首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The kinetics of the acylation of alpha-chymotrypsin by a series of substituted phenyl p-nitrobenzoates have been studied by stopped flow and conventional spectrophotometry. Electron withdrawal in the leaving group accelerates the rate of acylation, and the p value obtained for eight esters is +1.96. The pH- and pD-independent acylation rate constants are, respectively, 1.40 X 10(4) M-1S-1 and 1.23 X 10(4) M-1S-1 for p-nitrophenyl p-nitrobenzoate, and, respectively, 2.19 X 10(3) M-1S-1 and 1968 X 10(3) M-1S-1 for p-nitrophenyl benzoate at 25 degrees. An analysis of structure-reactivity results and kinetic solvent isotope effects indicates a mechanism for acylation by phenylbenzoates in which initial reaction is a nucleophilic attack by an imidazole of the enzyme (His 57). Subsequently, there is rapid transfer of the acylating group to the serine 195 from the acylimidazole species. The kinetic solvent isotope effects for acylation by p-nitrophenyl phenyl acetate and p-nitrophenyl phenyl acetate and p-nitrophenyl hydrocinnamate, in 5%, v/v, acetonitrile, are 1.3 and 2.0, respectively. The latter ester is inhibited more than is p-nitrophenyl benzoate when 5%, v/v, dioxane is substituted for 5%, v/v, acetonitrile as co-solvent. In the presence of 5%, v/v, dioxane a change in the kinetic solvent isotope effect to 1.7 is found for p-nitrophenyl benzoate and p-nitrophenyl phenylacetate while that for the analogous hysdrocinnamate ester is unaffected. The results for the latter substrate are in accord with a general base-catalysed mechanism. Electron-withdrawal groups in the phenyl ring of phenyl acetates accelerate the enzyme acylation yielding a leaving group p of 2.05. The kinetic solvent isotope effects for acylation by p-nitrophenyl thiolacetate and by p-nitrophenyl acetate are close to 2.0. The mechanism of acylation of chymotrypsin by phenyl acetates is not unambiguously defined using these data.  相似文献   

2.
The primary and secondary 18O isotope effects for the alkaline (KOH) and enzymatic (phosphotriesterase) hydrolysis of two phosphotriesters, O,O-diethyl p-nitrophenyl phosphate (I) and O,O-diethyl O-(4-carbamoylphenyl) phosphate (II), are consistent with an associative mechanism with significant changes in bond order to both the phosphoryl and phenolic leaving group oxygens in the transition state. The synthesis of [15N, phosphoryl-18O]-, [15N, phenolic-18O]-, and [15N]-O,O-diethyl p-nitrophenyl phosphate and O,O-diethyl O-(4-carbamoylphenyl)phosphate is described. The primary and secondary 18O isotope effects for the alkaline hydrolysis of compound I are 1.0060 and 1.0063 +/- 0.0001, whereas for compound II they are 1.027 +/- 0.002 and 1.025 +/- 0.002, respectively. These isotope effects are consistent with the rate-limiting addition of hydroxide and provide evidence for a SN2-like transition state with the absence of a stable phosphorane intermediate. For the enzymatic hydrolysis of compound I, the primary and secondary 18O isotope effects are very small, 1.0020 and 1.0021 +/- 0.0004, respectively, and indicate that the chemical step in the enzymatic mechanism is not rate-limiting. The 18O isotope effects for the enzymatic hydrolysis of compound II are 1.036 +/- 0.001 and 1.0181 +/- 0.0007, respectively, and are comparable in magnitude to the isotope effects for alkaline hydrolysis, suggesting that the chemical step is rate-limiting. The relative magnitude of the primary 18O isotope effects for the alkaline and enzymatic hydrolysis of compound II reflect a transition state that is more progressed for the enzymatic reaction.  相似文献   

