首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of bovine pulmonary artery smooth muscle microsomes with peroxynitrite (ONOO-) (100 microM) markedly stimulated matrix metalloproteinase-2 (MMP-2) activity and also enhanced Ca2+ATPase activity and ATP-dependent Ca2+ uptake. Pretreatment of the microsomes with vitamin E (1 mM) and TIMP-2 (50 microg/ml) preserved the increase in MMP-2 activity, Ca2+ATPase activity and also ATP-dependent Ca2+ uptake in the microsomes. In contrast, Na(+)-dependent Ca2+ uptake in the microsomes was inhibited by ONOO- and this was found to be reversed by vitamin E (1 mM) and TIMP-2 (50 microg/ml). However, changes caused by ONOO- in MMP-2 activity, ATP-dependent Ca2+ uptake and Na(+)-dependent Ca2+ uptake were not reversed upon pretreatment of the microsomes with a low concentration of 5 microg/ml of TIMP-2 which, on the contrary, reversed MMP-2 (1 microg/ml)-mediated alteration on these parameters. The inhibition of Na(+)-dependent Ca2+ uptake by ONOO- and MMP-2 overpowered the stimulation of ATP-dependent Ca2+ uptake in the microsomes. Treatment with ONOO- abolished the inhibitory effect of TIMP-2 (5 microg/ml) on MMP-2 (1 microg/ml) causing 14C-gelatin degradation. Overall, the present study suggests that ONOO- inactivated TIMP-2, the ambient inhibitor of MMP-2, leading to activation of the ambient proteinase, MMP-2, and subsequently stimulated Ca2+ATPase activity and ATP-dependent Ca2+ uptake, but inhibited Na(+)-dependent Ca2+ uptake, resulting in a marked decrease in Ca2+ uptake in microsomes of bovine pulmonary artery smooth muscle.  相似文献   

2.
Although an excessive amount of circulating catecholamines is known to induce cardiomyopathy, the mechanisms are poorly understood. This study was undertaken to investigate the role of oxidative stress in catecholamine-induced heart dysfunction. Treatment of rats for 24 h with a high dose (40 mg/kg) of a synthetic catecholamine, isoproterenol, resulted in increased left ventricular end diastolic pressure, depressed rates of pressure development, and pressure decay as well as increased myocardial Ca2+ content. The increased malondialdehyde content, as well as increased formation of conjugated dienes and low glutathione redox ratio were also observed in hearts from animals injected with isoproterenol. Furthermore, depressed cardiac sarcolemmal (SL) ATP-dependent Ca2+ uptake, Ca2+-stimulated ATPase activity, and Na+-dependent Ca2+ accumulation were detected in experimental hearts. All these catecholamine-induced changes in the heart were attenuated by pretreatment of animals with vitamin E, a well-known antioxidant (25 mg/kg/day for 2 days). Depressed cardiac performance, increased myocardial Ca2+ content, and decreased SL ATP-dependent, and Na+-dependent Ca2+ uptake activities were also seen in the isolated rat hearts perfused with adrenochrome, a catecholamine oxidation product (10 to 25 microg/ml). Incubation of SL membrane with different concentrations of adrenochrome also decreased the ATP-dependent and Na+-dependent Ca2+ uptake activities. These findings suggest the occurrence of oxidative stress, which may depress the SL Ca2+ transport and result in the development intracellular Ca2+ overload and heart dysfunction in catecholamine-induced cardiomyopathy.  相似文献   

