首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently described a large, multiple-conductance Cl- channel in excised patches from normal T lymphocytes. The properties of this channel in excised patches are similar to maxi-Cl- channels found in a number of cell types. The voltage dependence in excised patches permitted opening only at nonphysiological voltages, and channel activity was rarely seen in cell-attached patches. In the present study, we show that Cl- channels can be activated in intact cells at physiological temperatures and voltages and that channel properties change after patch excision. Maxi-Cl- channels were reversibly activated in 69% of cell-attached patches when the temperature was above 32 degrees C, whereas fewer than 2% of patches showed activity at room temperature. Upon excision, the same patches displayed large, multiple-conductance Cl- channels with characteristics like those we previously reported for excised patches. After patch excision, warm temperatures were not essential to allow channel activity; 37% (114/308) of inside-out patches had active channels at room temperature. The voltage dependence of the channels was markedly different in cell-attached recordings compared with excised patches. In cell-attached patches, Cl- channels could be open at cell resting potentials in the normal range. Channel activation was not related to changes in intracellular Ca2+ since neither ionomycin nor mitogens activated the channels in cell-attached patches, Ca2+ did not rise in response to warming and the Cl- channel was independent of Ca2+ in inside-out patches. Single-channel currents were blocked by internal or external Zn2+ (100-200 microM), 4-acetamido-4' isothiocyanostilbene-2,2'-disulfonate (SITS, 100-500 microM) and 4,4'-diisothiocyanostilbene 2,2'-disulfonate (DIDS, 100 microM). NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) reversibly blocked the channels in inside-out patches.  相似文献   

2.
Voltage-gated n-type K(V) and Ca(2+)-activated K+ [K(Ca)] channels were studied in cell-attached patches of activated human T lymphocytes. The single-channel conductance of the K(V) channel near the resting membrane potential (Vm) was 10 pS with low K+ solution in the pipette, and 33 pS with high K+ solution in the pipette. With high K+ pipette solution, the channel showed inward rectification at positive potentials. K(V) channels in cell-attached patches of T lymphocytes inactivated more slowly than K(V) channels in the whole-cell configuration. In intact cells, steady state inactivation at the resting membrane potential was incomplete, and the threshold for activation was close to Vm. This indicates that the K(V) channel is active in the physiological Vm range. An accurate, quantitative measure for Vm was obtained from the reversal potential of the K(V) current evoked by ramp stimulation in cell-attached patches, with high K+ solution in the pipette. This method yielded an average resting Vm for activated human T lymphocytes of -59 mV. Fluctuations in Vm were detected from changes in the reversal potential. Ionomycin activates K(Ca) channels and hyperpolarizes Vm to the Nernst potential for K+. Elevating intracellular Ca2+ concentration ([Ca2+]i) by ionomycin opened a 33-50-pS channel, identified kinetically as the CTX-sensitive IK-type K(Ca) channel. The Ca2+ sensitivity of the K(Ca) channel in intact cells was determined by measuring [Ca2+]i and the activity of single K(Ca) channels simultaneously. The threshold for activation was between 100 and 200 nM; half-maximal activation occurred at 450 nM. At concentrations > 1 microM, channel activity decreased. Stimulation of the T-cell receptor/CD3 complex using the mitogenic lectin, PHA, increased [Ca2+]i, and increased channel activity and current amplitude resulting from membrane hyperpolarization.  相似文献   

3.
Isolated cells from rat distal colon were investigated with the patch-clamp technique. In cell-attached and cell-excised patches (inside-out) single chloride channels with outward-rectifying properties were observed. In excised patches the single-channel conductance g was 47 +/- 5 pS at positive and 22 +/- 2 pS at negative clamp potentials (n = 6). The Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 10 microM) induced fast closing events, whereas 10 microM of 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC) had no effect when applied to the cytosolic side. Quinine in the bath inhibited the Cl- channel by reducing its single-channel amplitude and increased open channel noise. With 0.1 mM the current amplitude decreased by 54% and with 1 mM quinine by 67%. Ca2(+)-dependent nonselective cation channels where observed after excision of the membrane patch. This channel was completely and reversibly inhibited by 100 microM DCDPC. Application of 1 mM quinine to the bath induced flickering and reduced the open-state probability from 0.94 to 0.44. In summary, besides its well established effects on K+ channels, quinine also inhibits nonselective cation channels and chloride channels by inducing fast closing events.  相似文献   