3.
Approximate Hammett reaction constants rho calculated from k2/K8 values of several phenyl esters of N-acetyl-L-phenylalanine, hippuric acid, and beta-phenylpropionic acid are 0.0, 0.4, and 1.0 respectively. To determine whether the lack of substituent effect of k2/K8 with the N-acetyl-L-phenylalanine esters is a result of substituent-insensitive k2 or rate-limiting association of enzyme and substrate, pH-k2/K8 deependences and solvent deuterium isotope effects were determined for certain of the substrates and compared with those found with the corresponding hippurates and beta-phenylpropionates. In the pH range 5 to 8, k2/K8 of the phenyl and 4-nitrophenyl esters of each series is dependent upon the unprotonated form of an enzymatic base of apparent pKa approximately 7.4, identical with the pKa found for the free enzyme. With the phenyl esters of each substrate class, k2/K8 decreased by 2 to 3 times in deuterium oxide compared with water. The results suggest that a step involving a general base-catalyzed proton transfer, almost certainly k2, is rate-limiting with the N-acetyl-L-phenylalaninates, as well as the hippurates and beta-phenylpropionates. Attack by the protein on the latter substrates is prediminantly nucleophilic, judged by the similarity of rho in the enzymatic and reference hydroxide ion-catalyzed hydrolyses. The power rho values for the N-acetyl-L-phenylalaninates and hippurates could result from an electrophilic component in their hydrolytic mechanisms.  相似文献   

4.
L A Xue  P Talalay  A S Mildvan 《Biochemistry》1991,30(45):10858-10865
delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) from Pseudomonas testosteroni catalyzes the conversion of androst-5-ene-3,17-dione to androst-4-ene-3,17-dione by a stereoselective transfer of the 4 beta-proton to the 6 beta-position. The rate-limiting step has been shown to be the concerted enolization of the enzyme-bound substrate comprising protonation of the 3-carbonyl oxygen by Tyr-14 and abstraction of the 4 beta-proton by Asp-38 [Xue, L., Talalay, P., & Mildvan, A. S. (1990) Biochemistry 29, 7491-7500]. Primary, secondary, solvent, and combined kinetic deuterium isotope effects have been used to investigate the mechanism of the Y14F mutant, which lacks the proton donor and is 10(4.7)-fold less active catalytically than the wild-type enzyme. With [4 beta-D]androst-5-ene-3,17-dione as a substrate in H2O, a lag in product formation is observed which approaches, by a first-order process, the rate observed with protonated substrate. With the protonated substrate in D2O, a burst in product formation is detected by derivative analysis of the kinetic data which approaches the rate observed with the 4 beta-deuterated substrate in D2O. The absence of such lags or bursts with the protonated substrate in H2O or with the 4 beta-deuterated substrate in D2O, as well as the detection of buffer catalysis by phosphate at pH 6.8, indicates that one or more intermediates dissociate from the enzyme and partition to substrate 31.6 times faster than to product.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
L M Abell  M H O'Leary 《Biochemistry》1988,27(16):5933-5939
The decarboxylation of histidine by the pyruvate-dependent histidine decarboxylase of Lactobacillus 30a shows a carbon isotope effect of k12/k13 = 1.0334 +/- 0.0005 and a nitrogen isotope effect k14/k15 = 0.9799 +/- 0.0006 at pH 4.8, 37 degrees C. The carbon isotope effect is slightly increased by deuteriation of the substrate and slightly decreased in D2O. The observed nitrogen isotope effect indicates that the imine nitrogen in the substrate-Schiff base intermediate complex is ordinarily protonated, and the pH dependence of the carbon isotope effect indicates that both protonated and unprotonated forms of this intermediate are capable of undergoing decarboxylation. As with the pyridoxal 5'-phosphate dependent enzyme, Schiff base formation and decarboxylation are jointly rate-limiting, with the intermediate histidine-pyruvate Schiff base showing a decarboxylation/Schiff base hydrolysis ratio of 0.5-1.0 at pH 4.8. The decarboxylation transition state is more reactant-like for the pyruvate-dependent enzyme than for the pyridoxal 5'-phosphate dependent enzyme. These studies find no particular energetic or catalytic advantage to the use of pyridoxal 5'-phosphate over covalently bound pyruvate in catalysis of the decarboxylation of histidine.  相似文献   

