首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In multicellular organisms, cells cooperate within a well-defined developmental program. Cancer is a breakdown of such cooperation: cells mutate to phenotypes of uncoordinated proliferation. We study basic principles of the architecture of solid tissues that influence the rate of cancer initiation. In particular, we explore how somatic selection acts to prevent or to promote cancer. Cells with mutations in oncogenes or tumor suppressor genes often have increased proliferation rates. Somatic selection increases their abundance and thus enhances the risk of cancer. Many potentially harmful mutations, however, increase the probability of triggering apoptosis and, hence, initially lead to cells with reduced net proliferation rates. Such cells are eliminated by somatic selection, which therefore also works to reduce the risk of cancer. We show that a tissue organization into small compartments avoids the rapid spread of mutations in oncogenes and tumor suppressor genes, but promotes genetic instability. In small compartments, genetic instability, which confers a selective disadvantage for the cell, can spread by random drift. If both deleterious and advantageous mutations participate in tumor initiation, then we find an intermediate optimum for the compartment size.  相似文献   

2.
Cancer emerges when a single cell receives multiple mutations. For example, the inactivation of both alleles of a tumor suppressor gene (TSG) can imply a net reproductive advantage of the cell and might lead to clonal expansion. In this paper, we calculate the probability as a function of time that a population of cells has generated at least one cell with two inactivated alleles of a TSG. Different kinetic laws hold for small and large populations. The inactivation of the first allele can either be neutral or lead to a selective advantage or disadvantage. The inactivation of the first and of the second allele can occur at equal or different rates. Our calculations provide insights into basic aspects of population genetics determining cancer initiation and progression.  相似文献   

3.
Tissues of long-lived multicellular organisms have to maintain a constant number of functioning cells for many years. This process is called homeostasis. Homeostasis breaks down when cells emerge with mutations in tumor suppressor genes or oncogenes. Such mutated cells can have increased net rates of proliferation, which is increased somatic fitness. We show that the best protection against such mutations is achieved when homeostasis is regulated locally via small compartments. Small compartments, on the other hand, allow the accumulation of cells with reduced somatic fitness. Cells with mutations conferring genetic instability normally have a reduced somatic fitness because they have an increased probability of producing deleterious mutations or triggering apoptosis. Thus, small compartments protect against mutations in tumor suppressor genes or oncogenes but promote the emergence of genetic instability.  相似文献   

4.
Cancer is traditionally viewed as a disease of abnormal cell proliferation controlled by a series of mutations. Mutations typically affect oncogenes or tumor suppressor genes thereby conferring growth advantage. Genomic instability facilitates mutation accumulation. Recent findings demonstrate that activation of oncogenes and inactivation of tumor suppressor genes, as well as genomic instability, can be achieved by epigenetic mechanisms as well. Unlike genetic mutations, epimutations do not change the base sequence of DNA and are potentially reversible. Similar to genetic mutations, epimutations are associated with specific patterns of gene expression that are heritable through cell divisions. Knudson's hypothesis postulates that inactivation of tumor suppressor genes requires two hits, with the first hit occurring either in somatic cells (sporadic cancer) or in the germline (hereditary cancer) and the second one always being somatic. Studies on hereditary and sporadic forms of colorectal carcinoma have made it evident that, apart from genetic mutations, epimutations may serve as either hit or both. Furthermore, recent next-generation sequencing studies show that epigenetic genes, such as those encoding histone modifying enzymes and subunits for chromatin remodeling systems, are themselves frequent targets of somatic mutations in cancer and can act like tumor suppressor genes or oncogenes. This review discusses genetic vs. epigenetic origin of cancer, including cancer susceptibility, in light of recent discoveries. Situations in which mutations and epimutations occur to serve analogous purposes are highlighted.  相似文献   

5.
Haeno H  Iwasa Y  Michor F 《Genetics》2007,177(4):2209-2221
Knudson's two-hit hypothesis proposes that two genetic changes in the RB1 gene are the rate-limiting steps of retinoblastoma. In the inherited form of this childhood eye cancer, only one mutation emerges during somatic cell divisions while in sporadic cases, both alleles of RB1 are inactivated in the growing retina. Sporadic retinoblastoma serves as an example of a situation in which two mutations are accumulated during clonal expansion of a cell population. Other examples include evolution of resistance against anticancer combination therapy and inactivation of both alleles of a metastasis-suppressor gene during tumor growth. In this article, we consider an exponentially growing population of cells that must evolve two mutations to (i) evade treatment, (ii) make a step toward (invasive) cancer, or (iii) display a disease phenotype. We calculate the probability that the population has evolved both mutations before it reaches a certain size. This probability depends on the rates at which the two mutations arise; the growth and death rates of cells carrying none, one, or both mutations; and the size the cell population reaches. Further, we develop a formula for the expected number of cells carrying both mutations when the final population size is reached. Our theory establishes an understanding of the dynamics of two mutations during clonal expansion.  相似文献   