3.
Treatment of microsomes (preferably enriched with endoplasmic reticulum) isolated from bovine pulmonary artery smooth muscle tissue with the O2*- -generating system (hypoxanthine (HPX) plus xanthine oxidase (XO)), markedly stimulated matrix metalloproteinase-2 (MMP-2) activity and also enhanced Ca2+ ATPase activity and ATP-dependent Ca2+ uptake. Pretreatment with superoxide dismutase (SOD) and tissue inhibitor of metalloproteinase (TIMP-2) (50 microg ml(-1)), preserved the increase in MMP-2 activity, Ca2+ ATPase activity and also ATP-dependent Ca2+ uptake in the microsomes. In contrast, Na+-dependent Ca2+ uptake in the microsomes was found to be inhibited by the O2*- - generating system. Additionally, O2*- -induced inhibition of Na+-dependent Ca2+ uptake was reversed by SOD and TIMP-2 (50 microg ml(-1)). Electron microscopy revealed that treatment with the O2*- -generating system did not cause any noticeable damage to the microsomes. O2*- -induced changes in MMP-2 activity, ATP-dependent Ca2+ uptake and Na+-dependent Ca2+ uptake, were not reversed upon pretreatment of the microsomes with a low dose (5 microg ml(-1)) of TIMP-2 which, on the contrary, reversed MMP-2 (1 microg ml(-1))-mediated alteration on these parameters. The inhibition of Na+-dependent Ca2+ uptake by O2*- and MMP-2, overpowered the stimulation of ATP-dependent Ca2+ uptake in the microsomes. Treatment of TIMP-2 (5 microg ml(-1)) with the O2*- -generating system abolished the inhibitory effect of TIMP-2 (5 microg ml(-1)) on MMP-2 (1 microg ml(-1)) (measured by (14)C-gelatin degradation). Overall, the present study suggests that O2*- inactivated TIMP-2, the ambient inhibitor of MMP-2, leading to activation of the ambient proteinase, MMP-2, which subsequently stimulated Ca2+ ATPase activity and ATP-dependent Ca2+ uptake, but inhibited Na+-dependent Ca2+ uptake, resulting in a marked decrease in Ca2+ uptake in the smooth muscle microsomes.  相似文献   

4.
ATP-dependent Na+ transport in cardiac sarcolemmal vesicles   总被引:3,自引:0,他引:3  
Although the enzyme (Na+ + K+)-ATPase has been extensively characterized, few studies of its major role, ATP-dependent Na+ pumping, have been reported in vesicular preparations. This is because it is extremely difficult to determine fluxes of isotopic Na+ accurately in most isolated membrane systems. Using highly purified cardiac sarcolemmal vesicles, we have developed a new technique to detect relative rates of ATP-dependent Na+ transport sensitively. This technique relies on the presence of Na+-Ca2+ exchange and ATP-driven Na+ pump activities on the same inside-out sarcolemmal vesicles. ATP-dependent Na+ uptake is monitored by a subsequent Nai+-dependent Ca2+ uptake reaction (Na+-Ca2+ exchange) using 45Ca2+. We present evidence that the Na+-Ca2+ exchange will be linearly related to the prior active Na+ uptake. Although this method is indirect, it is much more sensitive than a direct approach using Na+ isotopes. Applying this method, we measure cardiac ATP-dependent Na+ transport and (Na+ + K+)-ATPase activities in identical ionic media. We find that the (Na+ + K+)-ATPase and the Na+ pump have identical dependencies on both Na+ and ATP. The dependence on [Na+] is sigmoidal, with a Hill coefficient of 2.8. Na+ pumping is half-maximal at [Na+] = 9 mM. The Km for ATP is 0.21 mM. ADP competitively inhibits ATP-dependent Na+ pumping. This approach should allow other new investigations on ATP-dependent Na+ transport across cardiac sarcolemma.  相似文献   

5.
The Syrian cardiomyopathic hamster has a hereditary disease characterized by a progressive myocyte necrosis and intracellular calcium overload. Several systems in the heart sarcolemma that regulate the rate of Ca2+ entry or efflux were examined. There is a selective decrease of Ca2+-pumping ATPase activity in the heart sarcolemma of 40-day-old myopathic hamsters, while the Na+-Ca2+ exchange system and the ouabain-sensitive (Na+ + K+)-ATPase activity remain intact. This age-dependent decrease in Ca2+-ATPase activity closely parallels the time course of lesion development. Both the affinity for Ca2+ (Km) and the maximal velocity (Vmax) of the Ca2+-dependent ATP hydrolysis are altered. In addition, there is also an increased number of calcium channel receptor binding sites. Thus the data suggest that the imbalance in Ca2+ fluxes across the cardiac plasma membrane may be involved in the pathogenesis of this cardiomyopathy.  相似文献   

6.
1. Taurine, but not GABA, beta-alanine and glycine, inhibited Na(+)-dependent Ca2+ uptake in bovine cardiac sarcolemmal membrane vesicles in a dose-dependent manner. 2. The inhibition of Na(+)-dependent Ca2+ uptake was noncompetitive with respect to Ca2+ concentration. 3. The inhibitory effect of taurine on the exchange was also observed in cardiac sarcolemmal vesicles prepared from guinea pig, but not from rat. 4. Taurine did not affect Na(+)-dependent Ca2+ efflux nor ATP-dependent Ca2+ uptake in the bovine cardiac membranes.  相似文献   