6.
A beta-glucosidase with the molecular mass of 160,000 Da was purified to homogeneity from cell extract of a cellulolytic bacterium, Cellulomonas uda CS1-1. The kinetic parameters (Km and Vmax) of the enzyme were determined with pNP-cellooligosccharides (DP 1-5) and cellobiose. The molecular orbital theoretical studies on the cellulolytic reactivity between the pNP-cellooligosaccharides as substrate (S) molecules and the purified beta-glucosidase (E) were conducted by applying the frontier molecular orbital (FMO) interaction theory. The results of the FMO interaction between E and S molecules verified that the first stage of the reaction was induced by exocyclic cleavage, which occurred in an electrophilic reaction based on a strong charge-controlled reaction between the highest occupied molecular orbital (HOMO) energy of the S molecule and the lowest occupied molecular orbital (LUMO) energy of the hydronium ion (H3O+), more than endocyclic cleavage, whereas a nucleophilic substitution reaction was induced by an orbital-controlled reaction between the LUMO energy of the oxonium ion (SH+) protonated to the S molecule and the HOMO energy of the H2O2 molecule. A hypothetic reaction route was proposed with the experimental results in which the enzymatic acid-catalyst hydrolysis reaction of E and S molecules would be progressed via SN1 and SN2 reactions. In addition, the quantitative structure-activity relationships (QSARs) between these kinetic parameters showed that Km has a significant correlation with hydrophobicity (logP), and specific activity has with dipole moment, respectively.  相似文献   

7.
Soluble epoxide hydrolase (sEH) is an enzyme involved in drug metabolism that catalyzes the hydrolysis of epoxides to form their corresponding diols. sEH has a broad substrate range and shows high regio- and enantioselectivity for nucleophilic ring opening by Asp333. Epoxide hydrolases therefore have potential synthetic applications. We have used combined quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations (at the AM1/CHARMM22 level) and high-level ab initio (SCS-MP2) QM/MM calculations to analyze the reactions, and determinants of selectivity, for two substrates: trans-stilbene oxide (t-SO) and trans-diphenylpropene oxide (t-DPPO). The calculated free energy barriers from the QM/MM (AM1/CHARMM22) umbrella sampling MD simulations show a lower barrier for phenyl attack in t-DPPO, compared with that for benzylic attack, in agreement with experiment. Activation barriers in agreement with experimental rate constants are obtained only with the highest level of QM theory (SCS-MP2) used. Our results show that the selectivity of the ring-opening reaction is influenced by several factors, including proximity to the nucleophile, electronic stabilization of the transition state, and hydrogen bonding to two active site tyrosine residues. The protonation state of His523 during nucleophilic attack has also been investigated, and our results show that the protonated form is most consistent with experimental findings. The work presented here illustrates how determinants of selectivity can be identified from QM/MM simulations. These insights may also provide useful information for the design of novel catalysts for use in the synthesis of enantiopure compounds.  相似文献   

