bone marrow-derived mast cells, which are progenitors for the major in vivo mast cell subclasses, typified by intestinal mucosal mast cells and serosal mast cells. The amino-terminal amino acid sequence of gp49 was determined after isolation of the solubilized membrane protein by affinity chromatography with the B23.1 anti-gp49 monoclonal antibody. Redundant oligonucleotides were used to isolate a full-length 1.3-kilobase cDNA from a mouse mast cell library. The predicted amino acid sequence contains a signal peptide of 23 residues, an extracellular domain of 215 residues with three potential sites of N-linked glycosylation, a transmembrane domain of 23 residues, and a cytoplasmic tail of 42 residues. Hybridization of the gp49 cDNA was limited to mRNA extracted from those cell types that also bound the B23.1 monoclonal antibody as assessed by cytofluorographic analyses. The predicted extracellular domain of gp49 contains two regions of 48 and 51 amino acids, each flanked by cysteine residues. Both regions meet criteria for being C2-type domains of the immunoglobulin superfamily based upon the alignment of consensus amino acids and their predicted secondary structure organization. Thus, gp49, a membrane glycoprotein preferentially expressed by the progenitor mast cell population, is a new member of the immunoglobulin superfamily.  相似文献   

7.
Few peribronchial mast cells are noted either in the lungs of naive mice or in the lungs of OVA-sensitized mice challenged acutely with OVA by inhalation. In this study, we demonstrate that OVA-sensitized mice exposed to repetitive OVA inhalation for 1-6 mo have a significant accumulation of peribronchial mast cells. This accumulation of peribronchial mast cells is associated with increased expression of the Th2 cell-derived mast cell growth factors, including IL-4 and IL-9, but not with the non-Th2 cell-derived mast cell growth factor, stem cell factor. Pretreating mice with immunostimulatory sequences (ISS) of DNA containing a CpG motif significantly inhibited the accumulation of peribronchial mast cells and the expression of IL-4 and IL-9. To determine whether mast cells express Toll-like receptor-9 (TLR-9; the receptor for ISS), TLR-9 expression by mouse bone marrow-derived mast cells (MBMMCs) was assessed by RT-PCR. MBMMCs strongly expressed TLR-9 and bound rhodamine-labeled ISS. However, incubation of MBMMCs with ISS in vitro neither inhibited MBMMC proliferation nor inhibited Ag/IgE-mediated MBMMC degranulation, but they did induce IL-6. Overall these studies demonstrate that mice exposed to repetitive OVA challenge, but not acute OVA challenge, have an accumulation of peribronchial mast cells and express increased levels of mast cell growth factors in the lung. Although mast cells express TLR-9, ISS does not directly inhibit mast cell proliferation in vitro, suggesting that ISS inhibits accumulation of peribronchial mast cells in vivo by indirect mechanism(s), which include inhibiting the lung expression of Th2 cell-derived mast cell growth factors.  相似文献   

8.
A growth factor acting synergistically with IL-3 on thiol-sensitive "mucosal type" bone marrow-derived mast cell lines, and therefore termed mast cell growth enhancing activity, is present in PWM stimulated spleen cell conditioned medium. Mast cell growth enhancing activity can be partially purified and completely separated from IL-3, IL-4, and IL-5, and for the most part from IL-6 and GM-CSF using strong cation exchange and Procion red affinity chromatography. Mast cell growth enhancing activity binds to Con A-Sepharose and can be digested with trypsin and chymotrypsin. It shows a Mr ranging from 37 to 43 kDa under nonreducing SDS-PAGE and a main isoelectric point ranging from 6.2 to 7.3.  相似文献   

