首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurotransmitters play an important role in larval metamorphosis in different groups of marine invertebrates. In this work, the role of dopamine and serotonin during metamorphosis of the ascidian Phallusia mammillata larvae was examined. By immunofluorescence experiments, dopamine was localized in some neurons of the central nervous system and in the adhesive papillae of the larvae. Dopamine and serotonin signaling was inhibited by means of antagonists of these neurotransmitters receptors (R(+)-SCH-23390, a D(1) antagonist; clozapine, a D(4) antagonist; WAY-100635, a 5-HT(1A) antagonist) and by sequestering the neurotransmitters with specific antibodies. Moreover, dopamine synthesis was inhibited by exposing 2-cell embryos to alpha-methyl-l-tyrosine. Dopamine depletion, obtained by these different approaches, caused early metamorphosis, while serotonin depletion delayed the onset of metamorphosis. The opposite effects were obtained using agonists of the neurotransmitters: lisuride, a D(2) agonist, inhibited metamorphosis, while DOI hydrochloride and 8-OH-DPAT HBr, two serotonin agonists, promoted it. So, it is possible to suppose that dopamine signaling delayed metamorphosis while serotonin signaling triggers it. We propose a mechanism by which these neurotransmitters may modulate the timing of metamorphosis in larvae.  相似文献   

2.
The subtype of beta-adrenergic receptors in melanophores of the marine gobies Tridentiger trigonocephalus and Chasmichthys gulosus was studied. Pigment of denervated melanophores in isolated, split caudal fins was preliminarily aggregated by incubating the specimens in a physiological saline containing 10 microM phentolamine and 30-100 microM verapamil or 2-10 nM melatonin, and the responses of the melanophores to a beta-adrenergic agonist added to the incubating medium were recorded photoelectrically. The beta-adrenergic agonists noradrenaline, adrenaline, isoproterenol, salbutamol and, dobutamine were all effective in evoking a dispersion of melanophore pigment in the presence of phentolamine and verapamil or melatonin. The pigment-dispersing effect of noradrenaline (beta 1-selective agonist) was inhibited by metoprolol (beta 1-selective antagonist), propranolol,- and butoxamine. Whereas, the effect of salbutamol (beta 2-selective agonist) was hardly inhibited by metoprolol, though it was considerably inhibited by propranolol and ICI-118551. It was estimated that beta 1- and beta 2-adrenergic receptors coexist at ratios of 8.6:91.4, in the melanophore of Tridentiger trigonocephalus, and 25:75, in the melanophore of Chasmichthys gulosus, through the analyses of Hofstee plots of the effects of the beta-adrenergic drugs. It was suggested that the relation between the pigment-dispersing effect of a beta-adrenergic agonist on the melanophores and the concentration of the drug follows mass action kinetics, when the effect is mainly caused by the activation of beta 2-adrenergic receptors of the melanophores. However, when it is mainly caused by the activation of beta 1-adrenergic receptors of the melanophores, the relation does not follow mass action kinetics.  相似文献   

3.
The cell cycle is strictly regulated during development and its regulation is essential for organ formation and developmental timing. Here we observed the pattern of DNA replication in swimming larvae of an ascidian, Ciona intestinalis. Usually, Ciona swimming larvae obtain competence for metamorphosis at about 4-5 h after hatching, and these competent larvae initiate metamorphosis soon after they adhere to substrate with their papillae. In these larvae, three major tissues (epidermis, endoderm and mesenchyme) showed extensive DNA replication with distinct pattern and timing, suggesting tissue-specific cell cycle regulation. However, DNA replication did not continue in aged larvae which kept swimming for several days, suggesting that the cell cycle is arrested in these larvae at a certain time to prevent further growth of adult organ rudiments until the initiation of metamorphosis. Inhibition of the cell cycle by aphidicolin during the larval stage affects only the speed of metamorphosis, and not the formation of adult organ rudiments or the timing of the initiation of metamorphosis. However, after the completion of tail resorption, DNA replication is necessary for further metamorphic events. Our data showed that DNA synthesis in the larval trunk is not directly associated with the organization of adult organs, but it contributes to the speed of metamorphosis after settlement.  相似文献   