8.
McCain DF  Grzyska PK  Wu L  Hengge AC  Zhang ZY 《Biochemistry》2004,43(25):8256-8264
Protein tyrosine phosphatases (PTPs) constitute a large family of signaling enzymes that include both tyrosine specific and dual-specificity phosphatases that hydrolyze pSer/Thr in addition to pTyr. Previous mechanistic studies of PTPs have relied on the highly activated substrate p-nitrophenyl phosphate (pNPP), an aryl phosphate with a leaving group pK(a) of 7. In the study presented here, we employ m-nitrobenzyl phosphate (mNBP), an alkyl phosphate with a leaving group pK(a) of 14.9, which mimics the physiological substrates of the PTPs. We have carried out pH dependence and kinetic isotope effect measurements to characterize the mechanism of two important members of the PTP superfamily: Yersinia PTP (YopH) and Cdc25A. Both YopH and Cdc25A exhibit bell-shaped pH-rate profiles for the hydrolysis of mNBP, consistent with general acid catalysis. The slightly inverse (18)(V/K)(nonbridge) isotope effects (0.9999 for YopH and 0.9983 for Cdc25A) indicate a loose transition state with little nucleophilic participation for both enzymes. The smaller (18)(V/K)(bridge) primary isotope effects (0.9995 for YopH and 1.0012 for Cdc25A) relative to the corresponding isotope effects for pNPP hydrolysis suggest that protonation of the leaving group oxygen at the transition state by the general acid is ahead of P-O bond fission with the alkyl substrate, while general acid catalysis of pNPP by YopH is more synchronous with P-O bond fission. The isotope effect data also confirm findings from previous studies that Cdc25A utilizes general acid catalysis for substrates with a leaving group pK(a) of >8, but not for pNPP. Interestingly, the difference in the kinetic isotope effects for the reactions of aryl phosphate pNPP and alkyl phosphate mNBP by the PTPs parallels what is observed in the uncatalyzed reactions of their monoanions. In these reactions, the leaving group is protonated in the transition state, as is the case in PTP-catalyzed reactions. Also, the phosphoryl group in the transition states of the enzymatic reactions does not differ substantially from those of the uncatalyzed reactions. These results provide further evidence that these enzymes do not change the transition state but simply stabilize it.  相似文献   

9.
The rate constants for the hydrolysis of six alkyl and four aryl β-d-xylofuranosides in aqueous perchloric acid at various temperatures have been measured. The effects of varying the aglycon structure on the hydrolysis rate are interpreted in terms of two concurrent reactions. Either, the substrate, protonated on the glycosidic oxygen atom, undergoes a rate-limiting heterolysis to form a cyclic oxocarbonium ion, or, an initial rapid protonation of the ring oxygen is followed by a unimolecular cleavage of the five-membered ring, all subsequent reactions being fast. It is suggested that xylofuranosides having strongly electron-attracting aglycon groups react mainly by the former pathway, whereas the latter is more favourable for substrates having electron-repelling aglycon groups. The negative entropies of activation obtained with the latter compounds are attributed to the rate-limiting opening of the five-membered ring. The rate variations of the hydrolyses of alkyl β-d-xylofuranosides in aqueous perchloric acid-methyl sulfoxide mixtures are interpreted as lending further support for the suggested chance in mechanism.  相似文献   

10.
D M Quinn 《Biochemistry》1985,24(13):3144-3149
Solvent deuterium isotope effects on the rates of lipoprotein lipase (LpL) catalyzed hydrolysis of the water-soluble esters p-nitrophenyl acetate (PNPA) and p-nitrophenyl butyrate (PNPB) have been measured and fall in the range 1.5-2.2. The isotope effects are independent of substrate concentration, LpL stability, and reaction temperature and hence are effects on chemical catalysis and not due to a medium effect of D2O on LpL stability and/or conformation. pL (L = H or D) vs. rate profiles for the Vmax/Km of LpL-catalyzed hydrolysis of PNPB increase sigmoidally with increasing pL. Least-squares analysis of the profiles gives pKaH2O = 7.10 +/- 0.01, pKaD2O = 7.795 +/- 0.007, and a solvent isotope effect on limiting velocity at high pL of 1.97 +/- 0.03. Because the pL-rate profiles are for the Vmax/Km of hydrolysis of a water-soluble substrate, the measured pKa's are intrinsic acid-base ionization constants for a catalytically involved LpL active-site amino acid side chain. Benzeneboronic acid, a potent inhibitor of LpL-catalyzed hydrolysis of triacylglycerols [Vainio, P., Virtanen, J. A., & Kinnunen, P. K. J. (1982) Biochim. Biophys. Acta 711, 386-390], inhibits LpL-catalyzed hydrolysis of PNPB, with Ki = 6.9 microM at pH 7.36, 25 degrees C. This result and the solvent isotope effects for LpL-catalyzed hydrolysis of water-soluble esters are interpreted in terms of a proton transfer mechanism that is similar in many respects to that of the serine proteases.  相似文献   

