首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
2.
3.
4.
We have characterized a mitochondrial gene in Oenothera, designated orf454, capable of encoding a component of the cytochrome c biogenesis system. This open reading frame is interrupted by an intron of 941 nucleotides showing high similarity to a group II intron residing in the rpl2 gene. RNA editing, which is observed at 18 cytidine positions within the orf454 reading frame, improves the similarity to protein-coding sequences in bacteria and higher plants and removes the last 16 amino acids. orf454 also shows high sequence similarity to two overlapping reading frames (orf169 and orf322) of Marchantia mitochondria. These ORFs belong to an operon-like cluster of genes in the liverwort that is not conserved in Oenothera mitochondria. However, in bacteria these reading frames are organized like the Marchantia gene cluster. It has been shown by genetical analysis in Rhodobacter capsulatus that these genes are essential for cytochrome c biogenesis. Genes of bacterial operons — ccl1 in Rhodobacter and yejR and nrfE in Escherichia coli — show high sequence similarity to the mitochondrial reading frames orf577 and orf454 of Oenothera. orf454, which we describe here, is homologous to the C-terminal region of these bacterial genes, while the previously described orf577 is homologous to the N-terminal region.  相似文献   

5.
Characterization of the Oenothera mitochondrial ribosomal gene cluster rps19-rps3-rpl16 shows the two genes rps3 and rpl16 to be separated by 9 nucleotides. The first codon of rpl16 is a GTG codon for valine and the only potential translational start. This GTG codon is conserved at the same position in maize, Petunia and Marchantia mitochondria, while sequences diverge upstream. These observations suggest that GTG at least at this position may act as translation initiation codon in plant mitochondria. Analysis of RNA editing suggests both genes to code for functional ribosomal proteins in Oenothera mitochondria. A duplication/recombination event at a decanucleotide in the intron of rps3 created a pseudogene missing part of the intron and the 3 exon.  相似文献   

6.
In Gracilaria tenuistipitata, a highly differentiated multicellular member of the marine red algae, Rhodophyta, chloroplast (cp) DNA can be separated as a satellite band from the nuclear DNA in a CsCl gradient. Using a heterologous probe from Chlamydomonas, the ribosomal protein-encoding gene, rpl16, was located on a 4.5-kb EcoRI fragment of cp DNA. The fragment was cloned and a 1365-bp region around rpl16 was sequenced. The gene order around rpl16, 5′ rpl22-rps3-rpl16, is identical to that detected in the chloroplast DNA of liverwort, tobacco and maize. Both the nucleotide sequence and the amino-acid sequence of rpl16 are more conserved than that of rps3. The rpl16 gene contains no intron, a feature which shows more similarity to the unicellular green algae, Chlamydomonas, than the other land plants. Sequences that may form a stable stem-loop structure were detected within the coding sequence of rpl16.  相似文献   

7.
8.
9.
The rpl35, rpl20, rpl5, rps8, and a portion of the rpl6 genes of the cyanelle genome of Cyanophora paradoxa have been cloned, mapped and sequenced. Homologs of the rpl35, rpl5, and rpl6 genes are not found in the chloroplasts of higher plants. The rpl35 genes most likely form a dicistronic operon which is located upstream from the apcE-apcA-apcB locus of the cyanelle and which is divergently transcribed from this locus. The rpl5, rpl8, and rpl6 genes probably form a part of a larger cluster of genes encoding components of the cyanellar ribosomes. These genes are organized in a fashion similar to that observed in all procaryotes examined to date, with the exception that the rps14 gene is not found between the rpl5 and rps8 coding sequences. Hypotheses concerning the origins of cyanelles and chloroplasts are discussed.  相似文献   

10.
Mitochondrial genomes of plants are much larger than those of mammals and often contain conserved open reading frames (ORFs) of unknown function. Here, we show that one of these conserved ORFs is actually the gene for ribosomal protein L10 (rpl10) in plant. No rpl10 gene has heretofore been reported in any mitochondrial genome other than the exceptionally gene-rich genome of the protist Reclinomonas americana. Conserved ORFs corresponding to rpl10 are present in a wide diversity of land plant and green algal mitochondrial genomes. The mitochondrial rpl10 genes are transcribed in all nine land plants examined, with five seed plant genes subject to RNA editing. In addition, mitochondrial-rpl10-like cDNAs were identified in EST libraries from numerous land plants. In three lineages of angiosperms, rpl10 is either lost from the mitochondrial genome or a pseudogene. In two of them (Brassicaceae and monocots), no nuclear copy of mitochondrial rpl10 is identifiably present, and instead a second copy of nuclear-encoded chloroplast rpl10 is present. Transient assays using green fluorescent protein indicate that this duplicate gene is dual targeted to mitochondria and chloroplasts. We infer that mitochondrial rpl10 has been functionally replaced by duplicated chloroplast counterparts in Brassicaceae and monocots.  相似文献   