4.
Following a stimulation with acetylcholine, the beta-adrenergic agonists adrenaline (A), noradrenaline (NA), isoproterenol (Iso) and salbutamol (Sal) induced a concentration-dependent decrease in the tone and (or) rate of amnion contraction with EC50 ISO < NA < A < Sal. Metaprolol, a specific beta 1-antagonist, induced a rightward shift in the dose-response curves of Iso, NA and A, whereas beta-antagonist butoxamine was ineffective. pA2 values for beta-antagonists were propranolol 8.3, metoprolol 7.0, butoxamine 5.6. EC50 values of alpha-adrenergic agonists form a sequence: clonidine < NA < methoxamine < phenylephrine. Specific alpha-antagonists yohimbine and idazoxan were found to antagonise competitively the effects of NA. The data obtained characterize the adrenergic receptors mediating stimulation of amniotic contractile activity as alpha 2-adrenergic receptors. Inhibition of contractile receptors in amnion is mainly mediated by beta 1-adrenergic receptor activation.  相似文献   

5.
Metamorphosis in the ascidian Ciona intestinalis is a very complex process which converts a swimming tadpole to an adult. The process involves reorganisation of the body plan and a remarkable regression of the tail, which is controlled by caspase-dependent apoptosis. However, the endogenous signals triggering apoptosis and metamorphosis are little explored. Herein, we report evidence that nitric oxide (NO) regulates tail regression in a dose-dependent manner, acting on caspase-dependent apoptosis. An increase or decrease of NO levels resulted in a delay or acceleration of tail resorption, without affecting subsequent juvenile development. A similar hastening effect was induced by suppression of cGMP-dependent NO signalling. Inhibition of NO production resulted in an increase in caspase-3-like activity with respect to untreated larvae. Detection of endogenously activated caspase-3 and NO revealed the existence of a spatial correlation between the diminution of the NO signal and caspase-3 activation during the last phases of tail regression. Real-time PCR during development, from early larva to early juveniles, showed that during all stages examined, NO synthase (NOS) is always more expressed than arginase and it reaches the maximum value at late larva, the stage immediately preceding tail resorption. The spatial expression pattern of NOS is very dynamic, moving rapidly along the body in very few hours, from the anterior part of the trunk to central nervous system (CNS), tail and new forming juvenile digestive organs. NO detection revealed free diffusion from the production sites to other cellular districts. Overall, the results of this study provide a new important link between NO signalling and apoptosis during metamorphosis in C. intestinalis and hint at novel roles for the NO signalling system in other developmental and metamorphosis-related events preceding and following tail resorption.  相似文献   

6.
Two apoptotic events take place during embryonic development of Ciona intestinalis. The first concerns extra-embryonic cells and precedes hatching. The second controls tail regression at metamorphosis, occurs through a polarized wave originating from tail extremity, and is caspase dependent. This was shown by: (1) in vivo incorporation of a fluorescent marker of caspase activation in different cell types of the tail; (2) detection of an activated form of caspase 3-like protein by western blotting; and (3) failure of 30% of larvae to undergo metamorphosis after treatment of fertilized eggs with a pan-caspase inhibitor. In addition, Ciona embryos express a single ERK protein, specifically phosphorylated at metamorphosis. ERK activation was shown to be located in cells of the tail. Addition of MEK inhibitor in the culture medium prevented ERK activation and metamorphosis. In silico analysis of Ciona genome pointed to 15 caspases with high homology with humans, and a single ERK gene with high homology to both mammalian ERK1 and ERK2. It is concluded that the sequence of events leading to metamorphosis includes ERK phosphorylation followed by caspase-dependent apoptosis and tail regression.  相似文献   

7.
Evidence that leptin regulates bone turnover in part through a central nervous system (CNS)/beta-adrenergic system relay has driven attention towards the potential therapeutic benefits of beta-adrenergic blockade to improve bone mass and strength. beta2- adrenergic receptor-mediated signaling in osteoblasts inhibits bone formation and triggers RANKL-mediated osteoclastogenesis and bone resorption. Mouse models of adrenergic-deficiency, particularly the mouse lacking the beta2-adrenergic receptor, have increased bone mass, more specifically increased trabecular bone volume. In turn, beta-blockers, such as propranolol, were reported to inhibit ovariectomy-induced bone loss. In contrast, a number of experiments in mice and rats suggest that inhibition of beta-adrenergic receptor-mediated signaling does not improve, and could actually be detrimental, for bone mass and microstructure. In humans, epidemiological observations suggested that users of beta-blockers have higher bone mineral density (BMD) and/or a reduced risk of fractures, yet not all studies were concordant. Here we review the evidence for a role of the adrenergic system in the regulation of bone metabolism in vitro and in vivo and provide some new evidence for a dual role of beta-adrenergic receptors 1 and 2 on bone turnover. Furthermore, we will examine the similarities and disparities that may exist in the effects of beta-adrenergic and PTH stimulation on bone metabolism.  相似文献   