11.
Benzoylformate decarboxylase (benzoylformate carboxy-lyase, BFD; EC 4.1.1.7) from Pseudomonas putida is a thiamine pyrophosphate (TPP) dependent enzyme which converts benzoylformate to benzaldehyde and carbon dioxide. The kinetics and mechanism of the benzoylformate decarboxylase reaction were studied by solvent deuterium and 13C kinetic isotope effects with benzoylformate and a series of substituted benzoylformates (pCH3O, pCH3, pCl, and mF). The reaction was found to have two partially rate-determining steps: initial tetrahedral adduct formation (D2O sensitive) and decarboxylation (13C sensitive). Solvent deuterium and 13C isotope effects indicate that electron-withdrawing substituents (pCl and mF) reduce the rate dependence upon decarboxylation such that decreased 13(V/K) effects are observed. Conversely, electron-donating substituents increase the rate dependence upon decarboxylation such that a larger 13(V/K) is seen while the D2O effects on V and V/K are not dramatically different from those for benzoylformate. All of the data are consistent with substituent stabilization or destabilization of the carbanionic intermediate (or carbanion-like transition state) formed during decarboxylation. Additional information regarding the mechanism of the enzymic reaction was obtained from pH studies on the reaction of benzoylformate and the binding of competitive inhibitors. These studies suggest that two enzymic bases are required to be in the correct protonation state (one protonated and one unprotonated) for optimal binding of substrate (or inhibitors).  相似文献   

12.
The substrate specificity of honeybee alpha-glucosidase I, a monomeric enzyme was kinetically investigated. Unusual kinetic features were observed in the cleavage reactions of sucrose, maltose, p-nitrophenyl alpha-glucoside, phenyl alpha-glucoside, turanose, and maltodextrin (DP = 13). At relatively high substrate concentrations, the velocities of liberation of fructose from sucrose, glucose from maltose, p-nitrophenol from p-nitrophenyl alpha-glucoside, and phenol from phenyl alpha-glucoside were accelerated, and so the Lineweaver-Burk plots were convex, indicating negative kinetic cooperativity: the Hill coefficients were calculated to be 0.50, 0.64, 0.50, and 0.67 for sucrose, maltose, p-nitrophenyl alpha-glucoside, and phenyl alpha-glucoside, respectively. For the degradation of turanose and maltodextrin, the enzyme showed a sigmoidal curve in v versus s plots and thus catalyzed the reaction with positive kinetic cooperativity. The Lineweaver-Burk plots were concave and the Hill coefficients were 1.2 and 1.5 for turanose and maltodextrin, respectively. These unique properties cannot be interpreted by the reaction mechanism that Huber and Thompson proposed: (1973) Biochemistry 12, 4011-4020. The rate parameters for the hydrolysis of sucrose, maltose, p-nitrophenyl alpha-glucoside and phenyl alpha-glucoside were estimated by extrapolating the linear part of the Lineweaver-Burk plots at low substrate concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
K Kolmodin  P Nordlund  J Aqvist 《Proteins》1999,36(3):370-379
Substrate dephosphorylation by the low molecular weight protein tyrosine phosphatases proceeds via nucleophilic substitution at the phosphorous atom yielding a cysteinyl phosphate intermediate. However, several questions regarding the exact reaction mechanism remain unanswered. Starting from the crystal structure of the enzyme we study the energetics of this reaction, using the empirical valence bond method in combination with molecular dynamics and free energy perturbation simulations. The free energy profiles of two mechanisms corresponding to different protonation states of the reacting groups are examined along stepwise and concerted pathways. The activation barriers calculated relative to the enzyme-substrate complex are very similar for both monoanionic and dianionic substrates, but taking the substrate binding step into account shows that hydrolysis of monoanionic substrates is strongly favored by the enzyme, because a dianionic substrate will not bind when the reacting cysteine is ionized. The calculated activation barrier for dephosphorylation of monoanionic phenyl phosphate according to this novel mechanism is 14 kcal mol(-1), which is in good agreement with experimental data. Proteins 1999;36:370-379.  相似文献   