11.
12.
We have extended to about 75 the number of genes mapped on the Chlamydomonas moewusii and Chlamydomonas reinhardtii chloroplast DNAs (cpDNAs) by partial sequencing of the very closely related C. eugametos and C. moewusii cpDNAs and by hybridizations with Chlamydomonas chloroplast gene-specific sequences. Only four of these genes (tscA and three reading frames) have not been identified in any other algal cpDNAs and thus may be specific to Chlamydomonas. Although the C. moewusii and C. reinhardtii cpDNAs differ by complex sequence rearrangements, 38 genes scattered throughout the genome define 12 conserved clusters of closely linked loci. Aside from the rRNA operon, four of these gene clusters share similarity to evolutionarily primitive operons found in other cpDNAs, representing in fact remnants of these operons. Our results thus indicate that most of the ancestral bacterial operons that characterize the chloroplast genome organization of land plants and early-diverging photosynthetic eukaryotes have been disrupted before the emergence of the polyphyletic genus Chlamydomonas. All gene rearrangements between the C. moewusii and C. reinhardtii cpDNAs, with the exception of those accounting for the relocations of atpA, psbI and rbcL, occurred within corresponding regions of the genome. One of these rearrangements seems to have led to disruption of the ancestral region containing rpl23, rpl2, rps19, rpl16, rpl14, rpl5, rps8 and the psaA exon 1. This gene cluster, which bears striking similarity to the Escherichia coli S10 and spc operons, spans a continuous DNA segment in C. reinhardtii, while it maps to two separate fragments in C. moewusii.  相似文献   

13.
14.
15.
The transfer of genetic information from the mitochondrion to the nucleus is thought to be still underway in higher plants. The mitochondrial genome of Arabidopsis thaliana contains only one rps14 pseudogene. In this paper we show that the functional gene encoding mitochondrial ribosomal protein S14 has been translocated to the nucleus. This gene transfer is a recent evolutionary event, which occurred within Cruciferae, probably after the divergence of Arabidopsis and Brassica napus. A 5′ extension of the rps14 reading frame encodes a presequence which, in vitro, targets the polypeptide to isolated mitochondria and is cleaved off during or after import. No intron was found at the junction of the targeting presequence with the mitochondrially derived sequence, which are directly connected. By contrast, a 90-bp intron, which is removed by splicing to give a mature poly(A)+mRNA of 0.9 kb, is located in the 3′ non-coding region. To our knowledge, this is the first report of an intron in such a position in a functional transferred gene in higher plants, and suggests that exon shuffling may have been involved in the acquisition of elements necessary for expression in the nucleus. Putative roles of this intron in polyadenylation and enhancement of gene expression are discussed. Received: 11 January 1999 / Accepted: 27 April 1999  相似文献   

16.
We determined the complete nucleotide sequence of the mitochondrial genome of an angiosperm, sugar beet (Beta vulgaris cv TK81-O). The 368 799 bp genome contains 29 protein, five rRNA and 25 tRNA genes, most of which are also shared by the mitochondrial genome of Arabidopsis thaliana, the only other completely sequenced angiosperm mitochondrial genome. However, four genes identified here (namely rps13, trnF-GAA, ccb577 and trnC2-GCA) are missing in Arabidopsis mitochondria. In addition, four genes found in Arabidopsis (ccb228, rpl2, rpl16 and trnY2-GUA) are entirely absent in sugar beet or present only in severely truncated form. Introns, duplicated sequences, additional reading frames and inserted foreign sequences (chloroplast, nuclear and plasmid DNA sequences) contribute significantly to the overall size of the sugar beet mitochondrial genome. Nevertheless, 55.6% of the genome has no obvious features of information. We identified a novel tRNACys gene (trnC2-GCA) which shows no sequence homology with any tRNACys genes reported so far in higher plants. Intriguingly, this tRNA gene is actually transcribed into a mature tRNA, whereas the native tRNACys gene (trnC1-GCA) is most likely a pseudogene.  相似文献   