9.
Mast cell-fibroblast interactions have been extensively investigated in the last few years. Fibroblasts support the in vitro survival but not proliferation of mouse connective-tissue type mast cells. However, the factor(s) that allow their survival on fibroblast monolayers has not been identified. We have investigated the presence of mRNA for IL-3 and granulocyte-macrophage-CSF in single mouse mast cells, before and after co-culture with 3T3 fibroblasts, using the polymerase chain reaction technique. The system was calibrated first by using in vitro generated population of mouse bone-marrow derived mast cells (BMMC). Significant differences in the amplification of IL-3 cDNA were observed in each of the BMMC cells examined, whereas the amplification of cDNA for the alpha-subunit of the Fc epsilon RI were similar. Inasmuch as murine cultured IL-3-dependent mast cells differentiate into connective tissue-like mast cells when co-cultured with 3T3 fibroblasts without any exogenous supply of growth factors, it was of interest to determine whether these connective tissue-like mast cells produce IL-3 message. Separation of the differentiated BMMC from the fibroblast monolayer, by either trypsinization or by single cell manipulation revealed the synthesis of a detectable amount of IL-3 mRNA in these mast cells. Whether this IL-3 mRNA was induced by fibroblasts was further investigated using connective tissue mast cells freshly purified from the mouse peritoneal cavity. Only about 20% of these connective tissue mast cells produced detectable amount of granulocyte-macrophage-CSF mRNA whereas in less than 10% of the cells IL-3 mRNA was detected. However, when these connective tissue mast cells were co-cultured with 3T3 fibroblasts for 18 hours and then separated, IL-3 mRNA were detected in most of the cells whereas no such mRNA was detected in tissue mast cells incubated for 18 h with medium derived from 3T3 fibroblasts. Therefore we conclude that fibroblasts induce the accumulation of IL-3 mRNA in connective tissue mast cells. The production of IL-3 may play a role in the survival of this type of mast cells on the fibroblast monolayer.  相似文献   

10.
The mouse mast cell line PT-18 demonstrates [3H] thymidine uptake in the presence of either mouse IL-3 or mouse recombinant granulocyte-macrophage CSF (rGM-CSF). Experiments were thus undertaken to determine whether rGM-CSF would affect IL-3-dependent growth of mast cells from mouse bone marrow cells (BMC). BMC placed in liquid culture containing 50 U/ml of IL-3 gave rise to cultures containing up to 95% mast cells by 2 to 3 wk. The rise in percentage of mast cells was accompanied by an increase in total cell-associated histamine. In contrast, BMC grown in the presence of 50 U/ml of rGM-CSF gave rise to cultures containing primarily macrophages and granulocytes with less than 1% mast cells. The addition of increasing amounts of rGM-CSF to BMC cultures grown in the presence of IL-3 resulted in a decrease in the number of mast cells present in culture at 2 to 3 wk. Cells other than mast cells in these cultures consisted principally of granulocytes and macrophages. The rGM-CSF-related inhibition of mast cell growth was not abrogated by the addition of indomethacin to cultures. Granulocyte-macrophage cell populations added to IL-3-containing cultures did not inhibit mast cell growth. The suppressive effect of rGM-CSF on IL-3-dependent mast cell growth may indicate an important role for GM-CSF in the down-regulation of mast cell proliferation in tissues.  相似文献   

11.
Mast cell carboxypeptidase A has been isolated from the secretory granules of mouse peritoneal connective tissue mast cells (CTMC) and from a mouse Kirsten sarcoma virus-immortalized mast cell line (KiSV-MC), and a cDNA that encodes this exopeptidase has been cloned from a KiSV-MC-derived cDNA library. KiSV-MC-derived mast cell carboxypeptidase A was purified with a potato-derived carboxypeptidase-inhibitor affinity column and was found by analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be a Mr 36,000 protein. Secretory granule proteins from KiSV-MC and from mouse peritoneal CTMC were then resolved by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transblotted to polyvinylidine difluoride membranes. Identical aminoterminal amino acid sequences were obtained for the prominent Mr 36,000 protein present in the granules of both cell types. Based on the amino-terminal sequence, an oligonucleotide probe was synthesized and used to isolate a 1,470-base pair cDNA that encodes this mouse exopeptidase. The deduced amino acid sequence revealed that, after cleavage of a 15-amino acid hydrophobic signal peptide and a 94-amino acid activation peptide from a 417-amino acid preproenzyme, the mature mast cell carboxypeptidase A protein core has a predicted Mr of 35,780 and a high positive charge [Lys + Arg) - (Asp + Glu) = 17) at neutral pH. Although critical zinc-binding amino acids (His67, Glu70, His195), substrate-binding amino acids (Arg69, Asn142, Arg143, Tyr197, Asp255, Phe278), and cysteine residues that participate in intrachain disulfide bonds (Cys64-Cys77, Cys136-Cys159) of pancreatic carboxypeptidases were also present in mast cell carboxypeptidase A, the overall amino acid sequence identities for mouse mast cell carboxypeptidase A relative to rat pancreatic carboxypeptidases A1, A2, and B were only 43, 41, and 53%, respectively. RNA and DNA blot analyses revealed that mouse peritoneal CTMC, KiSV-MC, and bone marrow-derived mast cells all express a prominent 1.5-kilobase mast cell carboxypeptidase A mRNA which is transcribed from a single gene. We conclude that mouse mast cell carboxypeptidase A is a prominent secretory granule enzyme of mast cells of the CTMC subclass and represents a novel addition to the carboxypeptidase gene family.  相似文献   

