首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inactivated O2-evolving center of Tris-washed chloroplasts was reactivated by DCPIP-treatment and photoreactivation in the presence of Mn2+, Ca2+, DTT and weak light. Many electron donors (Asc and reduced DCPIP, etc.) were found to be suitable substitutes for DTT. By studying the anaerobic inhibition of the reactivation, the electron acceptors O2, NADP+, etc. were also found to be essential factors in photoreactivation. Weak light stimulated the chloroplast electron transport from the above-mentioned electron donors to the electron acceptor and effected the photoreactivation. More than 280 electrons were transported to NADP+ in the anaerobic photoreactivation of one unit of an O2-evolving center with 400 Chl. Electron transport in the reactivation was inhibited by omitting DTT or Mn2+ ion, and by adding DCMU. The photoreactivated chloroplasts incorporated about 2 Mn by 400 Chl. Omission of DTT in the reactivation caused chloroplasts in the weak light to bind large amounts of excess Mn.Abbreviations Asc ascorbate - Chl chlorophyll - DCPIP 2, 6-dichlorophenol indophenol - DPC diphenyl carbazide - DTT dithiothreitol - Fd ferredoxin - STN a chloroplast preparation medium, containing 0.4 M sucrose, 0.05 M Tris-Cl and 0.01 M NaCl (pH 7.8 and 8.0) - TMPD tetramethyl-p-phenylenediamine  相似文献   

2.
Snail ganglia possess an anion-sensitive adenylate cyclase. This enzyme was stimulated 100% by chloride in a strictly GTP-dependent manner. The apparent affinity of chloride for adenylate cyclase was 2 X 10(-4) M. Halogens were found to be the most active anions. Some inorganic anions such as SO4(2-) and H2PO4- were inactive, as were all the organic anions tested. Stimulation was not cumulative for any maximal concentration of the active anions except fluoride. Chloride potentiated the effect of fluoride, indicating that the anion effect is not fluoride-like. Another striking result is that chloride enhanced adenylate cyclase sensitivity to the neurotransmitters serotonin and dopamine. The absence of chloride stimulation when Mg2+ was replaced by Mn2+ further indicates a role of the GTP-binding protein (the G/F unit). Chloride could reversibly stimulate the adenylate cyclase activity already maximally stimulated by guanyl 5'-imidodiphosphate. We therefore suggest that, in snail ganglia, chloride raises the activity of the G/F unit-catalytic unit complex at some stage after its formation. The same specific anion-sensitive adenylate cyclase was also found in some of the rat tissues tested.  相似文献   

3.
The formation of active O2 evolving centers following addition of Mn2+ to Mn deficient Anacystis nidulans cells yielded an estimate of 6 to 12 Mn atoms associated with each O2 evolving reaction center. Restoration of activity upon addition of Mn ions is affected in 3 ways: (1) Stimulation of the uptake of exogenous Mn into the cells—this uptake occurs in darkness, but is enhanced 5 to 10 fold by light; a high concentration of DCMU (1 × 10−5m) decreases this light enhanced influx no more than 50 to 75%; (2) Photoreactivation of the O2 evolving centers, after excess Mn has been accumulated in the cells essentially no increase in Hill activity is observed unless the cells are illuminated. This photoreactivation is fully inhibited by 10−6m DCMU and partially by benzoquinone. The Q10 of photoreactivation proper is close to 1; (3) Photoinhibition of the activation—photoreactivation occurs most effectively in weak intensities (< one-fiftieth photosynthetic saturation in normal cells). Apparently at higher intensities an inhibitory photoprocess is overriding. This inhibition proved reversible. The photoreactivation leads to new stable O2 evolving centers as evidenced by an increase in the rate at saturating intensity, quantum yield, and the O2 gush.  相似文献   

4.
Chloride is an important cofactor in photosynthetic water oxidation. It can be replaced by bromide with retention of the oxygen-evolving activity of photosystem II (PSII). Binding of bromide to the Mn(4)Ca complex of PSII in its dark-stable S(1) state was studied by X-ray absorption spectroscopy (XAS) at the Br K-edge in Cl(-)-depleted and Br(-)-substituted PSII membrane particles from spinach. The XAS spectra exclude the presence of metal ions in the first and second coordination spheres of Br(-). EXAFS analysis provided tentative evidence of at least one metal ion, which may be manganese or calcium, at a distance of approximately 5 A to Br(-). The native Cl(-) ion may bind at a similar distance. Accordingly, water oxidation may not require binding of a halide directly to the metal ions of the Mn complex in its S(1) state.  相似文献   