8.
9.
Antibodies against the C-terminus of the beta1-adrenergic receptor were used for staining cultured astrocytes from the rat cerebral cortex. Immunoreactivity was found to be localized exclusively to an intracellular organelle structure similar to the Golgi complex, with no staining of the plasma membrane. The astrocytes stained positive with BODIPY CGP 12177, a FITC-conjugated beta-adrenergic receptor agonist, and this staining was blocked by the beta1-adrenergic antagonist atenolol, indicating that these receptors are expressed on the surface of the astrocytes. The presence of functional plasma membrane beta1-adrenergic receptors was further verified using microspectrofluorometry for measurements of intracellular calcium changes upon beta-adrenergic agonist stimulation. Intracellular immunoreactivity confined to the organelles was also found in astrocytes from mixed astroglial-neuronal cultures. In contrast, the neurons in these cultures showed a strong labeling of the cell bodies by the beta1-adrenergic receptor antibodies. Thus, the beta1-adrenergic receptor antibody, which stains the cell bodies of the neurons, recognizes the astroglial receptors only intracellularly, although functional beta1-adrenergic receptors are present on the astroglial surface. Taken together, these data suggest that the beta1-adrenergic receptors observed intracellularly might be processed on their passage to the surface to a modified form of the final plasma membrane receptor, which is not recognized by the antibodies.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) synthesis in astrocytes induced by noradrenaline (NA) is a receptor-mediated process utilizing two parallel adrenergic pathways: beta1/beta2-adrenergic/cAMP and the novel alpha1-adrenergic/PKC pathway. BDNF is produced by astrocytes, in addition to neurons, and the noradrenergic system plays a role in controlling BDNF synthesis. Since astrocytes express various subtypes of alpha- and beta-adrenergic receptors that have the potential to be activated by synaptically released NA, we focused our present study on the mediatory role of adrenergic receptors in the noradrenergic up-regulation of BDNF synthesis in cultured neonatal rat cortical astrocytes. NA (1 microM) elevates BDNF levels by four-fold after 6 h of incubation. Its stimulation was partly inhibited by either the beta1-adrenergic antagonist atenolol, the beta2-adrenergic antagonist ICI 118,551, or by the alpha1-adrenergic antagonist prazosin, while the alpha2-adrenergic antagonist yohimbine showed no effect. BDNF levels in astrocytes were increased by the specific beta1-adrenergic agonist dobutamine and the beta2-adrenergic agonist salbutamol, as well as by adenylate cyclase activation (by forskolin) and PKA activation (by dBcAMP). However, none of the tested agonists or mediators of the intracellular beta-adrenergic pathways were able to reach the level of NA's stimulatory effect. BDNF cellular levels were also elevated by the alpha1-adrenergic agonist methoxamine, but not by the alpha2-adrenergic agonist clonidine. The increase in intracellular Ca2+ by ionophore A23187 showed no effect, whereas PKC activation by phorbol 12-myristate 13-acetate (TPA) potently stimulated BDNF levels in the cells. The methoxamine-stimulated BDNF synthesis was inhibited by desensitizing pretreatment with TPA, indicating that the alpha1-stimulation was mediated via PKC activation. In conclusion, the synthesis of astrocytic BDNF stimulated by noradrenergic neuronal activity is an adaptable process using multiple types (alpha1 and beta1/beta2) of adrenergic receptor activation.  相似文献   

11.
12.
α(1B)-Adrenergic receptors mediate many of the actions of the natural catecholamines, adrenaline and noradrenaline. They belong to the seven transmembrane domains G protein-coupled receptor superfamily and exert their actions mainly through activation of Gq proteins and phosphoinositide turnover/calcium signaling. Many hormones and neurotransmitters are capable of inducing α(1B)-adrenergic receptor phosphorylation and desensitization; among them: adrenaline and noradrenaline, phorbol esters, endothelin-I, bradykinin, lysophosphatidic acid, insulin, EGF, PDGF, IGF-I, TGF-β, and estrogens. Key protein kinases for these effects are G protein coupled receptor kinases and protein kinase C. The lipid/protein kinase, phosphoinositide-3 kinase also appears to play a key role, acting upstream of protein kinase C. In addition to the agents employed for cells stimulation, we observed that paracrine/autocrine mediators also participate; these processes include EGF transactivation and sphingosine-1-phosphate production and action. The complex regulation of these receptors unlocks opportunities for therapeutic intervention.  相似文献   

