首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fusion of myoblasts into multinucleate syncytia plays a fundamental role in muscle function, as it supports the formation of extended sarcomeric arrays, or myofibrils, within a large volume of cytoplasm. Principles learned from the study of myoblast fusion not only enhance our understanding of myogenesis, but also contribute to our perspectives on membrane fusion and cell-cell fusion in a wide array of model organisms and experimental systems. Recent studies have advanced our views of the cell biological processes and crucial proteins that drive myoblast fusion. Here, we provide an overview of myoblast fusion in three model systems that have contributed much to our understanding of these events: the Drosophila embryo; developing and regenerating mouse muscle; and cultured rodent muscle cells.  相似文献   

2.
3.
The Toll signalling pathway, which is required for establishment of dorsoventral polarity in Drosophila embryos, plays an important role in the response to microbial infections. Recently, Toll-like receptors (TLRs) have also been identified in mammals. TLR4 has been shown to function as the transmembrane component of the lipopolysaccharide receptor, while TLR2 recognizes peptidoglycans from Gram-positive bacteria, lipoproteins and yeast. Although various microbial cell-wall components are recognized by different receptors, all of these responses are abrogated in MyD88-deficient cells. These results show that different TLRs recognize different microbial cell-wall components, and that MyD88 is an essential signalling molecule shared among interleukin-1 receptor/Toll family members.  相似文献   

4.
5.
It is widely-assumed that the autophagic activity of living cells decreases with age and probably contributes to the accumulation of damaged macromolecules and organelles during aging. Over the last few years, the study of segmental progeroid syndromes in which certain aspects of aging are manifested precociously or in exacerbated form, has increased our knowledge of the molecular basis of aging. We have recently reported the unexpected finding that distinct progeroid murine models exhibit an extensive basal activation of autophagy instead of the characteristic decline in this process occurring during normal aging. Further studies on Zmpste24-null progeroid mice, which are a reliable model of human Hutchinson-Gilford progeria, have revealed that the observed autophagic increase is associated with a series of metabolic alterations resembling those occurring under calorie restriction or in other situations reported to prolong lifespan. Here, we analyze these unexpected findings and discuss their possible implications for the development of premature aging.  相似文献   

6.
《Autophagy》2013,9(6):807-809
It is widely-assumed that the autophagic activity of living cells decreases with age and probably contributes to the accumulation of damaged macromolecules and organelles during aging. Over the last few years, the study of segmental progeroid syndromes in which certain aspects of aging are manifested precociously or in exacerbated form, has increased our knowledge on the molecular basis of aging. We have recently reported the unexpected finding that distinct progeroid murine models exhibit an extensive basal activation of autophagy instead of the characteristic decline in this process occurring during normal aging. Further studies on Zmpste24-null progeroid mice, which are a reliable model of human Hutchinson-Gilford progeria, have revealed that the observed autophagic increase is associated with a series of metabolic alterations resembling those occurring under calorie restriction or in other situations reported to prolong lifespan. Here, we analyze these unexpected findings and discuss their possible implications for the development of premature aging.

Addendum to: Mariño G, Ugalde AP, Salvador-Montoliu N, Varela I, Quirós PM, Cadiñanos J, van der Pluijm I, Freije JM, López-Otín C. Premature aging in mice activates a systemic metabolic response involving autophagy induction. Hum Mol Genet 2008; 17:2196–211.  相似文献   

7.
Cleft palate occurred in high frequency (14%) in the F2 generation of the cross between two stocks of mice, LGG and SELH, neither of which produces more than 2% cleft palate. The cleft palate trait results from a new combination of alleles that is not present in either parental stock. The lack of cleft palate in the F2 generation after outcrosses of both parental stocks to other strains shows that this new combination of alleles has specific contributions from both parental strains, and also that there must be at least two loci involved. A deficiency of Mod-1 homozygotes in the SELH/LGG F2 adults suggests that one of the loci involved may be linked to Mod-1 and that the number of loci involved is few. Significantly more F2 males (19%) than females (9%) were affected with cleft palate. The data can be explained by a two-locus epistatic model with a dominant mutation (P) at one locus that causes cleft palate when not suppressed by or compensated for by a dominant allele (S) at a second locus. The parental stocks would be PPSS and ppss. In the F2 generation, the new combinations PPss and Ppss would express cleft palate, a total expected of 19%. Similar new combinations of alleles at two loci may explain some instances of high occurrence of cleft palate or other developmental threshold traits in previously unaffected human families.  相似文献   