14.
The effect of pH on the kinetic parameters (Kms, Vs) of the reaction of adrenaline and Fe(II) (More's salt) oxidation by ceruloplasmin isolated from human donor blood was investigated. It was assumed that the imidazole group of histidine is functionally important for the above reactions. For Fe(II) the effect of the ionizeable group was observed during substrate binding to the ceruloplasmin molecule, whereas in the course of the adrenaline oxidation reaction it manifests itself during catalytic interaction of the substrate with the enzyme. The organic substrate can bind both to the protonated and to the non-protonated form of the enzyme. Fe(II) interacts only with the protonated form of the protein. In both cases, the rate-limiting step of the oxidase reaction is preceded by a single step, i.e., proton binding. The schemes describing the order of proton attachment in the course of the above reactions are proposed.  相似文献   

15.
15N isotope effects in the nitro group and 18O isotope effects in the phenolic oxygen have been measured for the hydrolysis of ethyl p-nitrophenyl phosphate catalyzed by several metal ions. Co(III)-cyclen at pH 7, 50 degrees C, gave an 15N isotope effect of 0.12% and an 18O one of 2.23%, showing that P-O cleavage is rate limiting and the bond is approximately 50% broken in the transition state. The active catalyst is a dimer and the substrate is presumably coordinated to the open site of one Co(III), and is attacked by hydroxide coordinated to the other Co(III). Co(III)-tacn under the same conditions shows a similar 15N isotope effect (0.13%), but a smaller 18O one (0.8%). Zn(II)-cyclen at pH 8.5, 80 degrees C, gave an 15N isotope effect of 0.05% and an 18O one of 0.95%, suggesting an earlier transition state. The catalyst in this case is monomeric, and thus the substrate is coordinated to one position and attacked by a cis-coordinated hydroxide. Eu(III) at pH 6.5, 50 degrees C, shows a very large 15N isotope effect of 0.34% and a 1.6% 18O isotope effect. The large 15N isotope effect argues for a late transition state or Eu(III) interaction with the nitro group, and was also seen in Eu(III)-catalyzed hydrolysis of p-nitrophenyl phosphate.  相似文献   

16.
Saccharopine dehydrogenase [N6-(glutaryl-2)-L-lysine:NAD oxidoreductase (L-lysine forming)] catalyzes the final step in the alpha-aminoadipate pathway for lysine biosynthesis. It catalyzes the reversible pyridine nucleotide-dependent oxidative deamination of saccharopine to generate alpha-Kg and lysine using NAD+ as an oxidizing agent. The proton shuttle chemical mechanism is proposed on the basis of the pH dependence of kinetic parameters, dissociation constants for competitive inhibitors, and isotope effects. In the direction of lysine formation, once NAD+ and saccharopine bind, a group with a pKa of 6.2 accepts a proton from the secondary amine of saccharopine as it is oxidized. This protonated general base then does not participate in the reaction again until lysine is formed at the completion of the reaction. A general base with a pKa of 7.2 accepts a proton from H2O as it attacks the Schiff base carbon of saccharopine to form the carbinolamine intermediate. The same residue then serves as a general acid and donates a proton to the carbinolamine nitrogen to give the protonated carbinolamine. Collapse of the carbinolamine is then facilitated by the same group accepting a proton from the carbinolamine hydroxyl to generate alpha-Kg and lysine. The amine nitrogen is then protonated by the group that originally accepted a proton from the secondary amine of saccharopine, and products are released. In the reverse reaction direction, finite primary deuterium kinetic isotope effects were observed for all parameters with the exception of V2/K(NADH), consistent with a steady-state random mechanism and indicative of a contribution from hydride transfer to rate limitation. The pH dependence, as determined from the primary isotope effect on DV2 and D(V2/K(Lys)), suggests that a step other than hydride transfer becomes rate-limiting as the pH is increased. This step is likely protonation/deprotonation of the carbinolamine nitrogen formed as an intermediate in imine hydrolysis. The observed solvent isotope effect indicates that proton transfer also contributes to rate limitation. A concerted proton and hydride transfer is suggested by multiple substrate/solvent isotope effects, as well as a proton transfer in another step, likely hydrolysis of the carbinolamine. In agreement, dome-shaped proton inventories are observed for V2 and V2/K(Lys), suggesting that proton transfer exists in at least two sequential transition states.  相似文献   

