首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Stress protection is an important but costly contributor to bacterial survival. Two distinct forms of environmental protection share a common cost and a significant species-wide variability. Porin-mediated outer membrane permeability and the RpoS-controlled general stress response both involve a trade-off between self-preservation and nutritional competence, called the SPANC balance. Interestingly, different Escherichia coli strains exhibit distinct settings of the SPANC balance. It is tilted towards high stress resistance and a restricted diet in some isolates whereas others have broader nutritional capability and better nutrient affinity but lower levels of resistance. Growth- or stress-related selective pressures working in opposite directions (antagonistic pleiotropy) result in polymorphisms affecting porins and RpoS. Consequently, these important cellular components are present at distinct concentrations in different isolates. A generalized hypothesis to explain bacterial adaptation, based on the SPANC investigations, is offered. A holistic approach to bacterial adaptation, involving a gamut of regulation and mutation, is likely to be the norm in broadening the capabilities of a species. Indeed, there is unlikely to be a standard regulatory setting typical for all members of a species. Gene regulation provides a limited fine control for maintaining the right level of adaptation in a particular niche but mutational changes provide the coarse control for adaptation between the species-wide environments of free-living bacteria.  相似文献   

2.
3.
Escherichia coli exhibited different levels of rpoS expression and general stress resistance under aerobiosis and anaerobiosis. Expression measured using reporter gene fusions and protein levels was lower under anaerobic conditions. Consistent with earlier findings, rpoS mutants were selected in aerobic nutrient-limited cultures but rpoS mutants were not enriched under anaerobiosis. This result suggested that, despite its decreased level, RpoS had a function under anaerobic conditions not essential under aerobiosis. Competition experiments between rpoS(+) and rpoS bacteria confirmed the advantage conferred by RpoS under anaerobiosis. In contrast, stress resistance assays suggested RpoS made a greater contribution to general stress resistance under aerobiosis than anaerobiosis. These results indicate a significant, but different role of RpoS in aerobic and anaerobic environments.  相似文献   

4.
The appearance of new mutations is determined by the equilibrium between DNA error formation and repair. In bacteria like Escherichia coli, stresses are thought shift this balance towards increased mutagenesis. Recent findings, however, suggest a very uneven relationship between stress and mutations. Only a subset of stressful environments increase the net rate of mutation and different forms of nutritional stress (such as oxygen, carbon or phosphorus limitations) result in markedly different mutation rates after similar reductions in growth rate. Moreover, different stresses result in altered mutational spectra, with some increasing transposition and others increasing indel formation. Single-base substitution rates are lower with some stresses than in unstressed bacteria. Indeed, changes to the mix of mutations with stress are more widespread than a marked increase in net mutation rate. Much remains to be learned on how environments have unique mutational signatures and why some stresses are more mutagenic than others. Even beyond stress-induced genetic variation, the fundamental unresolved question in the stress–mutation relationship is the adaptive value of different types of mutations and mutation rates; is transposition, for example, more advantageous under anaerobic conditions? It remains to be investigated whether stress-specific genetic variation impacts on evolvability differentially in distinct environments.  相似文献   

5.
The general stress resistance of Escherichia coli is controlled by the RpoS sigma factor (phi(S)), but mutations in rpoS are surprisingly common in natural and laboratory populations. Evidence for the selective advantage of losing rpoS was obtained from experiments with nutrient-limited bacteria at different growth rates. Wild-type bacteria were rapidly displaced by rpoS mutants in both glucose- and nitrogen-limited chemostat populations. Nutrient limitation led to selection and sweeps of rpoS null mutations and loss of general stress resistance. The rate of takeover by rpoS mutants was most rapid (within 10 generations of culture) in slower-growing populations that initially express higher phi(S) levels. Competition for core RNA polymerase is the likeliest explanation for reduced expression from distinct promoters dependent on phi(70) and involved in the hunger response to nutrient limitation. Indeed, the mutation of rpoS led to significantly higher expression of genes contributing to the high-affinity glucose scavenging system required for the hunger response. Hence, rpoS polymorphism in E. coli populations may be viewed as the result of competition between the hunger response, which requires sigma factors other than phi(S) for expression, and the maintenance of the ability to withstand external stresses. The extent of external stress significantly influences the spread of rpoS mutations. When acid stress was simultaneously applied to glucose-limited cultures, both the phenotype and frequency of rpoS mutations were attenuated in line with the level of stress. The conflict between the hunger response and maintenance of stress resistance is a potential weakness in bacterial regulation.  相似文献   