7.
The effects of concanavalin A (Con A) on membrane Ca2+/Mg2+ ATPase activities as well as the characteristics of Con A binding were examined by employing rat heart sarcolemmal preparations. Con A stimulated the Ca2+ ATPase and Mg2+ ATPase activities in sarcolemma; maximal stimulation in these parameters was seen at a concentration of 10 micrograms/ml. The observed effects of Con A were blocked by alpha-methylmannoside. Sarcolemmal Na+-K+ ATPase and Ca2+-stimulated ATPase were not affected by Con A. Likewise, Con A did not alter the mitochondrial, sarcoplasmic reticular, and myofibrillar ATPase activities. Con A was found to bind to sarcolemma; alpha-methylmannoside prevented this binding. The Scatchard plot analysis of the data on specific Con A binding showed a straight line with a Kd of about 530 nM and a Bmax of 235 pmol/mg protein, thus indicating that there was only one kind of binding site for Con A in sarcolemma. These results suggest that Con A is a specific activator of the low affinity Ca2+/Mg2+ ATPase system in the heart sarcolemmal membrane.  相似文献   

8.
The effect of phosphatidylethanolamine N-methylation on Na+-Ca2+ exchange was studied in sarcolemmal vesicles isolated from rat heart. Phosphatidylethanolamine N-methylation following incubation of membranes with S-adenosyl-L-methionine, a methyl donor for the enzymatic N-methylation, inhibited Nai+-dependent Ca2+ uptake by about 50%. The N-methylation reaction did not alter the passive permeability of the sarcolemmal vesicles to Na+ and Ca2+ and did not modify the electrogenic characteristics of the exchanger. The depressant effect of phosphatidylethanolamine N-methylation on Nai+-dependent Ca2+ uptake was prevented by S-adenosyl-L-homocysteine, an inhibitor of the N-methylation. Pretreatment of sarcolemma with methyl acetimidate hydrochloride, an amino-group-blocking agent, also prevented methylation-induced inhibition of Ca2+ uptake. In the presence of exogenous phospholipid substrate, the phospholipid N-methylation process in methyl-acetimidate-treated sarcolemmal vesicles was restored and the inhibitory effect on Ca2+ uptake was evident. These results suggest that phosphatidylethanolamine N-methylation influences the heart sarcolemmal Na+-Ca2+ exchange system.  相似文献   

9.
Monoclonal antibodies 44D7 and 4F2 inhibited specifically the Na+-dependent Ca2+ fluxes characteristic of the Na+/Ca2+ exchanger in cardiac and skeletal muscle sarcolemmal vesicles. Preincubation of membrane vesicles with monoclonal antibody 44D7 inhibited 90% of the Na+-dependent Ca2+ uptake measured in the first 10 s of the reaction and 50% of that measured after 60 s. Ca2+/calmodulin-dependent ATPase activity and ATP-dependent Ca2+ uptake by sarcolemmal vesicles were not affected by monoclonal antibody 44D7 whereas the Na+-dependent release of accumulated Ca2+ was inhibited. In the presence of the 44D7 antigen isolated from human kidney, monoclonal antibody 44D7 could no longer inhibit Na+-dependent Ca2+ fluxes. The distribution of 4F2 antigenic activity in the isolated muscle membrane fractions correlated with that of Na+/Ca2+ exchanger activity; cardiac and skeletal muscle sarcolemmal vesicles expressed higher levels of the antigen than skeletal muscle transverse tubule membrane, while no antigen could be detected in sarcoplasmic reticulum membranes. Our results suggest that monoclonal antibodies 44D7 and 4F2 interact either directly with the Na+/Ca2+ exchanger molecules or with some other protein(s) responsible for the regulation of this activity in the heart and skeletal muscle.  相似文献   

10.
The UM-X7.1 myopathic and control hamsters at 40, 120 and 280 days of age were employed for the examination of heart sarcolemmal Ca2+-transport activities. Na+-dependent Ca2+ uptake activities were significantly depressed in myopathic animals at 120 and 280 days of age in comparison to the control values. No difference in Na+-induced Ca2+ release activities was found between control and experimental sarcolemmal vesicles. ATP-dependent Ca2+ binding and Ca2+-stimulated, Mg2+ ATPase activities were depressed in the experimental animals at 120 and 280 days of age. Similar alterations in the sarcolemmal Na+-dependent Ca2+ exchange and Ca2+-pump activities were seen upon treating the control hamsters with 40 mg/kg isoproterenol for 24 hr. It is suggested that a depression in the sarcolemmal Ca2+ transport activities may contribute to the development of intracellular Ca2+ overload in the genetically determined cardiomyopathy in hamsters and such a defect may be due to excessive amount circulating catecholamines in these animals.  相似文献   