6.
Cancer results if regulatory mechanisms of cell birth and death are disrupted. Colorectal tumorigenesis is initiated by somatic or inherited mutations in the APC tumor suppressor gene pathway. Several additional genetic hits in other tumor suppressor genes and oncogenes drive the progression from polyps to malignant, invasive cancer. The majority of colorectal cancers present chromosomal instability, CIN, which is caused by mutations in genes that are required to maintain chromosomal stability. A major question in cancer genetics is whether CIN is an early event and thus a driving force of tumor progression. We present a new mathematical model of colon cancer initiation assuming a linear flow from stem cells to differentiated cells to apoptosis. We study the consequences of mutations in different cell types and calculate the conditions for CIN to precede APC inactivation. We find that early emergence of CIN is very likely in colorectal tumorigenesis.  相似文献   

7.
Cancer results if regulatory mechanisms of cell birth and death are disrupted. Colorectal tumorigenesis is initiated by somatic or inherited mutations in the APC tumor suppressor gene pathway. Several additional genetic hits in other tumor suppressor genes and oncogenes drive the progression from polyps to malignant, invasive cancer. The majority of colorectal cancers present chromosomal instability, CIN, which is caused by mutations in genes that are required to maintain chromosomal stability. A major question in cancer genetics is whether CIN is an early event and thus a driving force of tumor progression. We present a new mathematical model of colon cancer initiation assuming a linear flow from stem cells to differentiated cells to apoptosis. We study the consequences of mutations in different cell types and calculate the conditions for CIN to precede APC inactivation. We find that early emergence of CIN is very likely in colorectal tumorigenesis.  相似文献   

8.
Aging-related carcinogenesis has been attributed to inherent genetic instability, which manifests in a multistep fashion by activation of oncogenes and inactivation of tumor suppressor genes. Malignant brain tumor cells display multiple-characteristic acquired genetic abnormalities in oncogenes and tumor suppressor genes. Age-specific malignant brain tumor mortality rates in the United States from 1962 to 1988 were interpreted by longitudinal Gompertzian analysis. Utilizing a thermodynamic perspective of the Strehler-Mildvan modification of the Gompertz relationship between mortality and aging, a measure of the rate of increase in informational entropy for those genetic factors involved in the carcinogenesis of malignant brain tumor was determined. Aging-related carcinogenesis can be viewed as a natural consequence of increasing informational entropy of the genome.  相似文献   

9.
Cancers have a clonal origin, yet their chromosomes and genes are non-clonal or heterogeneous due to an inherent genomic instability. However, the cause of this genomic instability is still debated. One theory postulates that mutations in genes that are involved in DNA repair and in chromosome segregation are the primary causes of this instability. But there are neither consistent correlations nor is there functional proof for the mutation theory. Here we propose aneuploidy, an abnormal number of chromosomes, as the primary cause of the genomic instability of neoplastic and preneoplastic cells. Aneuploidy destabilizes the karyotype and thus the species, independent of mutation, because it corrupts highly conserved teams of proteins that segregate, synthesize and repair chromosomes. Likewise it destabilizes genes. The theory explains 12 of 12 specific features of genomic instability: (1) Mutagenic and non-mutagenic carcinogens induce genomic instability via aneuploidy. (2) Aneuploidy coincides and segregates with preneoplastic and neoplastic genomic instability. (3) Phenotypes of genomically unstable cells change and even revert at high rates, compared to those of diploid cells, via aneuploidy-catalyzed chromosome rearrangements. (4) Idiosyncratic features of cancers, like immortality and drug-resistance, derive from subspecies within the 'polyphyletic' diversity of individual cancers. (5) Instability is proportional to the degree of aneuploidy. (6) Multilateral chromosomal and genetic instabilities typically coincide, because aneuploidy corrupts multiple targets simultaneously. (7) Gene mutation is common, but neither consistent nor clonal in cancer cells as predicted by the aneuploidy theory. (8) Cancers fall into a near-diploid (2 N) class of low instability, a near 1.5 N class of high instability, or a near 3 N class of very high instability, because aneuploid fitness is maximized either by minimally unstable karyotypes or by maximally unstable, but adaptable karyotypes. (9) Dominant phenotypes, because of aneuploid genotypes. (10) Uncertain developmental phenotypes of Down and other aneuploidy syndromes, because supply-sensitive, diploid programs are destabilized by products from aneuploid genes supplied at abnormal concentrations; the maternal age-bias for Down's would reflect age-dependent defects of the spindle apparatus of oocytes. (11) Non-selective phenotypes, e.g., metastasis, because of linkage with selective phenotypes on the same chromosomes. (12) The target, induction of genomic instability, is several 1000-fold bigger than gene mutation, because it is entire chromosomes. The mutation theory explains only a few of these features. We conclude that the transition of stable diploid to unstable aneuploid cell species is the primary cause of preneoplastic and neoplastic genomic instability and of cancer, and that mutations are secondary.  相似文献   