8.
Metabolic research has, like most areas of research in the life sciences, been affected dramatically by the application of transgenic technologies. Within the specific area of bioenergetics it has been thought that transgenic approaches in mice would provide definitive proof for some longstanding metabolic theories and assumptions. Here we review a number of transgenic approaches that have been used in mice to address theories of mitochondrial efficiency. The focus is largely on genes that affect the coupling of energy substrate oxidation to ATP synthesis, and thus, mice in which the uncoupling protein (Ucp) genes are modified are discussed extensively. Transgenic approaches have indeed provided proof-of-concept in some instances, but in many other instances they have yielded results that are in contrast to initial hypotheses. Many studies have also shown that genetic background can affect phenotypic outcomes, and that the upregulated expression of genes that are related to the modified gene often complicates the interpretation of findings.  相似文献   

9.
Iron is an essential nutrient, and disorders of iron metabolism are common. Nonetheless, intestinal iron absorption and cellular iron transport are poorly understood. Biochemical approaches to elucidating these processes have yielded little in the past decade. As an alternative approach, we have begun to study spontaneous mouse mutants, that have inherited defects in key steps in iron transport. We have undertaken positional cloning of the gene responsible for microcytic anemia (gene symbol mk). This report describes the important characteristics of these mice, and our progress in studying them.  相似文献   

10.
11.
Functions of lumican and fibromodulin: lessons from knockout mice   总被引:5,自引:0,他引:5  
Lumican and fibromodulin are collagen-binding leucine-rich proteoglycans widely distributed in interstitial connective tissues. The phenotypes of lumican-null (Lum –/–), Fibromodulin-null (Fmod –/–) and compound double-null (Lum –/– Fmod –/–) mice identify a broad range of tissues where these two proteoglycans have overlapping and unique roles in modulating the extracellular matrix and cellular behavior. The lumican-deficient mice have reduced corneal transparency and skin fragility. The Lum –/– Fmod –/– mice are smaller than their wildtype littermates, display gait abnormality, joint laxity and age-dependent osteoarthritis. Misaligned knee patella, severe knee dysmorphogenesis and extreme tendon weakness are the likely cause for joint-laxity. Fibromodulin deficiency alone leads to significant reduction in tendon stiffness in the Lum +/+ Fmod –/– mice, with further loss in stiffness in a lumican gene dose-dependent way. At the level of ultrastructure, the Lum –/– cornea, skin and tendon show irregular collagen fibril contours and increased fibril diameter. The Fmod –/– tendon contains irregular contoured collagen fibrils, with increased frequency of small diameter fibrils. The tendons of Lum –/– Fmod –/– have an abnormally high frequency of small and large diameter fibrils indicating a de-regulation of collagen fibril formation and maturation. In tissues like the tendon, where both proteoglycans are present, fibromodulin may be required early in collagen fibrillogenesis to stabilize small-diameter fibril-intermediates and lumican may be needed at a later stage, primarily to limit lateral growth of fibrils Published in 2003.  相似文献   

12.
The nuclear localization of a number of growth factors, cytokine ligands and their receptors has been reported in various cell lines and tissues. These include members of the fibroblast growth factor (FGF), epidermal growth factor and growth hormone families. Accordingly, a number of nuclear functions have begun to emerge for these protein families. The demonstration of functional interactions of these proteins with the nuclear import machinery has further supported their functions as nuclear signal transducers. Here, we review the membrane- trafficking machinery and pathways demonstrated to regulate this cell surface to nucleus-trafficking event and highlight the many remaining unanswered questions. We focus on the FGF family, which is providing many of the clues as to the process of this unusual phenomenon.  相似文献   

13.
Functions of toll-like receptors: lessons from KO mice   总被引:13,自引:0,他引:13  
The innate immune response is a first-line defense system in which individual Toll-like receptors (TLRs) recognize distinct pathogen-associated molecular patterns (PAMPs) and exert subsequent immune responses against a variety of pathogens. TLRs are composed of an extracellular leucine-rich repeat (LRR) domain and a cytoplasmic domain that is homologous to that of the IL-IR family. Upon stimulation, TLR recruits a cytoplasmic adaptor molecule MyD88, then IL-IR-associated kinase (IRAK), and finally induces activation of NF-kappaB and MAP kinases. However, the responses to TLR ligands differ, indicating the diversity of TLR signaling pathways. Besides MyD88, several novel adaptor molecules have recently been identified. Differential utilization of these adaptor molecules may provide the specificity in the TLR signaling.  相似文献   