11.
Scorpion toxins, the basic miniproteins of scorpion venom, stimulated the passive uptake of Na+ and Ca2+ in chick embryo heart cells. Half-maximum stimulation was obtained for 20-30 nM Na+ and 40-50 nM Ca2+. Scorpion toxin-activated Na+ and Ca2+ uptakes were fully inhibited by tetrodotoxin, a specific inhibitor of the action potential Na+ ionophore in excitable membranes. Half-maximum inhibition was obtained with the same concentration of tetrodotoxin (10 nM) for both Na+ and Ca2+. Scorpion toxin-stimulated Ca2+ uptake was dependent on extracellular Na+ concentration and was not inhibited by Ca2+ channel blocking drugs which are inactive on heart cell action potential. Thus, in heart cells scorpion toxin affects the passive Ca2+ transport, which is coupled to passive Na+ ionphore. Other results suggest that (1) tetrodotoxin and scorpion toxin bind to different sites of the sarcolemma and (2) binding of scorpion toxin to its specific sites may unmask latent tetrodotoxin - sensitive fast channels.  相似文献   

12.
Sarcoplasmic reticulum vesicles were noncovalently labeled at micromolar concentrations with the polycationic fluorescent reagent 4',6-diamidino-2-phenylindole (DAPI), and changes in the fluorescence intensity of the membrane-bound dye associated with functions of the Ca2+ pump and Ca2+ release were investigated. It was found that 1) DAPI fluorescence changed in the [Ca2+] range in which high affinity Ca2+ binding to the Ca2+-ATPase takes place. The time course of the Ca2+-induced changes of DAPI fluorescence was essentially the mirror image of that of tryptophan fluorescence. 2) The fluorescence intensity of bound DAPI decreased upon increase of the intravesicular [Ca2+] by either ATP-dependent Ca2+ accumulation or incubation with millimolar Ca2+ in the presence of a calcium ionophore. 3) Upon induction of Ca2+ release by adding caffeine after the completion of Ca2+ uptake, DAPI fluorescence showed transient changes. Two classes of binding sites of the sarcoplasmic reticulum membrane for DAPI were clearly distinguishable: a high affinity site (Ka = 3.0 X 10(5) M-1) with a capacity of about 1 mol/mol of Ca2+-ATPase (8.0 nmol/mg of protein) and low affinity sites with about 20-fold lower affinity and 10-fold larger capacity. The partially purified Ca2+-ATPase showed similar characteristics of high affinity DAPI binding, suggesting that DAPI bound to its high affinity site on the Ca2+-ATPase monitors the enzyme conformational changes coupled with the events described above. The high affinity binding of DAPI to the enzyme led to an increase of the initial rate of Ca2+ uptake and the inhibition of Ca2+ release induced by caffeine or ionic replacement. These results suggest that the Ca2+-ATPase is involved in some steps of the Ca2+ release mechanism.  相似文献   

13.
The plasma membrane ATP-dependent Ca2+ pump and the Na+/Ca2+ exchanger (NCX) are the major means of Ca2+ extrusion in smooth muscle. However, little is known regarding distribution and function of the NCX in guinea pig gastric smooth muscle. The expression pattern and distribution of NCX isoforms suggest a role as a regulator of Ca2+ transport in cells. Na+ pump inhibition and the consequent to removal of K+ caused gradual contraction in fundus. In contrast, the response was significantly less in antrum. Western blotting analysis revealed that NCX1 and NCX2 are the predominant NCX isoforms expressed in stomach, the former was expressed strongly in antrum, whereas the latter displayed greater expression in fundus. Isolated plasma membrane fractions derived from gastric fundus smooth muscle were also investigated to clarify the relationship between NCX protein expression and function. Na+-dependent Ca2+ uptake increased directly with Ca2+ concentration. Ca2+ uptake in Na+-loaded vesicles was markedly elevated in comparison with K+-loaded vesicles. Additionally, Ca2+ uptake by the Na+- or K+-loaded vesicles was substantially higher in the presence of A23187 than in its absence. The result can be explained based on the assumption that Na+ gradients facilitate downhill movement of Ca2+. Na+-dependent Ca2+ uptake was abolished by the monovalent cationic ionophore, monensin. NaCl enhanced Ca2+ efflux from vesicles, and this efflux was significantly inhibited by gramicidin. Results documented evidence that NCX2 isoform functionally contributes to Ca2+ extrusion and maintenance of contraction-relaxation cycle in gastric fundus smooth muscle.  相似文献   