5.
Photosystem II, the multisubunit protein complex that oxidizes water to O2, requires the inorganic cofactors Ca2+ and Cl- to exhibit optimal activity. Chloride can be replaced functionally by a small number of anionic cofactors (Br-, NO3-, NO2-, I-), but among these anions, only Br- is capable of restoring rates of oxygen evolution comparable to those observed with Cl-. UV absorption difference spectroscopy was utilized in the experiments described here as a probe to monitor donor side reactions in photosystem II in the presence of Cl- or surrogate anions. The rate of the final step of the water oxidation cycle was found to depend on the activating anion bound at the Cl- site, but the kinetics of this step did not limit the light-saturated rate of oxygen evolution. Instead, the lower oxygen evolution rates supported by surrogate anions appeared to be correlated with an instability of the higher oxidation states of the oxygen-evolving complex that was induced by addition of these anions. Reduction of these states takes place not only with I- but also with NO2- and to a lesser extent even with NO3- and Br- and is not related to the ability of these anions to bind at the Cl- binding site. Rather, it appears that these anions can attack higher oxidation states of the oxygen evolving complex from a second site that is not shielded by the extrinsic 17 and 23 kDa polypeptides and cause a one-electron reduction. The decrease of the oxygen evolution rate may result from accumulated damage to the reaction center protein by the one-electron oxidation product of the anion.  相似文献   

6.
Zinc is essential to the catalytic activity of angiotensin converting enzyme. The enzyme contains one g-atom of zinc per mole of protein. Chelating agents abolish activity by removing the metal ion to yield the inactive, metal-free apoenzyme. Zinc does not stabilize protein structure since the native and apoenzymes are equally susceptible to heat denaturation. Addition of either Zn2+, Co2+, or Mn2+ to the apoenzyme generates an active metalloenzyme; Fe2+, Ni2+, Cu2+, Cd2+, and Hg2+ fail to restore activity. The activities of the metalloenzymes follow the order Zn greater than Co greater than Mn. The protein binds Zn2+ more firmly than it does Co2+ or Mn2+. Hydrolysis of the chromophoric substrate, furanacryloyl-Phe-Gly-Gly, by the active metalloenzymes is subject to chloride activation; the activation constant is not metal dependent. Metal replacement mainly affects Kcat with very little change in Km, indicating that the role of zinc is to catalyze peptide hydrolysis.  相似文献   

7.
P2X7 receptors (P2X7Rs) are nonselective cation channels that are opened by the binding of extracellular ATP and are involved in the modulation of epithelial secretion, inflammation and nociception. Here, we investigated the effect of extracellular anions on channel gating and permeation of human P2X7Rs (hP2X7Rs) expressed in Xenopus laevis oocytes. Two-microelectrode voltage-clamp recordings showed that ATP-induced hP2X7R-mediated currents increased when extracellular chloride was substituted by the organic anions glutamate or aspartate and decreased when chloride was replaced by the inorganic anions nitrate, sulfate or iodide. ATP concentration-response comparisons revealed that substitution of chloride by glutamate decreased agonist efficacy, while substitution by iodide increased agonist efficacy at high ATP concentrations. Meanwhile, the ATP potency remained unchanged. Activation of the hP2X7R at low ATP concentrations via the high-affinity ATP effector site was not affected by the replacement of chloride by glutamate or iodide. To analyze the anion effect on the hP2X7R at the single-molecule level, we performed single-channel current measurements using the patch-clamp technique in the outside-out configuration. Chloride substitution did not affect the single-channel conductance, but the probability that the P2X7R channel was open increased when chloride was replaced by glutamate and decreased when chloride was replaced by iodide. This effect was due to an influence of the anions on the mean closed times of the hP2X7R channel. We conclude that hP2X7R channels are not anion-permeable in physiological Na+-based media and that external anions allosterically affect ion channel opening in the fully ATP4-liganded P2X7R through an extracellular anion binding site.  相似文献   