4.
Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9- anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'- disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.  相似文献   

5.
When excised inside-out membrane patches are bathed in symmetrical Cl--rich solutions, the current-voltage (I-V) relationship of macroscopic cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents inwardly rectifies at large positive voltages. To investigate the mechanism of inward rectification, we studied CFTR Cl- channels in excised inside-out membrane patches from cells expressing wild-type human and murine CFTR using voltage-ramp and -step protocols. Using a voltage-ramp protocol, the magnitude of human CFTR Cl- current at +100 mV was 74 +/- 2% (n = 10) of that at -100 mV. This rectification of macroscopic CFTR Cl- current was reproduced in full by ensemble currents generated by averaging single-channel currents elicited by an identical voltage-ramp protocol. However, using a voltage-step protocol the single-channel current amplitude (i) of human CFTR at +100 mV was 88 +/- 2% (n = 10) of that at -100 mV. Based on these data, we hypothesized that voltage might alter the gating behavior of human CFTR. Using linear three-state kinetic schemes, we demonstrated that voltage has marked effects on channel gating. Membrane depolarization decreased both the duration of bursts and the interburst interval, but increased the duration of gaps within bursts. However, because the voltage dependencies of the different rate constants were in opposite directions, voltage was without large effect on the open probability (Po) of human CFTR. In contrast, the Po of murine CFTR was decreased markedly at positive voltages, suggesting that the rectification of murine CFTR is stronger than that of human CFTR. We conclude that inward rectification of CFTR is caused by a reduction in i and changes in gating kinetics. We suggest that inward rectification is an intrinsic property of the CFTR Cl- channel and not the result of pore block.  相似文献   

6.
The effects of arginine-vasopressin (AVP) (0.01-1 microM) on membrane potential, [Ca2+]i and ATP-sensitive potassium channels have been studied in the insulin-secreting cell line RINm5F. In whole cells, with an average spontaneous cellular transmembrane potential of -64 +/- 3 mV (n = 33) and an average basal [Ca2+]i of 102 +/- 6 nM (n = 40), AVP evoked: (i) membrane depolarization, (ii) voltage-dependent Ca2+ spike-potentials and (iii) a sharp rise in [Ca2+]i. Single-channel current events recorded from excised outside-out membrane patches show that AVP closes potassium channels that are also closed by tolbutamide (100 microM) and opened by diazoxide (100 microM). AVP acts on KATP channels specifically from the outside of the membrane and a soluble cytosolic messenger appears not to be involved, since there is no channel activation in cell-attached membrane patches when the peptide is added to the bath solution.  相似文献   

7.
To clarify the mechanism by which lactate affects insulin secretion, we investigated the effect of lactate on insulin secretion, cytosolic free Ca2+ ([Ca2+](i), the ATP sensitive K+ channel (K(ATP)) and the Ca2+-activated K+ channel (K(Ca)) in HIT-T15 cells, and the results were compared with those of glucose and glibenclamide. All three agents caused insulin secretion and increased [Ca2+](i), but the effects on the K+ channels were different. In cell-attached patch configurations, 10 mmol/l glucose blocked both the K(ATP) and KCa channels, while 100 nmol/l glibenclamide had no effect on KCa channels, but blocked K(ATP) channels. Lactate at a concentration of 10 mmol/l activated both the K(ATP) and KCa channels, not only in cell-attached, but also in inside-out patch configurations, indicating that the increase in [Ca2+](i) and secretion of insulin by lactate cannot be explained by the blocking of the K+ channels. Lactate, at concentrations of 10 mmol/l and 50 mmol/l decreased 45Ca2+ efflux, while glibenclamide increased the efflux. These results suggest that the lactate-induced Ca2+ increase is not due to the closing of K+ channels, but at least in part, to the suppression of Ca2+ efflux from HIT cells.  相似文献   