13.
Treatment of larvae of the ascidians Boltenia villosa (Family: Pyuridae) and Cnemidocarpa finmarkiensis (Family: Styelidae) with drugs that inhibit the function of the molecular chaperone HSP90 increased the frequency of tail resorption, the primary morphogenetic event of metamorphosis. If treatment was initiated at hatching, metamorphic events subsequent to tail resorption failed to occur, indicating an ongoing role for HSP90 during morphogenesis. Removal of tails from heads of mature, but not newly hatched larvae, induced metamorphosis of the head. Decapitation experiments indicate that the capacity of tails to shorten in response to inhibition of HSP90 function requires communication with heads. To identify candidate proteins with which HSP90 may interact to regulate metamorphosis, we noted that in mammalian cells, nitric oxide synthase (NOS) interacts with HSP90 and its activity is sensitive to drugs that inhibit HSP90 function. In addition, nitric oxide (NO) signaling in the marine snail Ilyanassa obsoleta is an important regulator of metamorphosis. Inhibition of NOS activity in these ascidian larvae with L-NAME increased the frequency of metamorphosis, consistent with a putative interaction of NOS and HSP90. NOS is present in tail muscle cells, implicating them as targets for the drug treatments, consistent with the decapitation experiments. Inhibition of soluble guanylyl cyclase, the most common effector of NO signaling, also increased the frequency of metamorphosis. In contrast to treatment with anti-HSP90 drugs, metamorphosis induced with L-NAME or ODQ was complete. The results presented suggest that an HSP90-dependent, NO-based regulatory mechanism localized in tails represses ascidian metamorphosis. We discuss these results in relation to the induction of ascidian metamorphosis by several unrelated agents.  相似文献   

14.
The rapid amplification of beta-adrenergic receptor signaling involves the sequential activation of multiple signaling molecules ranging from the receptor to adenylyl cyclase. The prevailing view of the agonist-induced interaction between signaling molecules is based on random collisions between proteins that diffuse freely in the plasma membrane. The recent identification of G protein alpha- and betagamma-subunits in caveolae and their functional interaction with caveolin suggests that caveolae may participate in G protein-coupled signaling. We have investigated the potential interaction of beta-adrenergic receptors with caveolin under resting conditions. beta1- and beta2-adrenergic receptors were recombinantly overexpressed in COS-7 cells. Caveolae were isolated using the detergent-free sucrose gradient centrifugation method. beta1- and beta2-adrenergic receptors were localized in the same gradient fractions as caveolin, where Gsalpha- and betagamma-subunits were detected as well. Immunofluorescence microscopy demonstrated the colocalization of beta-adrenergic receptors with caveolin, indicating a nonrandom distribution of beta-adrenergic receptors in the plasma membrane. Using polyhistidine-tagged recombinant proteins, beta-adrenergic receptors were copurified with caveolin, suggesting that they were physically bound. Our results suggest that, in addition to clathrin-coated pits, caveolae may act as another plasma membrane microdomain to compartmentalize beta-adrenergic receptors.  相似文献   

15.
In ascidians, the events of metamorphosis transform the non-feeding, mobile tadpole larva into a filter-feeding, fixed juvenile, and the process involves rearrangements of cells, two organs and physiological changes. Differential screening was used to isolate two genes that are not expressed in swimming larvae but are expressed immediately after the initiation of metamorphosis in Ciona intestinalis. One of the genes, Ci-meta1, encodes a polypeptide with a putative secretion signal sequence, 6 epidermal growth factor (EGF)-like repeats and 13 calcium-binding EGF-like repeats. The gene begins to be expressed immediately after the beginning of metamorphosis in the adhesive organ and is likely to be associated with the signal response for metamorphosis. Another gene named Ci-meta2 encodes a protein with a putative secretion signal and three thrombospondin type-1 repeats. Ci-meta2 gene expression begins at the larval stage and is upregulated in the metamorphosing juveniles. Ci-meta2 expression is found in three regions; the adhesive organ which is also associated with settlement, the neck region between the trunk and the tail of the larva which is associated with tail resorption, and dorsal regions of the trunk which correspond to the location of the siphon primordium. This gene may be involved in the dynamic arrangement of cells during ascidian metamorphosis.  相似文献   