8.
Reversible Tris-inhibition and reductive reactivation of oxygenevolution activity, observed previously in spinach, were studiedin chloroplasts from Japanese-radish, pokeweed (Phytolacca americana),oats and Easter-lily (Lilium longiflorum). Mn content of Tris-washed and reactivated chloroplasts onlymoderately decreased. Inhibition caused by Tris treatment wasalways greater than the decrease in Mn content, suggesting thatinhibition might not be principally due to Mn decrease. Reactivation enhanced the depressed chlorophyll fluorescencein Tris-inhibited chloroplasts to original levels. Chloride ion promoted oxygen evolution in reactivated, as wellas intact, chloroplasts. Reactivated chloroplasts could perform photophosphorylation,but ammonium ion, which promotes oxygen evolution by uncoupling,did not seem to affect them. (Received November 1, 1971; )  相似文献   

9.
Imaizumi  Ko  Ifuku  Kentaro 《Photosynthesis research》2022,153(3):135-156
Photosynthesis Research - Light-driven water oxidation in photosynthesis occurs at the oxygen-evolving center (OEC) of photosystem II (PSII). Chloride ions (Cl?) are essential for oxygen...  相似文献   

10.
Evidence that the erythrocyte calcium pump catalyzes a Ca2+:nH+ exchange   总被引:3,自引:0,他引:3  
Treatment of whole erythrocytes with 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) results in inhibition of ATP and phosphate-dependent Ca2+ transport in subsequently prepared inside-out vesicles (IOV). Accumulation of phosphate into IOV in the presence of Ca2+ is virtually abolished by prior DIDS treatment, consistent with the presumed inhibition of the band III anion-exchange protein by this agent. No inhibition of Ca2+-activatable ATP hydrolysis is observed following DIDS treatment when open membranes are used to prevent development of ion gradients. This indicates that DIDS does not affect the inherent ATPase activity of the calcium pump (Waisman, D. M., Smallwood, J., Lafreniere, D., and Rasmussen, H. (1982) FEBS Lett. 145, 337-340). In IOV prepared from untreated cells, ATP-dependent Ca2+ uptake is stimulated by phosphate, sulfate, or chloride. Rates of Ca2+ uptake into DIDS-IOV are not increased by these anions. Lipid-permeable organic acids such as acetate, however, do promote Ca2+ transport in DIDS-IOV. Lipophilic anions incapable of transporting protons into the vesicle interior (nitrate and thiocyanate) support sustained uptake only when the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone is also added. These results support a model of the (Ca2+-Mg2+)-ATPase as a pump exchanging Ca2+ for protons, not transporting Ca2+ alone. Band III protein appears to promote Ca2+ transport in the presence of phosphate, sulfate, or chloride by exchanging external anion for the accumulating OH- (or HCO3-) produced by the calcium pump.  相似文献   

11.
he changes of Mn2+ contents in Anabaena variabilis were probed by EPR. Treatments with CaCl2 and Ca (NO3)2 at high concentrations induced the release of bound Mn and the decrease of oxygen-evolving activity of the cyanobacterium. When the release percentage of bound Mn reached up to 57%, the oxygen-evolving activity decreased to zero. MgCl2 treatment resulted in less effectiveness than CaCl2 MnCl2 at high concentration inhibited cyanobacterial oxygen evolution, as the indication of EGTA. In the comparision with control the low temperature fluorescence emission spectra of the cyanobacterium treated by CaCl2, MgCl2 and MnCl2 changed with the shoulder disappearance at 686 nm and the decline of ratio of F730/F695 The possible competitive substitutions among ions at their binding sites in oxygen-evolving complex were discussed.  相似文献   

12.
13.
Photosynthesis Research - The Mn4Ca oxygen-evolving complex (OEC) in Photosystem II (PSII) is assembled in situ from free Mn2+, Ca2+, and water. In an early light-driven step, Mn2+ in a protein...  相似文献   