17.
1. In the activity of the high-Mr beta-glucosidase A (beta-D-glucoside glucohydrolase, EC 3.2.1.21) obtained from culture filtrates of Botryodiplodia theobromae Pat. on o-nitrophenyl beta-D-glucopyranoside as substrate, both Vmax. and Km increased non-linearly with increasing concentration of glycerol, and the Vmax./Km(app.) ratio decreased non-linearly with increasing concentration of glycerol. 2. No increase in rate was observed with phenyl beta-D-glucopyranoside as substrate in the presence of up to 250 mM-glycerol, indicating that glucosylation is rate-limiting with this substrate. 3. With o-nitrophenyl beta-D-glucopyranoside, p-nitrophenyl beta-D-glucopyranoside and phenyl beta-D-glucopyranoside as substrates, kappa cat. values of 793.7 s-1, 62.8 s-1 and 5.4 s-1 respectively were calculated. 4. With o-nitrophenyl beta-D-glucopyranoside and phenyl beta-D-glucopyranoside as substrate, alpha-deuterium kinetic isotope effects of 1.9 +/- 0.03 and 1.01 +/- 0.01 respectively were found; in the presence of 200 mM-glycerol the values were 1.21 +/- 0.03 and 1.02 +/- 0.01 respectively. 5. In the presence of a large excess of o-nitrophenyl beta-D-glucopyranoside [( S] = 35.7 Km), the amount of o-nitrophenol and also of the transglucosylation product formed by beta-glucosidase action increased non-linearly, whereas that of glucose formed decreased non-linearly with increasing glycerol concentration. 6. All these results were found to fit the data calculated from rate equations derived on the basis of the proposed mechanism of enzyme action involving two ion-pair intermediates and a covalent alpha-D-glucosyl-enzyme in the reaction sequence [Umezurike (1987) Biochem. J. 241, 455-462].  相似文献   