10.
Blagosklonny MV 《FEBS letters》2001,506(3):169-172
Carcinogens induce carcinogen-specific genetic instability (defects in DNA repair). According to the 'direct-selection' model, defects in DNA repair per se provide an immediate growth advantage. According to the 'associated-selection' model, carcinogens merely select for cells with adaptive mutations. Like any mutations, adaptive mutations occur predominantly in genetically unstable cells. The 'associated-selection' model predicts that carcinogen-driven selection minimizes cytotoxic but maximizes mutagenic effects of carcinogens. A purely mutagenic (neither cytotoxic, nor cytostatic) environment will favor effective DNA repair, whereas any growth-limiting conditions (telomerase deficiency, anticancer drugs) will select for genetically unstable cells. Genetic instability is a postmark of selective pressure rather than a hallmark of cancer per se. Once selected, genetic instability facilitates the development of resistance to any other growth-limiting conditions. As an example, a putative link between prior exposure to carcinogens and the ability to develop a telomerase-independent growth is discussed.  相似文献   

11.
In recent decades we have been given insight into the process that transforms a normal cell into a malignant cancer cell. It has been recognised that malignant transformation occurs through successive mutations in specific cellular genes, leading to the activation of oncogenes and inactivation of tumor suppressor genes. The further study of these genes has generated much of its excitement from the convergence of experiments addressing the genetic basis of cancer, together with cellular pathways that normally control important cellular regulatory programmes. In the present review the context in which oncogenes such as proliferation, cell death/apoptosis, differentiation and senescence will be described, as well as how these cellular programmes become deregulated in cancer due to mutations.  相似文献   

12.
The spontaneous and induced frequencies of visible mutations by N-nitroso-N-ethylurea in male cells of Drosophila melanogaster genetically unstable mutator strain have been investigated. The spontaneous and induced by N-nitroso-N-ethylurea genetic instability in mutator strain have similar manifestation, that evidently testifies the existence of general mechanisms of the appearance of unstable mutations, namely the transpositions of the mobile genetic elements.  相似文献   

13.
Tumors arise through waves of genetic alterations and clonal expansion that allow tumor cells to acquire cancer hallmarks, such as genome instability and immune evasion. Recent genomic analyses showed that the vast majority of cancer driver genes are mutated in a tissue-dependent manner, that is, are altered in some cancers but not others. Often the tumor type also affects the likelihood of therapy response. What is the origin of tissue specificity in cancer? Recent studies suggest that both cell-intrinsic and cell-extrinsic factors play a role. On one hand, cell type–specific wiring of the cell signaling network determines the outcome of cancer driver gene mutations. On the other hand, the tumor cells’ exposure to tissue-specific microenvironments (e.g. immune cells) also contributes to shape the tissue specificity of driver genes and of therapy response. In the future, a more complete understanding of tissue specificity in cancer may inform methods to better predict and improve therapeutic outcomes.  相似文献   

14.
DNA mismatch repair,microsatellite instability and cancer   总被引:2,自引:0,他引:2  
Mismatch (MMR) repair system plays a significant role in restoration of stability in the genome. Mutations in mismatch repair genes hamper their activity thus bring about a defect in mismatch repair (MMR) mechanism thereby conferring instability in the microsatellite sequences of both the coding and non-coding regions of the genome. Mutated mismatch repair genes result in the expansion or contraction of microsatellite sequence and confer microsatellite unstable or replication error positive phenotype. Hypermethylation of promoter regions of some of the MMR genes also causes inactivation of these genes and thus contribute to MSI. Microsatellite instability is an indicator of MMR deficiency and is a prime cause of varied tumorogenesis.  相似文献   