16.
3,4-Dihydroxyphenylethylamine (dopamine) and beta-adrenergic receptor agonists and antagonists were assessed for their effects on cyclic AMP accumulation in human astrocytoma derived clone D384 cells. Dopamine, SKF 38393, and 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene increased cyclic AMP content with Ka values of 2.0, 0.2, and 1.6 microM. The D1-selective antagonists SCH 23390 (Ki, 1.2 nM) and SKF 83566 (Ki, 0.8 nM) were over 5,000-fold more potent than the D2-selective antagonist domperidone (Ki, 6.7 microM) at inhibiting dopamine stimulation of cyclic AMP formation. SCH 23388 (Ki, 560 nM; the S-enantiomer of SCH 23390) was 400-fold less potent than SCH 23390. Isoprenaline, adrenaline, salbutamol, and noradrenaline increased cyclic AMP content with Ka values of 0.13, 0.12, 0.22, and 7.60 microM. The beta 2-selective antagonist ICI 118,551 (Ki,0.8 nM) was almost 8,000-fold more potent than the beta 1-selective antagonist practolol (Ki, 5.9 microM) at inhibiting isoprenaline stimulated cyclic AMP accumulation. These results demonstrate that D384 cells express D1-dopamine and beta 2-adrenergic receptors linked to adenylate cyclase. Furthermore, the dopamine receptor expressed by D384 cells exhibits a pharmacological profile typical of a mammalian striatal D1-receptor and therefore the use of this clone represents another approach to studying central D1-receptors.  相似文献   

17.
Functional integrity of desensitized beta-adrenergic receptors   总被引:7,自引:0,他引:7  
The adenylate cyclase-coupled beta 2-adrenergic receptor of the frog erythrocyte has served as a useful model system for elucidating the mechanisms of catecholamine-induced densensitization. In this system, it has been previously demonstrated that agonist-induced refractoriness is associated with sequestration of the beta-adrenergic receptors in vesicles away from the cell surface and from their effector unit, the adenylate cyclase system (Stadel, J.M., Strulovici, B., Nambi, P., Lavin, T.N., Briggs, M.M., Caron, M.G., and Lefkowitz, R.J. (1983) J. Biol. Chem. 258, 3032-3038). These internalized beta-adrenergic receptors appear to be structurally intact as assessed by photoaffinity labeling, but their functional status has previously been unknown. In the present studies, we sought to assess the functionality of the sequestered vesicular receptors by fusing them to Xenopus laevis erythrocytes. This cell is suitable for such studies, since it has almost no detectable beta-adrenergic receptor or catecholamine-sensitive adenylate cyclase, but contains prostaglandin E1-stimulable adenylate cyclase. Fusion of beta-adrenergic receptor-containing vesicles from desensitized frog erythrocytes with X. laevis erythrocytes results in a 30-fold stimulation of the hybrid adenylate cyclase by the beta-adrenergic agonist isoproterenol. This effect was entirely blocked by the beta-antagonist propranolol. The catecholamine-sensitive adenylate cyclase activity established in the vesicle-Xenopus hybrids showed the characteristic agonist potency series of the donor frog erythrocyte beta 2-adrenergic receptor. Fusion of vesicles from desensitized frog erythrocytes in which the beta-adrenergic receptors had been inactivated with the group specific reagent dicyclohexylcarbodiimide, or of vesicles derived from control frog erythrocytes, which contain low amounts of beta-adrenergic receptor, did not establish catecholamine-sensitive adenylate cyclase activity in the hybrids. These data demonstrate that beta-adrenergic receptors internalized during desensitization retain their functionality when recoupled to an adenylate cyclase system from a different source. The functional uncoupling of these receptors during desensitization is thus more likely due to their sequestration away from the other components of the adenylate cyclase than to any alterations in the receptors themselves.  相似文献   