14.
Sarcolemmal membranes isolated from guinea pig heart ventricles contained an ATP-dependent calcium-sequestering activity. Sarcolemmal calcium accumulation but not binding was enhanced by preincubation of membranes with exogenous protein kinase, with cyclic AMP, or with isoproterenol. Protein kinase (EC 2.7.1.37) increased the V of Ca2+ accumulation by sarcolemma without any significant effect on the affinity for Ca2+. The endogenous protein kinase activity present in isolated sarcolemma affected membrane phosphorylation. Cyclic AMP increased the endogenous kinase activity modestly, whereas histone increased it significantly. Exogenous protein kinase also catalyzed phosphorylation of these membranes. Endogenous and exogenous kinase-catalyzed phosphorylation of sarcolemma was hydroxylamine-insensitive. Ca2+-dependent ATPase (EC 3.6.1.3) (extra ATPase) activity of sarcolemma was also increased by protein kinase.  相似文献   

15.
Comparison of the binding of Na+ and Ca2+ to bovine alpha-lactalbumin   总被引:2,自引:0,他引:2  
alpha-Lactalbumin is a metal-binding protein which binds Ca2+- and Na+-ions competitively to one specific site, giving rise to a large conformational change of the protein. For this reason, the enthalpy change of binding Ca2+ to apo-alpha-lactalbumin (delta Ho) is strongly dependent on the concentration of Na+ ions in the medium. From that relationship a molar enthalpy of -145 +/- 3 kJ X mol-1 is calculated for the Ca2+-binding at pH 7.4 and 25 degrees C, while a delta Ho of -5 +/- 3 kJ X mol-1 is found to substitute a complexed Na+ by a Ca2+-ion. These measurements also allowed us to calculate a binding constant for Na+ of 195 +/- 18 M-1. The molar enthalpy of Na+-loading was found to be -142 +/- 3 kJ X mol-1, a value very close to delta Ho of the binding of Ca2+ to alpha-lactalbumin. Both enthalpy changes in binding Ca2+ and Na+ are independent of the protein concentration. These exothermic values are in agreement with the hypothesis that both Na+- and Ca2+-ions are able to induce the same conformational change in alpha-lactalbumin upon which hydrophobic regions are removed from the solvent, yielding a less hydrophobic protein. The latter is confirmed by means of affinity measurements of the hydrophobic fluorescent probe 4,4'-bis[1-(phenylamino)-8-naphthalene sulphonate](bis-ANS) to alpha-lactalbumin. The association constant (Ka) decreased from (6.6 +/- 0.5) X 10(4) M-1 in the absence of NaCl to (2.7 +/- 0.2) X 10(4) M-1 in 75 mM NaCl, while the maximum intensity (Imax) of the binary bis-ANS-alpha-lactalbumin complex remained constant at 0.44 +/- 0.02 (arbitrary units). The Ka value of bis-ANS for Ca2+-alpha-lactalbumin was determined at (1.7 +/- 0.2) X 10(4) M-1 and Imax was 0.43 +/- 0.02 (arbitrary units). The difference in hydrophobicity between the two conformational states of the protein was further demonstrated by adsorption experiments of both conformers to phenyl-Sepharose. Apo-alpha-lactalbumin, hydrophobically bound to phenyl-Sepharose, can be eluted by adding Ca2- or Na+-solutions.  相似文献   