15.
16.
The ataxia telangiectasia mutated (ATM) kinase and H2AX histone tumor suppressor proteins are each critical for maintenance of cellular genomic stability and suppression of lymphomas harboring clonal translocations. ATM is the predominant kinase that phosphorylates H2AX in chromatin around DNA double-strand breaks, including along lymphocyte Ag receptor loci cleaved during V(D)J recombination. However, combined germline inactivation of Atm and H2ax in mice causes early embryonic lethality associated with substantial cellular genomic instability, indicating that ATM and H2AX exhibit nonredundant functions in embryonic cells. To evaluate potential nonredundant roles of ATM and H2AX in somatic cells, we generated and analyzed Atm-deficient mice with conditional deletion of H2ax in αβ T-lineage lymphocytes. Combined Atm/H2ax inactivation starting in early-stage CD4(-)/CD8(-) thymocytes resulted in lower numbers of later-stage CD4(+)/CD8(+) thymocytes, but led to no discernible V(D)J recombination defect in G1 phase cells beyond that observed in Atm-deficient cells. H2ax deletion in Atm-deficient thymocytes also did not affect the incidence or mortality of mice from thymic lymphomas with clonal chromosome 14 (TCRα/δ) translocations. Yet, in vitro-stimulated Atm/H2ax-deficient splenic αβ T cells exhibited a higher frequency of genomic instability, including radial chromosome translocations and TCRβ translocations, compared with cells lacking Atm or H2ax. Collectively, our data demonstrate that both redundant and nonredundant functions of ATM and H2AX are required for normal recombination of TCR loci, proliferative expansion of developing thymocytes, and maintenance of genomic stability in cycling αβ T-lineage cells.  相似文献   

17.
Many cancers are characterized by a high degree of aneuploidy, which isbelieved to be a result of chromosomal instability (CIN). The precise role of CIN incancer is still the matter of a heated debate. We present a quantitative framework forexamining the selection pressures acting on populations of cells and weigh the \pluses"and \minuses" of CIN from the point of view of a sel¯sh cell. We calculate the optimalrate of chromosome loss assuming that cancer is initiated by inactivation of a tumorsuppressor gene followed by a clonal expansion. The resulting rate, p* ~ ¼ 10-2 per celldivision per chromosome, is similar to that obtained experimentally by Lengauer et al(1997). Our analysis further suggests that CIN does not arise simply because it allowsa faster accumulation of carcinogenic mutations. Instead, CIN must arise because ofalternative reasons, such as environmental factors, epigenetic events, or as a directconsequence of a tumor suppressor gene inactivation. The increased variability aloneis not a su±cient explanation for the presence of CIN in the majority of cancers.  相似文献   

18.
Human carcinomas arise through the acquisition of genetic changes that endow precursor cancer cells with a critical threshold of cancer-relevant genetic lesions. This complex genomic alterations confer upon precursor cancer cells the ability to grow indefinitely and to metastasize to distant sites. One important mechanism underlying a cell's tumorigenic potential is the status of its telomere. Telomeres are G-rich simple repeat sequences that serve to prevent chromosomal ends from being recognized as DNA double-strand breaks (DSBs). Dysfunctional telomeres resemble DSBs, leading to the formation of dicentric chromosomes that fuel high degrees of genomic instability. In the setting of an intact p53 pathway, this instability promotes cellular senescence, a potent tumor suppressor mechanism. However, rare cells that stochastically lose p53 function emerge from this sea of genomic instability and progress towards cancer. In this review, we describe the use of mouse models to probe the impact of dysfunctional telomeres on tumor initiation and suppression.  相似文献   

19.
Cancer is caused by genetic changes that activate oncogenes or inactivate tumor suppressor genes. The repair or inactivation of mutant genes may be effective in the treatment of cancer. Drugs that target oncogenes have shown to be effective in the treatment of some cancers. However, it is still unclear why the inactivation of a single cancer associated gene would ever result in the elimination of tumor cells. In experimental transgenic mouse models the consequences of oncogene inactivation depend upon the genetic and cellular context. In some cases, oncogene inactivation results in the elimination of all or almost all tumor cells through apoptosis or terminal differentiation. However, in other cases, oncogene inactivation results in the apparent loss of the neoplastic properties of tumor cells, that now appear and behave like normal cells, however, upon oncogene reactivation rapidly recover their neoplastic phenotype. These observations illustrate that oncogene inactivation can result in a state of tumor dormancy. Understanding when and how oncogene inactivation induces sustained tumor regression will be important towards the development of successful therapeutic strategies for cancer.  相似文献   

20.
Tumor suppressor genes have been shown to be necessary for proper maintenance of cell growth control. Inactivation of these genes in the germline of humans is linked to inherited cancer predisposition. Moreover, sporadically arising human tumors often have somatic mutations in tumor suppressor genes. During the past few years, advances in molecular and cellular biology have led to the creation of animal models that have germline mutations of various tumor suppressor genes. Such mice potentially represent important animal models for familial cancer predisposition syndromes, and the study of the tumorigenesis process has been greatly assisted by their development. Such models have also demonstrated the importance of tumor suppressor function in embryonic development. In this review, we describe mice with inactivated germline tumor suppressor genes that are genetically analogous to 10 different inherited cancer syndromes in humans. We describe the variable usefulness of the mutant mice as models for human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号