18.
M S Matta  M E Andracki 《Biochemistry》1988,27(21):8000-8007
The specificity ratios kc/Km = k for subtilisin A catalyzed hydrolysis of five aryl esters of N-(methoxycarbonyl)-L-Phe (McPhe) were determined at pH 7.03 and its pD equivalent. The ratios are independent of the electronic properties of the leaving group substituent. Kinetic solvent isotope effects, Dk, increase from about 0.9 to 1.3 as leaving group ability decreases from p-nitrophenolate to p-methoxyphenolate. The k of N-(methoxycarbonyl)-L-phenylalanine p-nitrophenyl ester (NPE) with native enzyme exhibits a strong temperature dependence; delta H* = 87 +/- 3 kJ mol-1 and delta S* = 148 +/- 14 J K-1 mol-1 at 25 degrees C (H2O). The Dk with this substrate is 1.36 at 13.6 degrees C, declines to 0.89 at 25 degrees C, and then increases to 1.04 at 39.4 degrees C. Above neutral pH(D), with McPhe NPE as substrate, the dependence of k is for the dissociated form of a single base of pKapp = 7.38 +/- 0.03 in H2O and 7.67 +/- 0.03 in D2O. The pKapp values are apparently those of the uncomplexed native protein. By contrast, k of 3-phenylpropanoic acid (Prop) p-nitrophenyl ester exhibits a weaker temperature dependence; delta H* = 20 kJ mol-1 and delta S* = -90 J K-1 mol-1 (H2O) at 25 degrees C. The Dk are larger than those for McPhe NPE, decreasing from 1.99 at 20.5 degrees C to 1.74 at 46.1 degrees C. These results, combined with those of previous studies, are consistent with limitation of k by at least two processes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Z Y Zhang  R L Van Etten 《Biochemistry》1991,30(37):8954-8959
The kcat and Km values for the bovine heart low molecular weight phosphotyrosyl protein phosphatase catalyzed hydrolysis of 16 aryl phosphate monoesters and of five alkyl phosphate monoesters having the structure Ar(CH2)nOPO3H2 (n = 1-5) were measured at pH 5.0 and 37 degrees C. With the exception of alpha-naphthyl phosphate and 2-chlorophenyl phosphate, which are subject to steric effects, the values of kcat are effectively constant for the aryl phosphate monoesters. This is consistent with the catalysis being nucleophilic in nature, with the existence of a common covalent phosphoenzyme intermediate, and with the breakdown of this intermediate being rate-limiting. In contrast, kcat for the alkyl phosphate monoesters is much smaller and the rate-limiting step for these substrates is interpreted to be the phosphorylation of the enzyme. A single linear correlation is observed for a plot of log (kcat/Km) vs leaving group pKa for both classes of substrates at pH 5.0: log (kcat/Km) = -0.28pKa + 6.88 (n = 19, r = 0.89), indicating a uniform catalytic mechanism for the phosphorylation event. The small change in effective charge (-0.28) on the departing oxygen of the substrate is similar to that observed in the specific acid catalyzed hydrolysis of monophosphate monoanions (-0.27) and is consistent with a strong electrophilic interaction of the enzyme with this oxygen atom in the transition state. The D2O solvent isotope effect and proton inventory experiments indicate that only one proton is "in flight" in the transition state of the phosphorylation process and that this proton transfer is responsible for the reduction of effective charge on the leaving oxygen.  相似文献   

20.
The pH dependence of Vmax and Vmax/Km for hydrolysis of Dnp-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-NH2 at the Gly-Leu bond by porcine synovial collagenase and gelatinase was determined in the pH range 5-10. Both enzymes exhibited bell-shaped dependencies on pH for these two kinetic parameters, indicating that activity is dependent on at least two ionizable groups, one of which must be unprotonated and the other protonated. For collagenase, Vmax/Km data indicate that in the substrate-free enzyme, these groups have apparent pK values of 7.0 and 9.5, while the Vmax profile indicates similar pK values of 6.8 and 10.1 for the enzyme-substrate complex. The corresponding pH profiles of gelatinase were similar to those of collagenase, indicating the importance of groups with apparent pK values of 5.9 and 10.0 for the free enzyme and 5.9 and 11.1 for the enzyme-substrate complex. When these kinetic constants were determined in D2O using the peptide substrate, there was no significant effect on Vmax or Km for collagenase or Km for gelatinase. However, there was a deuterium isotope effect of approximately 1.5 on Vmax for gelatinase. These results indicate that a proton transfer step is not involved in the rate-limiting step for collagenase, but may be limiting with gelatinase. The Arrhenius activation energies for peptide bond hydrolysis of the synthetic peptide as well as the natural substrates were also determined for both enzymes. The activation energy (81 kcal) for hydrolysis of collagen by collagenase was nine times greater than that determined for the synthetic substrate (9.2 kcal). In contrast, the activation energy for hydrolysis of gelatin by gelatinase (26.3 kcal) was only 2.4 times greater than that for the synthetic substrate (11 kcal).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号