6.
King T  Seeto S  Ferenci T 《Genetics》2006,174(4):2071-2079
Polymorphisms in rpoS are common in Escherichia coli. rpoS status influences a trade-off between nutrition and stress resistance and hence fitness across different environments. To analyze the selective pressures acting on rpoS, measurement of glucose transport rates in rpoS+ and rpoS bacteria was used to estimate the role of F(nc), the fitness gain due to improved nutrient uptake, in the emergence of rpoS mutations in nutrient-limited chemostat cultures. Chemostats with set atmospheres, temperatures, pH's, antibiotics, and levels of osmotic stress were followed. F(nc) was reduced under anaerobiosis, high osmolarity, and with chloramphenicol, consistent with a reduced rate of rpoS enrichment in these conditions. F(nc) remained high, however, with alkaline pH and low temperature but rpoS sweeps were diminished. Under these conditions, F(sp), the fitness reduction due to lowered stress protection, became significant. We also estimated whether the fitness need for the gene was related to its regulation. No consistent pattern emerged between the level of RpoS and the loss of rpoS function in particular environments. This dissection allows an unprecedented view of the genotype-by-environment interactions controlling a mutational sweep and shows that both F(nc) and F(sp) are influenced by individual stresses and that additional factors contribute to selection pressure in some environments.  相似文献   

7.
Prokaryotic and eukaryotic microbes thrive successfully in stressful environments such as high osmolarity, acidic or alkali, solar heat and u.v. radiation, nutrient starvation, oxidative stress, and several others. To live under these continuous stress conditions, these microbes must have mechanisms to protect their proteins, membranes, and nucleic acids, as well as other mechanisms that repair nucleic acids. The stress responses in bacteria are controlled by master regulators, which include alternative sigma factors, such as RpoS and RpoH. The sigma factor RpoS integrates multiple signals, such as the general stress response regulators and the sigma factor RpoH regulates the heat shock proteins. These response pathways extensively overlap and are induced to various extents by the same environmental stresses. In eukaryotes, two major pathways regulate the stress responses: stress proteins, termed heat shock proteins (HSP), which appear to be required only for growth during moderate stress, and stress response elements (STRE), which are induced by different stress conditions and these elements result in the acquisition of a tolerant state towards any stress condition. In this review, the mechanisms of stress resistance between prokaryotic and eukaryotic microbes will be described and compared.  相似文献   

8.
Escherichia coli responds to nutrient exhaustion by entering a state commonly referred to as the stationary phase. Cells entering the stationary phase redirect metabolic circuits to scavenge any available nutrients and become resistant to different stresses. However, many DNA repair pathways are downregulated in stationary-phase cells, which results in increased mutation rates. DNA repair activity generally depends on consumption of energy and often requires de novo proteins synthesis. Consequently, unless stringently regulated during stationary phase, DNA repair activities may lead to an irreversible depletion of energy sources and, therefore to cell death. Most stationary phase morphological and physiological modifications are regulated by an alternative RNA polymerase sigma factor RpoS. However, nutrient availability, and the frequency and nature of stresses, are different in distinct environmental niches, which impose conflicting choices that result in selection of the loss or of the modification of RpoS function. Consequently, DNA repair activity, which is partially controlled by RpoS, is differently modulated in different environments. This results in the variable mutation rates among different E. coli ecotypes. Hence, the polymorphism of mutation rates in natural E. coli populations can be viewed as a byproduct of the selection for improved fitness.  相似文献   

9.
Changes in intracellular cAMP concentration play important roles in Haemophilus influenzae , regulating both sugar utilization and competence for natural transformation. In enteric bacteria, cAMP levels are controlled by the phosphoenolpyruvate:glycose phosphotransferase system (PTS) in response to changes in availability of the preferred sugars it transports. We have demonstrated the existence of a simple PTS in H. influenzae by several methods. We have cloned the H. influenzae ptsI gene, encoding PTS Enzyme I; genome analysis locates it in a pts operon structurally homologous to those of enteric bacteria. In vitro phosphorylation assays confirmed the presence of functional PTS components. A ptsI null mutation reduced fructose uptake to 1% of the wild-type rate, and abolished fructose fermentation even when exogenous cAMP was provided. The ptsI mutation also prevented fermentation of ribose and galactose, but utilization of these cAMP-dependent sugars was restored by addition of cAMP. In wild-type cells the non-metabolizable fructose analogue xylitol prevented fermentation of these sugars, confirming that the fructose PTS regulates cAMP levels. Development of competence under standard inducing conditions was reduced 250-fold by the ptsI mutation, unless cells were provided with exogenous cAMP. Competence is thus shown to be under direct nutritional control by a fructose-specific PTS.  相似文献   