18.
In most ascidians, metamorphosis of tadpole-like swimming larvae is accompanied by dynamic changes in their shape to form sessile adults. The mechanisms underlying ascidian metamorphosis have been debated for a long time. Although recent molecular studies have revealed the presence of various molecules involving in this process, the basic mechanism of the metamorphic events is still unclear. For example, it has not been solved whether all metamorphic events are organized by the same single pathway or by multiple, independent pathways. In the present study, we approached this question using the ascidian Ciona intestinalis. When the papillae and preoral lobes of the larvae were cut off, the papillae-cut larvae initiated certain trunk metamorphic events such as the formation of an ampulla, body axis rotation and adult organ growth without other metamorphic events. This observation indicates that metamorphic events can be divided into at least two groups, events initiated in the papillae-cut larva and events not initiated in this larva. In addition to this observation, we have isolated a novel mutant, tail regression failed (trf), which shows similar phenotypes to those of papillae-cut larvae. The phenotypes of trf mutants are basically different from those of swimming juvenile mutants (Sasakura, Y., Nakashima, K., Awazu, S., Matsuoka, T., Nakayama, A., Azuma, J., Satoh, N., 2005. Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis. Proc. Natl. Acad. Sci. U. S. A. 102, 15134-15139.), which also show abnormal metamorphosis. These findings suggest a model by which ascidian metamorphic events can be classified into four groups initiated by different pathways.  相似文献   

19.
A peripheral nervous system cell line RT4-B, established by Imada and Sueoka (Dev. Biol., 66:97-108, 1978), was shown to respond to serotonin [5-hydroxytryptamine (5-HT)] and catecholamines. 5-HT induced a small and transient increase in cytosolic free Ca2+ concentration ([Ca2+]i) in the RT4-B cells. The increase was effectively blocked by 5-HT2 receptor antagonists (spiperone, ritanserin and mianserin), but not by a 5-HT3 receptor antagonist (MDL72222), or a alpha 1-adrenergic receptor antagonist (prazosin), indicating that RT4-B cells express 5-HT2 receptors. On the other hand, catecholamines increased cyclic AMP production by RT4-B. The order of potency for stimulating cyclic AMP synthesis was isoproterenol greater than epinephrine much greater than norepinephrine much greater than dopamine, and the stimulation was effectively inhibited by the nonselective beta-adrenergic receptor antagonist propranolol, but not by the beta 1-adrenergic receptor antagonist atenolol, suggesting that RT4-B cells express beta 2-adrenergic receptors. The differentiating agent N6,2'-O-dibutyryladenosine 3',5'-monophosphate (dibutyryl-cAMP) enhanced the 5-HT-induced [Ca2+]i increase, but not the catecholamine-induced cyclic AMP production. The increase in the 5-HT response paralleled the increase in the density of 5-HT2 receptors. n-Butyric acid (2 mM) and 8-bromoadenosine 3',5'-monophosphate (1 mM) also increased the 5-HT response, and the sum of these increases was nearly equal to that induced by dibutyryl-cAMP. These results indicate that RT4-B is a novel model cell line for the study of 5-HT2 and beta 2-adrenergic receptors and their second messenger responses and for the analysis of the mechanisms how 5-HT2 receptor gene expression is controlled.  相似文献   

20.
The recently cloned human beta-adrenergic cDNA and several mutated forms have been expressed in Xenopus laevis oocytes by injection of RNA made from the cDNA under the control of the bacteriophage SP6 promoter. The cDNA and gene of the beta 2-adrenergic receptor possess the unusual feature of having a second upstream ATG (-101 base pairs) and a 19-codon open reading frame 5' to the initiator methionine codon of the receptor (Kobilka, B. K., Dixon, R. A. F., Frielle, T., Dohlman, H. G., Bolanowski, M., Sigal, I. S., Yang-Feng, T. L., Francke, U., Caron, M. G., and Lefkowitz, R. J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 46-50). RNA lacking this upstream AUG and open reading frame was translated approximately 10-fold more efficiently both in an in vitro rabbit reticulocyte system and in oocytes. Injected oocytes but not water injected controls expressed typical beta 2-adrenergic receptors as assessed by ligand binding (450 fmol/mg membrane protein) and catecholamine-stimulated adenylate cyclase (approximately 20 fold). Moreover, these receptors displayed typical agonist-induced homologous desensitization when oocytes were incubated with isoproterenol at room temperature for 3-24 h. Among a series of mutations, truncations of the membrane-anchored core of the receptor eliminated receptor binding and cyclase stimulating activity. In contrast, disruption of one of the cAMP-dependent protein kinase phosphorylation sites or removal of the serine/threonine-rich carboxyl terminus had little or no effect on these functions or on the extent of agonist-induced desensitization relative to that observed with native receptor. These studies validate the beta 2-adrenergic nature of the cloned human beta-adrenergic cDNA, document the utility of the Xenopus oocyte system for studying functional and regulatory properties of receptors coupled to adenylate cyclase, and suggest the possibility that elements in the 5' untranslated region of the beta 2-adrenergic receptor RNA may regulate its translation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号