14.
DNA polymerase I (Pol I) is an enzyme of DNA replication and repair containing three active sites, each requiring divalent metal ions such as Mg2+ or Mn2+ for activity. As determined by EPR and by 1/T1 measurements of water protons, whole Pol I binds Mn2+ at one tight site (KD = 2.5 microM) and approximately 20 weak sites (KD = 600 microM). All bound metal ions retain one or more water ligands as reflected in enhanced paramagnetic effects of Mn2+ on 1/T1 of water protons. The cloned large fragment of Pol I, which lacks the 5',3'-exonuclease domain, retains the tight metal binding site with little or no change in its affinity for Mn2+, but has lost approximately 12 weak sites (n = 8, KD = 1000 microM). The presence of stoichiometric TMP creates a second tight Mn2+ binding site or tightens a weak site 100-fold. dGTP together with TMP creates a third tight Mn2+ binding site or tightens a weak site 166-fold. The D424A (the Asp424 to Ala) 3',5'-exonuclease deficient mutant of the large fragment retains a weakened tight site (KD = 68 microM) and has lost one weak site (n = 7, KD = 3500 microM) in comparison with the wild-type large fragment, and no effect of TMP on metal binding is detected. The D355A, E357A (the Asp355 to Ala, Glu357 to Ala double mutant of the large fragment of Pol I) 3',5'-exonuclease-deficient double mutant has lost the tight metal binding site and four weak metal binding sites. The binding of dGTP to the polymerase active site of the D355A,E357A double mutant creates one tight Mn2+ binding site with a dissociation constant (KD = 3.6 microM), comparable with that found on the wild-type enzyme, which retains one fast exchanging water ligand. Mg2+ competes at this site with a KD of 100 microM. It is concluded that the single tightly bound Mn2+ on Pol I and a weakly bound Mn2+ which is tightened 100-fold by TMP are at the 3',5'-exonuclease active site and are essential for 3',5'-exonuclease activity, but not for polymerase activity. Additional weak Mn2+ binding sites are detected on the 3',5'-exonuclease domain, which may be activating, and on the polymerase domain, which may be inhibitory. The essential divalent metal activator of the polymerase reaction requires the presence of the dNTP substrate for tight metal binding indicating that the bound substrate coordinates the metal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
AIMS: Investigation of concerted effects of cations, i.e. Mg2+ and Mn2+, in combination with their anions, i.e. sulphate, chloride and acetate (Ac), on the physiology of Bacillus licheniformis carrying pHV1431::subC to improve the fermentation medium for serine alkaline protease (SAP) production, whereupon, determination of the acid that can be used in pH control. METHODS AND RESULTS: The cell concentrations increased with the increase in MnSO4 and Mn(Ac)2 concentrations, and the highest values were obtained at Co(MnSO4) = 0.20 mmol l-1 and Co(Mn(CH3COO)2) = 4.0 mmol l-1, as 2.3 and 2.2 g l-1, respectively. However, Co(MnCl2) did not influence biomass concentration. SAP production was inhibited with MnCl2 after Co(MnCl2) = 0.60 mmol l-1, but with MnSO4 SAP production was inhibited drastically. Whereas, at high concentrations of Mn(Ac)2 SAP production increased and the highest activity was obtained as ASAP = 1285 U ml-1 at t = 65 h. With the Mg compounds, cell concentrations increased with the increase in the concentrations of MgSO4, MgCl2 and Mg(Ac)2; and the anions did not show any influence on the cell growth. Similar to the results of Mn compounds, the glucose consumption rate increased with the increase in MgSO4 and MgCl2 concentrations; contrariwise, decreased with the increase in Mg(Ac)2 concentrations, due to the use of acetate as the second carbon source. Co(MgSO4) = 0.40 mmol l-1, Co(MgCl2) = 1.60 mmol l-1 and Co(Mg(Ac)2) = 0.40 mmol l-1 were the optimum concentrations separately, and the highest SAP activity was obtained with Mg(Ac)2 as ASAP = 1338 U ml-1 at t = 47 h. Consequently, ion acetate and its acid HAc appear, respectively, as the superior anion for the essential cations and the control agent for pH control in the bioreactor. Finally, optimum initial concentrations and the concerted effects of Mg(Ac)2 and Mn(Ac)2 were investigated, and the optimum concentrations were found respectively as 0.40 and 0.80 mmol l-1, while the maximum activity was obtained as ASAP = 1010 U ml-1 at a shortened cultivation time of t = 39 h. CONCLUSIONS: Mn(Ac)2 and Mg(Ac)2 together enhanced the cell formation and SAP synthesis rates, moreover, SAP synthesis started at an earlier cultivation time. SIGNIFICANCE AND IMPACT OF THE STUDY: Each inorganic compound with its cation and anion has dual effect on the metabolism. Mg2+ and Mn2+ at their specific concentrations influence the regulation of the pathways that might cause better coupling of supply and demand for the amino acids on the basis of the amino acid composition of the enzyme molecule.  相似文献   