14.
Woo M  Hakem R  Mak TW 《Cell research》2000,10(4):267-278
Apoptosis or programmed cell death(PCD) is an evolutionarily conserved cellular process that is essential for normal development and homeostasis of multicellular organisms.Defects in the apoptosis signaling result in many diseases including autoimmune diseases and cancer.The apoptosis signaling pathway was first described genetically in the nematode Caenorhabditis elegans which serves as a framework for the more complex apoptotic pathways that exist in mammals.In this review,we will discuss the apoptotic pathways that are emerging in mammals as elucidated by studies of gene-targeted mutant mice.  相似文献   

15.
The circadian system (CS) comprises three key components: (1) endogenous oscillators (clocks) generating a circadian rhythm; (2) input pathways entraining the circadian rhythm to the astrophysical day; and (3) output pathways distributing signals from the oscillator to the periphery. This contribution briefly reviews some general aspects of the organization of the rodent CS and pays particular attention to recent results obtained with various mouse strains, related to molecular mechanisms involved in entraining the endogenous clock and the role of the pineal hormone melatonin as a hand of the endogenous clock.  相似文献   

16.
Jungnickel MK  Sutton KA  Florman HM 《Cell》2003,114(4):401-404
Sexual reproduction proceeds by fertilization; formation of new individuals by the union of haploid gametes. Recent reports in Cell and in Developmental Cell may provide new insights as to how this process begins and is regulated.  相似文献   

17.
James Deng 《Steroids》2009,74(7):595-822
Luteinizing hormone (LH) mediates many important processes in ovarian follicles, including cumulus cell expansion, changes in gap junction expression and activity, sterol and steroid production, and the release of paracrine signaling molecules. All of these functions work together to trigger oocyte maturation (meiotic progression) and subsequent ovulation. Many laboratories are interested in better understanding both the extra-oocyte follicular processes that trigger oocyte maturation, as well as the intra-oocyte molecules and signals that regulate meiosis. Multiple model systems have been used to study LH-effects in the ovary, including fish, frogs, mice, rats, pigs, and primates. Here we provide a brief summary of oocyte maturation, focusing primarily on steroid-triggered meiotic progression in frogs and mice. Furthermore, we present new studies that implicate classical steroid receptors rather than alternative non-classical membrane steroid receptors as the primary regulators of steroid-mediated oocyte maturation in both of these model systems.  相似文献   

18.
Phosphoinositide 3-kinases in immunity: lessons from knockout mice   总被引:3,自引:0,他引:3  
Phosphoinositide 3-kinases (PI3Ks) constitute a family of evolutionarily conserved lipid kinases that phosphorylate the D3 position of the inositol ring of phosphoinositides and produce PI(3)P, PI(3,4)P(2), and PI(3,4,5)P(3). Intense in vitro research over the last decade has unequivocally demonstrated that PI3Ks, in particular those belonging to class I, regulate a vast array of fundamental cellular responses. Given the pleiotropic roles of PI3Ks and the lipid product PI(3,4,5)P(3) in plethora of cellular responses, it is pertinent to explore the significance of PI3K signaling in vivo. In the past two or three years, the components of this signaling pathway have been genetically manipulated in mouse. This review briefly summarizes the immunological significance of PI3K signaling as revealed by the study of gene-targeted "knockout" mice.  相似文献   

19.
In the past decade, genomics and proteomics have begun to develop many new targets for potential diagnostic and therapeutic agents. Among the life sciences, nuclear medicine is also deeply involved in the field of clinical investigation. Experience with radiolabeled annexin V highlights the many steps required to translate a good basic-science concept into the clinical setting. This model also emphasizes the value of synergy between basic and medical specialties in developing and optimizing a clinically useful product initially derived from basic investigation.  相似文献   

20.
When the tail of the Xenopus laevis tadpole resorbs at the end of metamorphosis, various cell types, including muscle, fibroblasts, skin, and spinal cord, are lost at about the same time. However, feeding frogs with tails can be produced by inhibiting thyroid hormone production at the climax of metamorphosis with the goitrogen methimazole. These tails lose their fast muscle preferentially, showing that the different cell types of the tail have different fates and confirming that more than one cell death program is involved in tail resorption. Both normal and methimazole tails contain "cords," novel structures that consist of two dorsal and two ventral parallel rows of slow muscle bundles joined by collagen fibers that run the length of the tail. The cords persist until the very end of tail resorption, being the last structure to dissolve. When thyroid hormone induces expression of proteolytic enzymes in the notochord sheath, the notochord, a structural rod that runs the length of the tail, begins to buckle, demonstrating that the tail is under tension. When sections of the tail that contain cords are surgically separated from the notochord, they contract in vitro, suggesting that the cords contribute to the tension that augments tail resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号