17.
We have isolated and analysed a 2 kb region of the mitochondrial genome of Arabidopsis thaliana (Columbia) showing a high level of nucleotide identity with the mitochondrial (mt) rps14 small-subunit ribosomal protein gene from Oenothera berteriana and Vicia faba, as well as with an open reading frame (ORF) located upstream of the nad3 locus in O. berteriana. The rps14 locus is present as a single copy in the A. thaliana mt genome and has a translational stop codon located near the initiation codon, as well as a deletion of one nucleotide that disturbs the coding sequence. The cloning and sequencing of nine amplified mt rps14 cDNAs clearly demonstrated that this gene is transcribed and that the mRNA precursors are edited at three positions, all involving C-to-U conversions. No editing events changing the stop codon and restoring the correct coding sequence were witnessed within the 9 individual cDNA clones. Therefore, we conclude that the single rps14 sequence of the mitochondrial genome from A. thealiana is in fact a pseudogene that is transcribed and edited but not translated.  相似文献   

18.
An 11.4-kbp region of genomic DNA containing the complete S10-spc operon was constructed by an integrative mapping technique with eight plasmid vectors carrying ribosomal protein sequences from onion yellows phytoplasma. Southern hybridization analysis indicated that phytoplasmal S10-spc is a single-copy operon. This is the first complete S10-spc operon of a phytoplasma to be reported, although only a part of six serial genes of the S10 operon is reported previously. The operon has a context of 5'-rps10, rpl3, rpl4, rpl23, rpl2, rps19, rpl22, rps3, rpl16, rpl29, rps17, rpl14, rpl24, rpl5, rps14, rps8, rpl6, rpl18, rps5, rpl30, rpl15, SecY-3', and is composed of 21 ribosomal protein subunit genes and a SecY protein translocase subunit gene. Resembling Bacillus, this operon contains an rpl30 gene that other mollicutes (Mycoplasma genitalium, M. pneumoniae, and M. pulmonis) lack. A phylogenetic tree based on the rps3 sequence showed that phytoplasmas are phylogenetically closer to acholeplasmas and bacillus than to mycoplasmas. In the S10-spc operon, translation may start from either a GTG codon or an ATG codon, and stop at a TGA codon, as has been reported for acholeplasmas and bacillus. However, in mycoplasmas, GTG was found as a start codon, and TGA was found not as a stop codon, but instead as a tryptophan codon. These data derived from the gene organization, and the genetic code deviation support the hypothesis that phytoplasmal genes resemble those of acholeplasmas and Bacillus more than those of other mollicutes.  相似文献   

19.
The plastid genome of Trifolium subterraneum is 144,763 bp, about 20 kb longer than those of closely related legumes, which also lost one copy of the large inverted repeat (IR). The genome has undergone extensive genomic reconfiguration, including the loss of six genes (accD, infA, rpl22, rps16, rps18, and ycf1) and two introns (clpP and rps12) and numerous gene order changes, attributable to 14–18 inversions. All endpoints of rearranged gene clusters are flanked by repeated sequences, tRNAs, or pseudogenes. One unusual feature of the Trifolium subterraneum genome is the large number of dispersed repeats, which comprise 19.5% (ca. 28 kb) of the genome (versus about 4% for other angiosperms) and account for part of the increase in genome size. Nine genes (psbT, rbcL, clpP, rps3, rpl23, atpB, psbN, trnI-cau, and ycf3) have also been duplicated either partially or completely. rpl23 is the most highly duplicated gene, with portions of this gene duplicated six times. Comparisons of the Trifolium plastid genome with the Plant Repeat Database and searches for flanking inverted repeats suggest that the high incidence of dispersed repeats and rearrangements is not likely the result of transposition. Trifolium has 19.5 kb of unique DNA distributed among 160 fragments ranging in size from 30 to 494 bp, greatly surpassing the other five sequenced legume plastid genomes in novel DNA content. At least some of this unique DNA may represent horizontal transfer from bacterial genomes. These unusual features provide direction for the development of more complex models of plastid genome evolution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号