8.
We have demonstrated that prostaglandin E2 (PGE2) treatment of bovine adrenal chromaffin cells results in a sustained elevation of intracellular Ca2+ concentration ([Ca2+]i) in these cells. Because the continued elevation of [Ca2+]i was dependent on extracellular Ca2+ concentration, it can be assumed that the PGE2-induced [Ca2+]i increase is due, at least in part, to an opening of membrane Ca2+ channels. In this study, we used electrophysiological methods to examine the mechanism of the PGE2-induced [Ca2+]i increase directly. Puff application of PGE2 to the external medium resulted in a prolonged depolarization in about half of the chromaffin cells examined. In whole-cell voltage-clamp recordings, an increase in inward current was observed over a 6-7 min period following bath application of PGE2 (greater than or equal to 10 microM), even in the absence of external Na+. This inward current was abolished when the recordings were made with the cells in a Ca2(+)-free medium, but it was not inhibited by Mn2+, a blocker of voltage-dependent Ca2+ channels. In cell-attached patch-clamp configuration, PGE2 produced an increase in the opening frequency of inward currents. The reversal potential of the PGE2-induced currents was about +40 mV, which is close to the reversal potential of the Ca2+ channel. The opening frequency was not affected by membrane potential changes. In inside-out patch-clamp configuration, inositol 1,4,5-trisphosphate (2 microM) added to the cytoplasmic side activated the Ca2(+)-channel currents, but PGE2 was ineffective when applied to the cytoplasmic side. These results suggest that PGE2 activates voltage-independent Ca2+ channels in chromaffin cells through a diffusible second messenger, possibly inositol 1,4,5-trisphosphate.  相似文献   

9.
The effects of sarcoplasmic reticulum lumenal (trans) Ca2+ on cytosolic (cis) ATP-activated rabbit skeletal muscle Ca2+ release channels (ryanodine receptors) were examined using the planar lipid bilayer method. Single channels were recorded in symmetric 0.25 M KCl media with K+ as the major current carrier. With nanomolar [Ca2+] in both bilayer chambers, the addition of 2 mM cytosolic ATP greatly increased the number of short channel openings. As lumenal [Ca2+] was increased from < 0.1 microM to approximately 250 microM, increasing channel activities and events with long open time constants were seen at negative holding potentials. Channel activity remained low at positive holding potentials. Further increase in lumenal [Ca2+] to 1, 5, and 10 mM resulted in a decrease in channel activities at negative holding potentials and increased activities at positive holding potentials. A voltage-dependent activation by 50 microM lumenal Ca2+ was also observed when the channel was minimally activated by < 1 microM cytosolic Ca2+ in the absence of ATP. With microM cytosolic Ca2+ in the presence or absence of 2 mM ATP, single-channel activities showed no or only a weak voltage dependence. Other divalent cations (Mg2+, Ba2+) could not replace lumenal Ca2+. On the contrary, cytosolic ATP-activated channel activities were decreased as lumenal Ca2+ fluxes were reduced by the addition of 1-5 mM BaCl2 or MgCl2 to the lumenal side, which contained 50 microM Ca2+. An increase in [KCl] from 0.25 M to 1 M also reduced single-channel activities. Addition of the "fast" Ca2+ buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cls chamber increased cytosolic ATP-, lumenal Ca(2+)-activated channel activities to a nearly maximum level. These results suggested that lumenal Ca2+ flowing through the skeletal muscle Ca2+ release channel may regulate channel activity by having access to cytosolic Ca2+ activation and Ca2+ inactivation sites that are located in "BAPTA-inaccessible" and "BAPTA-accessible" spaces, respectively.  相似文献   