12.
An antibody to mouse mast cell protease-5 (MMCP-5) was obtained by immunizing a rabbit with a 17-residue synthetic peptide corresponding to the unique amino acid sequence at residues 146 to 162 in this serine protease. After affinity purification, anti-MMCP-5(146-162) Ig reacted in SDS-PAGE immunoblots to recombinant MMCP-5 and to the native MMCP-5 protein present in the lysates of mouse serosal mast cells and the MC5 line of Kirsten sarcoma virus-immortalized mouse mast cells. Immunocytochemical staining localized MMCP-5 to the cytoplasmic granules of serosal mast cells and Kirsten sarcoma virus-immortalized mouse mast cells. Because mouse bone marrow-derived mast cells express abundant amounts of MMCP-5 mRNA, anti-MMCP-5(146-162) Ig was used to study the translation and granule accumulation of this protease when progenitor cells differentiate into these immature mouse mast cells. Maximal expression of MMCP-5 mRNA occurred after bone marrow cells had been cultured for 2 wk in IL-3-rich WEHI-3 cell conditioned medium, and MMCP-5 protein was detected in these cells. However, electron-microscopic analysis with gold-labeled antibody revealed that the amount of MMCP-5 in the individual granules of bone marrow-derived mast cells varied. The highest concentration of MMCP-5 was found in the most electron-dense secretory granules of the cells. These studies demonstrate the ultrastructural localization of the earliest transcribed mouse mast cell chymase, MMCP-5, and its granule accumulation during the differentiation of mouse bone marrow progenitor cells into immature mouse mast cells.  相似文献   

13.
The proliferative capacity of mouse connective tissue-type mast cells (CTMC) was analyzed by using a newly discovered c-kit ligand, termed stem cell factor (SCF). More than 90% of CTMC in the peritoneal cavity responded to recombinant rat SCF (rrSCF) and were able to give rise to pure mast cell colonies in methylcellulose culture. Serial observation (mapping) of growth of individual CTMC in culture containing rrSCF confirmed their striking proliferative ability. No serum but accessory cells (non-CTMC cells) in the peritoneal population were required for the clonal growth of CTMC induced by rrSCF in our methylcellulose culture of whole peritoneal cells. The rrSCF-induced mast cell colony formation from peritoneal CTMC was completely inhibited by the addition of anti-c-kit antibody, which can block the binding of SCF to c-kit, to the culture. When IL-3 was combined with rrSCF, mast cell colonies dramatically increased in size. Mapping studies revealed that the combination of the two factors augmented the proliferative rate of CTMC. Approximately 60% of the constituent cells of the mast cell colonies which were formed from peritoneal CTMC in the culture containing rrSCF alone were stained with berberine sulfate, which is a characteristic of CTMC. However, most mast cells which were induced by rrSCF+IL-3 from peritoneal CTMC contained berberine(-)-safranin(-)-Alcian blue(+) granules. Although IL-4 exhibited little synergism with rrSCF in the induction of CTMC proliferation, the addition of IL-4 to the culture containing rrSCF+IL-3 resulted in an increase in mast cells which retained CTMC characteristics.  相似文献   

14.
Interleukin-15/T(IL-15) is a growth factor that utilizes IL-2 receptor (IL-2R) components in addition to its private binding protein IL-15R(alpha) in T-cells. Here, we report that IL-15 induces mast cell proliferation in the absence of IL-2R alpha and beta. Using transfectants of these cells with a cytoplasmic-truncated mutant of gamma(c), we demonstrated that IL-15 signaling in mast cells does not involve gamma(c). Cross-linking of mast cells with [(125)I]IL-15 revealed a 60-65 kDa IL-15 binding protein that is distinct from known components of T-cell IL-15 receptors. Mast cell IL-15 receptors recruit JAK-2 and STAT-5, instead of JAK1/3 and STAT3/5 that are activated in T-cells. Thus IL-15 is a mast cell growth factor that utilizes a novel receptor and distinct signaling pathway.  相似文献   