16.
The pancreas is a 'leaky' epithelium and secretes a juice in which sodium and potassium have concentrations similar to those of plasma. The characteristic features of the secretion are its isosmolality and its high bicarbonate concentration. It is the latter that has attracted considerable attention. Secretion in the isolated cat pancreas is directly proportional to the bicarbonate concentration in the nutrient fluid. The ability of the gland to secrete weak acids has led to the view that because of the very different chemical nature of the anions, it is most likely that it is a component common to all buffers, the proton, that is subject to active transport. This is supported by the decrease in pH and the increase in rho CO2 of the venous effluent when secretion occurs and the sensitivity of secretion to the pH of the nutritional extracellular fluid. It is proposed that the cellular mechanisms are as follows: CO2 diffuses into the cell and is hydrated to carbonic acid under the influence of carbonic anhydrase. The bicarbonate ion so formed diffused into the ductular lumen and the proton is transported backwards through the epithelium with a proton pump (Mg2+ -ATPase) provisionally located in the luminal membrane and a hydrogen-sodium exchange carrier located in the basolateral membrane. Energy for the latter process is derived from the sodium gradient between extracellular fluid and cell. This gradient is maintained by a (Na+ + K+)-ATPase also located in the basolateral membrane. Chloride appears to be transported partly through a chloride-bicarbonate exchange mechanism but largely passively together with a large sodium and potassium component through the paracellular pathway. Osmotic equilibrium is likely to occur in the small ductules.  相似文献   

17.
Modeling the structure of the C-domain of bovine angiotensin-converting enzyme revealed two putative chloride-binding sites. The kinetic parameters, K(m) and k(cat), of hydrolysis of the substrate Cbz-Phe-His-Leu catalyzed by the testicular (C-domain) enzyme were determined over a wide range of chloride concentrations. Chloride anions were found to be enzyme activators at relatively low concentrations, but they inhibit enzymatic activity at high concentrations. A general scheme for the effect of chloride anions on activity of the C-domain of bovine angiotensin-converting enzyme accounting for binding the "activating" and "inhibiting" anions is suggested.  相似文献   

18.
UV-inducible DNA repair in the cyanobacteria Anabaena spp.   总被引:2,自引:0,他引:2       下载免费PDF全文
Strains of the filamentous cyanobacteria Anabaena spp. were capable of very efficient photoreactivation of UV irradiation-induced damage to DNA. Cells were resistant to several hundred joules of UV irradiation per square meter under conditions that allowed photoreactivation, and they also photoreactivated UV-damaged cyanophage efficiently. Reactivation of UV-irradiated cyanophage (Weigle reactivation) also occurred; UV irradiation of host cells greatly enhanced the plaque-forming ability of irradiated phage under nonphotoreactivating conditions. Postirradiation incubation of the host cells under conditions that allowed photoreactivation abolished the ability of the cells to perform Weigle reactivation of cyanophage N-1. Mitomycin C also induced Weigle reactivation of cyanophage N-1, but nalidixic acid did not. The inducible repair system (defined as the ability to perform Weigle reactivation of cyanophages) was relatively slow and inefficient compared with photoreactivation.  相似文献   

19.
20.
Equilibrium geometries and binding energies of model "salt" or "ion" bridge systems have been computed by ab initio quantum chemistry techniques (GAUSSIAN82) and by empirical force field techniques (AMBER2.0). Formate and dimethyl phosphate served as anions in the model compounds while interacting with several organic cations, including methyl ammonium, methyl guanidinium, and divalent metal ion (either Mg2+ or Ca2+) without and with an additional chloride; and a divalent metal ion (either Mg2+ or Ca2+), chloride, and four water molecules of hydration about the metal ion. The majority of the quantum chemical computations were performed using a split-valence basis set. For the model compounds studied we find that the ab initio optimized geometries are in remarkably good agreement with the molecular mechanics geometries. Several calculations were also performed using diffuse fractions. The formate anion binds these model cations more strongly than does dimethyl phosphate, while the organic cation methyl ammonium binds model anions more strongly than does methyl guanidinium. Finally, in model compounds including organic anions, Mg2+ or Ca2+ and four molecules of water, and a chloride anion, we find that the equilibrium structure of the magnesium complex involves a solvent separated ion pair (the magnesium ion is six coordinate), whereas the calcium ion complex remains seven coordinate. Molecular mechanics overestimates binding energies, but the estimates may be close enough to actual binding energies to give useful insight into the details of salt bridges in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号