10.
The mechanism of inward rectification was examined in cell-attached and inside-out membrane patches from Xenopus oocytes expressing the cloned strong inward rectifier HRK1. Little or no outward current was measured in cell-attached patches. Inward currents reach their maximal value in two steps: an instantaneous phase followed by a time-dependent "activation" phase, requiring at least two exponentials to fit the time- dependent phase. After an activating pulse, the quasi-steady state current-voltage (I-V) relationship could be fit with a single Boltzmann equation (apparent gating charge, Z = 2.0 +/- 0.1, n = 3). Strong rectification and time-dependent activation were initially maintained after patch excision into high [K+] (K-INT) solution containing 1 mM EDTA, but disappeared gradually, until only a partial, slow inactivation of outward current remained. Biochemical characterization (Lopatin, A. N., E. N. Makhina, and C. G. Nichols, 1994. Nature. 372:366-396.) suggests that the active factors are naturally occurring polyamines (putrescine, spermidine, and spermine). Each polyamine causes reversible, steeply voltage-dependent rectification of HRK1 channels. Both the blocking affinity and the voltage sensitivity increased as the charge on the polyamine increased. The sum two Boltzmann functions is required to fit the spermine and spermidine steady state block. Putrescine unblock, like Mg2+ unblock, is almost instantaneous, whereas the spermine and spermidine unblocks are time dependent. Spermine and spermidine unblocks (current activation) can each be fit with single exponential functions. Time constants of unblock change e-fold every 15.0 +/- 0.7 mV (n = 3) and 33.3 +/- 6.4 mV (n = 5) for spermine and spermidine, respectively, matching the voltage sensitivity of the two time constants required to fit the activation phase in cell-attached patches. It is concluded that inward rectification in intact cells can be entirely accounted for by channel block. Putrescine and Mg2+ ions can account for instantaneous rectification; spermine and spermidine provide a slower rectification corresponding to so-called intrinsic gating of inward rectifier K channels. The structure of spermine and spermidine leads us to suggest a specific model in which the pore of the inward rectifier channel is plugged by polyamines that enter deeply into the pore and bind at sites within the membrane field. We propose a model that takes into account the linear structure of the natural polyamines and electrostatic repulsion between two molecules inside the pore. Experimentally observed instantaneous and steady state rectification of HRK1 channels as well as the time-dependent behavior of HRK1 currents are then well fit with the same set of parameters for all tested voltages and concentrations of spermine and spermidine.  相似文献   

11.
Treatment of adipocytes with depolarizing concentrations of K+ (40 mM) for 60 min increased [Ca2+]i from 158 +/- 28 nM to 328 +/- 38 nM. This significantly reduced (up to 80% inhibition) dephosphorylation of insulin receptor (IR), EGF receptor (EGF-R) and glycogen synthase (GS). The calcium channel blocker, nitrendipine (30 microM), or Ca2+ free medium completely prevented K(+)-induced inhibition of phosphoprotein phosphatase (PPTase). This effect of high [Ca2+]i was completely reversible when the cells were returned into the non-depolarizing medium. Trypsin treatment (4 micrograms/ml) of the membrane fraction containing inhibited PPTase activity, restored dephosphorylation activity to normal suggesting that elevated [Ca2+]i may inhibit PPTase by promoting its association with the inhibitors. These observations indicate that dephosphorylation of IR and GS can be regulated by [Ca2+]i.  相似文献   