15.
The c-kit protooncogene encodes a receptor tyrosine kinase that is known to play a critical role in hemopoiesis and is essential for mast cell growth, differentiation, and cytokine production. Studies have shown that the Th2 cytokine IL-4 can down-regulate Kit expression on human and murine mast cells, but the mechanism of this down-regulation has remained unresolved. Using mouse bone marrow-derived mast cells, we demonstrate that IL-4-mediated Kit down-regulation requires STAT6 expression and phosphotidylinositide-3'-kinase activation. We also find that the Th2 cytokine IL-10 potently down-regulates Kit expression. IL-4 enhances IL-10-mediated inhibition in a manner that is STAT6 independent and phosphotidylinositide-3'-kinase dependent. Both IL-4- and IL-10-mediated Kit down-regulation were coupled with little or no change in c-kit mRNA levels, no significant change in Kit protein stability, but decreased total Kit protein expression. Inhibition of Kit expression by IL-4 and IL-10 resulted in a loss of Kit-mediated signaling, as evidenced by reduced IL-13 and TNF-alpha mRNA induction after stem cell factor stimulation. These data offer a role for STAT6 and phosphotidylinositide-3'-kinase in IL-4-mediated Kit down-regulation, coupled with the novel observation that IL-10 is a potent inhibitor of Kit expression and function. Regulating Kit expression and signaling may be essential to controlling mast cell-mediated inflammatory responses.  相似文献   

16.
The cDNA and gene for mouse mast cell protease-6 (MMCP-6) have been sequenced and show MMCP-6 to be translated as a prepro-enzyme with a 21-amino acid hydrophobic leader peptide, a 10-amino acid activation peptide, and a 245-amino acid mature enzyme. The mature form of the enzyme has 73% amino acid sequence identity with human and dog mast cell tryptases. The MMCP-6 gene includes 6 exons, with a total span of 1.8 kilobases. A 208-base pair intron was defined which separates the 5'-untranslated sequence of MMCP-6 from the translation initiation codon, thereby presenting a gene organization which distinguishes tryptic serine proteases from chymotryptic serine proteases of the mast cell secretory granule. By RNA blot analysis with a gene-specific probe, MMCP-6 has a unique subclass distribution in being transcribed in mouse connective tissue mast cells but undetectable in mucosal mast cells. MMCP-6 is the first serine protease of any class to be shown to be significantly transcribed in progenitor, bone marrow-derived mast cells, which can reconstitute both mucosal mast cell and connective tissue mast cell populations in mast cell-deficient mice.  相似文献   

17.
Several rat anti-mouse interleukin 3 (IL-3) monoclonal antibodies have been developed which inhibit the biologic activity of mouse IL-3. These antibodies were produced in rats immunized with preparations of purified, recombinant mouse IL-3, obtained from transiently transfected COS7 cell supernatant. Hybridomas secreting anti-IL-3 were selected initially either on the basis of their giving a positive signal in an indirect enzyme-linked immunosorbent assay, or for their ability to inhibit the proliferation of the IL-3-dependent mouse mast cell line, MC/9. Neutralizing rat monoclonal IgG1, IgG2a, and IgG2b antibodies have been identified; these also block IL-3-induced proliferation of the NFS-60 and IC2 cell lines. These antibodies also blocked the IL-3-induced proliferation of mouse bone marrow-derived colony-forming units-culture suggesting that the same epitopes on IL-3 influence receptor recognition for both the proliferation of factor-dependent cell lines as well as normal bone marrow cells. Fab fragments produced from certain of the IgG2a-neutralizing antibodies blocked as well as the parent IgG. Antibody cross-blocking studies identified one neutralizing antibody apparently recognizing an epitope that was spatially distinct from those recognized by the other blocking antibodies tested. The development of these neutralizing rat monoclonal antibodies to mouse IL-3 should facilitate further investigation on the role of this factor in hemopoietic regulation.  相似文献   