16.
Pi uptake by purified bovine cardiac sarcolemmal vesicles was stimulated by an inwardly directed Na+ gradient, but not by such gradients of K+, Rb+, Li+, and choline. When Na+ was present both inside and outside the vesicles, or when Na+ gradient was dissipated by monensin, the Na+-dependent Pi uptake increased with time, reached a peak, and then declined approaching a steady state. The initial rate of Na+-dependent Pi uptake was a saturable function of Pi concentration (Km = 0.5 mM). These findings indicate the existence of a Na+,Pi-cotransporter in the sarcolemma. The Na+-activation curve of the Pi uptake exhibited positive cooperativity, suggesting the requirement for multiple Na+ binding to the functional unit of the carrier. The initial rate of Na+-dependent Pi uptake decreased as extra-vesicular pH increased in the range of 5.5-8.7. The uptake rate increased under conditions that are known or expected to generate an inside-negative membrane potential, indicating that Pi uptake is accompanied by the uptake of positive charge. These results suggest the electrogenic cotransports of two Na+ and one H2PO4-. We conclude that this cotransporter catalyzes the secondary active transport of Pi across the cardiac plasma membrane and regulates myocardial energy metabolism. We also suggest that the cotransporter may control intracellular Na+ and thus be involved in the regulation of trans-sarcolemmal Ca2+ movement and cardiac contractility.  相似文献   

17.
The effects of dantrolene, which is a known muscle relaxant, on Ca2+ release from the isolated sarcoplasmic reticulum induced by several different methods [1) addition of caffeine, (2) Ca2+ jump, and (3) membrane-depolarization produced by choline chloride replacement of potassium gluconate) were investigated. Dantrolene inhibited caffeine-induced Ca2+ release with C1/2 = 2.5 microM, whereas there was no effect on Ca2+ release induced by a Ca2+ jump. The amount of Ca2+ released by depolarization was reduced if Ca2+ release was triggered in an earlier phase of the steady state of Ca2+ uptake (time elapsed between the addition of ATP and the triggering of Ca2+ release, tATP less than 4 min); while, if triggered in a latter phase (tATP greater than 4 min) dantrolene enhanced depolarization-induced Ca2+ release. C1/2 for the inhibition and that for enhancement of depolarization-induced Ca2+ release were 1.0 and 0.3 microM, respectively. These results suggest that dantrolene affects several different steps of the mechanism by which Ca2+ release is triggered. The sarcoplasmic reticulum and T-tubule membrane fractions had 7.9 nmol dantrolene-binding sites/mg (Kassoc = 1.0 X 10(5) M-1) and 21.0 nmol/mg (Kassoc = 1.1 X 10(5) M-1), respectively. The time-course of dantrolene binding to sarcoplasmic reticulum was monophasic, while that to T-tubules was biphasic.  相似文献   

18.
We have examined the effect of membrane methylation on the Na+-Ca2+ exchange activity of canine cardiac sarcolemmal vesicles using S-adenosyl-L-methionine as methyl donor. Methylation leads to approximately 40% inhibition of the initial rate of Nai+-dependent Ca2+ uptake. The inhibition is due to a lowering of the Vmax for the reaction. The inhibition is not due to an effect on membrane permeability and is blocked by S-adenosyl-L-homocysteine, an inhibitor of methylation reactions. The following experiments indicated that inhibition of Na+-Ca2+ exchange was due to methylation of membrane protein and not due to methylated phosphatidylethanolamine (PE) compounds (i.e., phosphatidyl-N-monomethylethanolamine (PMME) or phosphatidyl-N,N'-dimethylethanolamine (PDME]: (1) We solubilized sarcolemma and reconstituted activity into vesicles containing no PE. The inhibition by S-adenosyl-L-methionine was not diminished in this environment. (2) We reconstituted sarcolemma into vesicles containing PMME or PDME. These methylated lipid components had no effect on Na+-Ca2+ exchange activity. (3) We verified that many membrane proteins, probably including the exchanger, become methylated.  相似文献   

19.
The calcium binding properties of non-activated phosphorylase kinase at pH 6.8 have been studied by the gel filtration technique at calcium concentrations from 50 nM to 50 muM. Taking into account the subunit structure alpha4beta4gamma4 the enzyme binds 12 mol Ca2+ per mol with an association constant of 6.0 X 10(7) M-1, 4 mol with an association constant of 1.7 X 10(6) M-1 and 36 mol with a binding constant of 3.9 X 10(4) M-1 at low ionic strength. In buffer of high ionic strength, i.e. 180 mM NH4Cl or 60 mM (NH4)2SO4, only a single set of eight binding sites with a binding constant of 5.5 X 10(7) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. From these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. from these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1. Additionally, 10 mM Mg2+ induces a set of four new Ca2+ binding sites which show positive cooperativity. Their half-saturation constant under the conditions described is 3.5 X 10(5) M-1, and they, too, exhibit competition between Ca2+ and Mg2+. Since this set of sites is induced by Mg2+ a third group of binding sites for the latter metal must be postulated.  相似文献   

20.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号