12.
The contribution of Ca2(+)-activated and delayed rectifying K+ channels to the voltage-dependent outward current involved in spike repolarization in mouse pancreatic beta-cells (Rorsman, P., and G. Trube. 1986. J. Physiol. 374:531-550) was assessed using patch-clamp techniques. A Ca2(+)-dependent component could be identified by its rapid inactivation and sensitivity to the Ca2+ channel blocker Cd2+. This current showed the same voltage dependence as the voltage-activated (Cd2(+)-sensitive) Ca2+ current and contributed 10-20% to the total beta-cell delayed outward current. The single-channel events underlying the Ca2(+)-activated component were investigated in cell-attached patches. Increase of [Ca2+]i invariably induced a dramatic increase in the open state probability of a Ca2(+)-activated K+ channel. This channel had a single-channel conductance of 70 pS [( K+]o = 5.6 mM). The Ca2(+)-independent outward current (constituting greater than 80% of the total) reflected the activation of an 8 pS [( K+]o = 5.6 mM; [K+]i = 155 mM) K+ channel. This channel was the only type observed to be associated with action potentials in cell-attached patches. It is suggested that in mouse beta-cells spike repolarization results mainly from the opening of the 8-pS delayed rectifying K+ channel.  相似文献   

13.
Effects of the alpha 2-adrenergic agonist clonidine on insulin release, membrane potential, and cytoplasmic free Ca2+ concentration ([Ca2+]i) were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Addition of 2 microM clonidine promptly inhibited glucose-stimulated insulin release, an effect accompanied by a lowering in both membrane potential and [Ca2+]i. Within minutes, the effect on Ca2+ was partly reversed, [Ca2+]i attaining a new level, although still significantly lower than in the absence of agonist. This late increase in [Ca2+]i was inhibited by 50 microM D-600, a blocker of voltage-activated Ca2+ channels. The inhibitory effects of clonidine on membrane potential, [Ca2+]i, and insulin release were abolished by 5 microM of the alpha 2-adrenergic antagonist yohimbine. Depolarization with high K+ increased [Ca2+]i also in the presence of clonidine, conditions accompanied by only a minute release of insulin. Secretion was, however, partly restored by subsequent addition of 20 mM glucose. Addition of 5 mM Ca2+ transiently reversed the effects of clonidine on both membrane potential and [Ca2+]i. Although the clonidine-induced repolarization should be enough for closing the voltage-activated Ca2+ channels with a resulting decrease in [Ca2+]i, a direct interaction of the agonist with these channels cannot be excluded. The fact that it was possible to increase [Ca2+]i with only a minor effect on insulin release suggests that the inhibitory effect of clonidine not only is due to a reduction in [Ca2+]i, but also involves interference with some more distal step in the insulin secretory machinery.  相似文献   

14.
Neuronal nicotinic acetylcholine (ACh)-activated currents in rat parasympathetic ganglion cells were examined using whole-cell and single-channel patch clamp recording techniques. The whole-cell current-voltage (I-V) relationship exhibited strong inward rectification and a reversal (zero current) potential of -3.9 mV in nearly symmetrical Na+ solutions (external 140 mM Na+/internal 160 mM Na+). Isosmotic replacement of extracellular Na+ with either Ca2+ or Mg2+ yielded the permeability (Px/PNa) sequence Mg2+ (1.1) > Na+ (1.0) > Ca2+ (0.65). Whole-cell ACh-induced current amplitude decreased as [Ca2+]0 was raised from 2.5 mM to 20 mM, and remained constant at higher [Ca2+]0. Unitary ACh-activated currents recorded in excised outside-out patches had conductances ranging from 15-35 pS with at least three distinct conductance levels (33 pS, 26 pS, 19 pS) observed in most patches. The neuronal nicotinic ACh receptor-channel had a slope conductance of 30 pS in Na+ external solution, which decreased to 20 pS in isotonic Ca2+ and was unchanged by isosmotic replacement of Na+ with Mg2+. ACh-activated single channel currents had an apparent mean open time (tau 0) of 1.15 +/- 0.16 ms and a mean burst length (tau b) of 6.83 +/- 1.76 ms at -60 mV in Na+ external solution. Ca(2+)-free external solutions, or raising [Ca2+]0 to 50-100 mM decreased both the tau 0 and tau b of the nAChR channel. Varying [Ca2+]0 produced a marked decrease in NP0, while substitution of Mg2+ for Na+ increased NP0. These data suggest that activation of the neuronal nAChR channel permits a substantial Ca2+ influx which may modulate Ca(2+)-dependent ion channels and second messenger pathways to affect neuronal excitability in parasympathetic ganglia.  相似文献   