18.
BSF-1/interleukin-4, a product of activated T cells, has multiple biological activities that affect cells of most hematopoietic lineages. Among these is the ability of BSF-1 to costimulate the growth of mast cells and regulate the production of IgE. We demonstrate here that BSF-1 mRNA is expressed by a majority of transformed mast cell lines and by 5 IL-3-dependent non-transformed mast cell lines. BSF-1 activity, including the ability to enhance the growth of IL-3-dependent mast cells, was detected in the supernatants of transformed mast cells. The role of BSF-1 as a mast cell growth factor, its constitutive production by transformed mast cells, and the lack of IL-3 production by most of these cells raise the possibility that BSF-1 may act as an autocrine growth factor for some transformed mast cells. Furthermore, production of BSF-1 mRNA by nontransformed cells indicates that mast cells may be an important physiologic source of this factor.  相似文献   

19.
Clustering of the mast cell function-associated antigen by its specific monoclonal antibody (G63) inhibits the FcepsilonRI-mediated secretory response. The cytosolic tail of the mast cell function-associated antigen contains a SIYSTL stretch, a potential immunoreceptor tyrosine-based inhibition motif. To investigate the possible functional role of this sequence, as well as identify potential intracellular proteins that interact with it, peptides corresponding to residues 4-12 of the mast cell function-associated antigen's N-terminal cytoplasmic domain, containing the above motif, were synthesized and used in affinity chromatography of mast cell lysates. Both tyrosyl phosphorylated and thiophosphorylated mast cell function-associated antigen peptides bound the src homology domain 2 (SH2)-containing tyrosine phosphatases-1 (SHP-1), -2 (SHP-2) and inositol 5'-phosphatase (SHIP), though with different efficiencies. Neither the nonphosphorylated peptide nor its tyrosyl phosphorylated reversed sequence peptide bound any of these phosphatases. Point mutation analysis of mast cell function-associated antigen pITIM binding requirements demonstrated that for SHP-2 association the amino acid residue at position Y-2 is not restricted to the hydrophobic isoleucine or valine. Glycine and other amino acids with hydrophilic residues, such as serine and threonine, at this position also maintain this binding capacity, whereas alanine and acidic residues abolish it. In contrast, SHP-1 binding was maintained only when serine was substituted by valine, suggesting that the Y-2 position provides selectivity for peptide binding to SH2 domains of SHP-1 and SHP-2. These results were corroborated by surface plasmon resonance measurements of the interaction between tyrosyl phosphorylated mast cell function-associated antigen peptide and recombinant soluble SH2 domains of SHP-1, SHP-2 and SHIP, suggesting that the associations observed in the cell lysates may be direct. Taken together these results clearly indicate that the SIYSTL motif present in mast cell function-associated antigen's cytosolic tail exhibits characteristic features of an immunoreceptor tyrosine-based inhibition motif, suggesting it is a new member of the growing diverse family of immunoreceptor tyrosine-based inhibition motif-containing receptors.  相似文献   

20.
The regulation of mast cell activities and survival is a central issue in inflammatory immune responses. Here, we have investigated the role of mouse interleukin-15, a pro-inflammatory and pleiotropic cytokine, in the control of mast cell survival and homeostasis. We report that aged IL-15−/− mice show a reduced number of peritoneal mast cells compared to WT mice. Furthermore, IL-15 deficiency in bone marrow derived mouse mast cells (BMMCs) results in increased susceptibility to apoptosis mediated by growth factor deprivation and A-SMase-treatment. IL-15−/− BMMCs show a constitutive stronger mRNA and protein expression as well as enzymatic activity of the members of the mitochondrial apoptotic pathways including acidic lysosomal aspartate protease cathepsin D (CTSD), endogenous acid sphingomyelinase (A-SMase), caspase-3 and -7 compared to wild type (WT) BMMCs. Furthermore, IL-15−/− BMMCs constitutively generate more A-SMase-derived ceramide than WT controls and display a decreased expression of pro-survival sphingosin-1-phosphate (SPP) both in cytosol and membrane cell fractions. Furthermore, pre-treatment of mast cells with imipramine or pepstatin A, inhibitors of the intracellular acid sphingomyelinase and cathepsin D pathways respectively, increases survival in IL-15−/− BMMCs. These findings suggest that intracellular IL-15 is a key regulator of pathways controlling primary mouse mast cell homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号