15.
The mechanisms by which glyburide and tolbutamide signal insulin secretion were examined using a beta cell line (Hamster insulin-secreting tumor (HIT) cells). Insulin secretion was measured in static incubations, free cytosolic Ca2+ concentration ([Ca2+]i) was monitored in quin 2-loaded cells, and cAMP quantitated by radioimmunoassay. Insulin secretory dose-response curves utilizing static incubations fit a single binding site model and established that glyburide (ED50 = 112 +/- 18 nM) is a more potent secretagogue than tolbutamide (ED50 = 15 +/- 3 microM). Basal HIT cell [Ca2+]i was 76 +/- 7 nM (mean +/- S.E., n = 141) and increased in a dose-dependent manner with both glyburide and tolbutamide with ED50 values of 525 +/- 75 nM and 67 +/- 9 microM, respectively. The less active tolbutamide metabolite, carboxytolbutamide, had no effect on [Ca2+]i or insulin secretion. Chelation of extracellular Ca2+ with 4 mM EGTA completely inhibited the sulfonylurea-induced changes in [Ca2+]i and insulin release and established that the rise in [Ca2+]i came from an extracellular Ca2+ pool. The Ca2+ channel blocker, verapamil, inhibited glyburide- or tolbutamide-stimulated insulin release and the rise in [Ca2+]i at similar concentrations with IC50 values of 3 and 2.5 microM, respectively. At all concentrations tested, the sulfonylureas did not alter HIT cell cAMP content. These findings provide direct experimental evidence that glyburide and tolbutamide allow extracellular Ca2+ to enter the beta cell through verapamil-sensitive, voltage-dependent Ca2+ channels, causing a rise in [Ca2+]i which is the second messenger that stimulates insulin release.  相似文献   

16.
17.
The effect of ketoconazole on cytosolic free Ca2+ concentrations ([Ca2+]i) and proliferation has not been explored in corneal cells. This study examined whether ketoconazole alters Ca2+ levels and causes cell death in SIRC rabbit corneal epithelial cells. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Ketoconazole at concentrations of 5 microM and above increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The ketoconazole-induced Ca2+ influx was insensitive to L-type Ca2+ channel blockers and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 50 microM ketoconazole, thapsigargin-(1 microM)-induced [Ca2+]i rises were abolished; conversely, thapsigargin pretreatment nearly abolished ketoconazole-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 microM U73122 did not change ketoconazole-induced [Ca2+]i rises. At concentrations between 5 and 100 microM, ketoconazole killed cells in a concentration-dependent manner. The cytotoxic effect of 50 microM ketoconazole was not reversed by prechelating cytosolic Ca2+ with BAPTA. In summary, in corneal cells, ketoconazole-induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from unknown pathways. Furthermore, the cytotoxicity induced by ketoconazole was not caused via a preceding [Ca2+]i rise.  相似文献   

18.
Delayed rectifier potassium channels were expressed in the membrane of Xenopus oocytes by injection of rat brain DRK1 (Kv2.1) cRNA, and currents were measured in cell-attached and inside-out patch configurations. In intact cells the current-voltage relationship displayed inward going rectification at potentials > +100 mV. Rectification was abolished by excision of membrane patches into solutions containing no Mg2+ or Na+ ions, but was restored by introducing Mg2+ or Na+ ions into the bath solution. At +50 mV, half- maximum blocking concentrations for Mg2+ and Na+ were 4.8 +/- 2.5 mM (n = 6) and 26 +/- 4 mM (n = 3) respectively. Increasing extracellular potassium concentration reduced the degree of rectification of intact cells. It is concluded that inward going rectification resulting from voltage-dependent block by internal cations can be observed with normally outwardly rectifying DRK1 channels.  相似文献   

19.
Using whole-cell patch-clamp technique and Fura-2 fluorescence measurement, the presence of ATP-activated ion channels and its dependence on intracellular Ca2+ concentration ([Ca2+]i) in the epithelial cells of the endolymphatic sac were investigated. In zero current-clamp configuration, the average resting membrane potential was -66.8+/-1.3 mV (n=18). Application of 30 microM ATP to the bath induced a rapid membrane depolarization by 43.1+/-2.4 mV (n=18). In voltage-clamp configuration, ATP-induced inward current at holding potential (VH) of -60 mV was 169.7+/-6.3 pA (n=18). The amplitude of ATP-induced currents increased in sigmoidal fashion over the concentration range between 0.3 and 300 microM with a Hill coefficient (n) of 1.2 and a dissociation constant (Kd) of 11.7 microM. The potency order of purinergic analogues in ATP-induced current, which was 2MeSATP>ATPgammas>/=ATP>alpha, beta-ATP>ADP=AMP>/=adenosine=UTP, was consistent with the properties of the P2Y receptor. The independence of the reversal potential of the ATP-induced current from Cl- concentration suggests that the current is carried by a cation channel. The relative ionic permeability ratio of the channel modulated by ATP for cations was Ca2+>Na+>Li+>Ba2+>Cs+=K+. ATP (10 microM) increased [Ca2+]i in an external Ca2+-free solution to a lesser degree than that in the external solution containing 1.13 mM CaCl2. ATP-induced increase in [Ca2+]i can be mimicked by application of ionomycin in a Ca2+-free solution. These results indicate that ATP increases [Ca2+]i through the P2Y receptor with a subsequent activation of the non-selective cation channel, and that these effects of ATP are dependent on [Ca2+]i and extracellular Ca2+.  相似文献   

20.
Mechanosensitive ion channels have been described in many types of cells. These channels are believed to transduce pressure signals into intracellular biochemical and physiological events. In this study, the patch-clamp technique was used to identify and characterize a mechanosensitive ion channel in rat atrial cells. In cell-attached patches, negative pressure in the pipette activated an ion channel in a pressure-dependent manner. The pressure to induce half-maximal activation was 12 +/- 3 mmHg at +40 mV, and nearly full activation was observed at approximately 20 mmHg. The probability of opening was voltage dependent, with greater channel activity at depolarized potentials. The mechanosensitive channel was identical to the K+ channel previously shown to be activated by arachidonic acid and other lipophilic compounds, as judged by the outwardly rectifying current-voltage relation, single channel amplitude, mean open time (1.4 +/- 0.3 ms), bursty openings, K+ selectivity, insensitivity to any known organic inhibitors of ion channels, and pH sensitivity. In symmetrical 140 mM KCl, the slope conductance was 94 +/- 11 pS at +60 mV and 64 +/- 8 pS at -60 mV. Anions and cations such as Cl-, glutamate, Na+, Cs+, Li+, Ca2+, and Ba2+ were not permeant. Extracellular Ba2+ (1 mM) blocked the inward K+ current completely. GdCl3 (100 microM) or CaCl2 (100 microM) did not alter the K+ channel activity or amplitude. Lowering of intracellular pH increased the pressure sensitivity of the channel. The K+ channel could be activated in the presence of 5 mM intracellular [ATP] or 10 microM glybenclamide in inside-out patches. In the absence of ATP, when the ATP-sensitive K+ channel was active, the mechanosensitive channel could further be activated by pressure, suggesting that they were two separate channels. The ATP-sensitive K+ channel was not mechanosensitive. Pressure activated the K+ channel in the presence of albumin, a fatty acid binding protein, suggesting that pressure and arachidonic acid activate the K+ channel via separate pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号