10.
11.
Oxidative stress, through the production of reactive oxygen species, is a natural consequence of aerobic metabolism. Escherichia coli has several major regulators activated during oxidative stress, including OxyR, SoxRS, and RpoS. OxyR and SoxR undergo conformation changes when oxidized in the presence of hydrogen peroxide and superoxide radicals, respectively, and subsequently control the expression of cognate genes. In contrast, the RpoS regulon is induced by an increase in RpoS levels. Current knowledge regarding the activation and function of these regulators and their dependent genes in E. coli during oxidative stress forms the scope of this review. Despite the enormous genomic diversity of bacteria, oxidative stress response regulators in E. coli are functionally conserved in a wide range of bacterial groups, possibly reflecting positive selection of these regulators. SoxRS and RpoS homologs are present and respond to oxidative stress in Proteobacteria, and OxyR homologs are present and function in H(2)O(2) resistance in a range of bacteria, from gammaproteobacteria to Actinobacteria. Bacteria have developed complex, adapted gene regulatory responses to oxidative stress, perhaps due to the prevalence of reactive oxygen species produced endogenously through metabolism or due to the necessity of aerotolerance mechanisms in anaerobic bacteria exposed to oxygen.  相似文献   

12.
13.
Accurate flow of genetic information from DNA to protein requires faithful translation. An increased level of translational errors (mistranslation) has therefore been widely considered harmful to cells. Here we demonstrate that surprisingly, moderate levels of mistranslation indeed increase tolerance to oxidative stress in Escherichia coli. Our RNA sequencing analyses revealed that two antioxidant genes katE and osmC, both controlled by the general stress response activator RpoS, were upregulated by a ribosomal error-prone mutation. Mistranslation-induced tolerance to hydrogen peroxide required rpoS, katE and osmC. We further show that both translational and post-translational regulation of RpoS contribute to peroxide tolerance in the error-prone strain, and a small RNA DsrA, which controls translation of RpoS, is critical for the improved tolerance to oxidative stress through mistranslation. Our work thus challenges the prevailing view that mistranslation is always detrimental, and provides a mechanism by which mistranslation benefits bacteria under stress conditions.  相似文献   

14.
The sigma factor RpoS is essential for stationary-phase-specific, multiple-stress resistance. We compared the viabilities (direct viable counts) and culturabilities (colony counts) in seawater of Escherichia coli and Salmonella typhimurium strains and those in which rpoS was deleted or which were deficient in guanosine 3',5'-bispyrophosphate (ppGpp) synthesis (relA spoT). RpoS, possibly via ppGpp regulation, positively influenced the culturability of these bacteria in oligotrophic seawater. This influence closely depended, however, upon the growth state of the cells and the conditions under which they were grown prior to their transfer to seawater. The protective effect of RpoS was observed only in stationary-phase cells grown at low osmolarity. A previous exposure of cells to high osmolarity (0.5 M NaCl) also had a strong influence on the effect of RpoS on cell culturability in seawater. Both E. coli and S. typhimurium RpoS mutants lost the ability to acquire a high resistance to seawater, as observed in both logarithmic-phase and stationary-phase RpoS+ cells grown at high osmolarity. A previous growth of S. typhimurium cells under anoxic conditions also modulated the incidence of RpoS on their culturability. When grown anaerobically at high osmolarity, logarithmic-phase S. typhimurium RpoS+ cells partly lost their resistance to seawater through preadaptation to high osmolarity. When grown anaerobically at high osmolarity until stationary phase, both RpoS+ and RpoS- cells retained very high levels of both viability and culturability and then did not enter the viable but nonculturable state for over 8 days in seawater because of an RpoS-independent, unknown mechanism.  相似文献   

15.
16.
The expression of gadA and gadB, which encode two glutamate decarboxylases (GADs) of Escherichia coli, is induced by an acidic environment and participate in acid resistance. In this study, we constructed a polyamine-deficient mutant and investigated the role of polyamines in acid resistance. The expression of gadA and gadB was shown to be dependent on polyamines. For that reason, the polyamine-deficient mutant was completely devoid of GAD activity and was very susceptible to low pH if large amounts of polyamines were not provided. We also showed that the polyamine-deficient mutant contained higher cAMP levels than the isogenic polyamine-proficient wild type, and cAMP negatively regulated the expression of gadA and gadB. Therefore, introduction of the cya (encoding adenylate cyclase) mutation allele into the polyamine-deficient mutant resulted in the increment of GAD activity and thus restored the reduced acid resistance of the mutant. The positive regulators, H-NS (histone-like protein, encoded by the hns gene) and RpoS (alternative RNA polymerase sigma subunit, encoded by rpoS gene), also significantly governed the expression of gadA and gadB, respectively. However, polyamines did not regulate either the intracellular H-NS level or rpoS expression under these culture conditions. These results strongly suggest that there are at least two different regulatory systems in acid resistance, one is positive regulation via a H-NS/RpoS system and the other is negative regulation via a polyamine/cAMP system.  相似文献   

17.
Ram Maharjan  Thomas Ferenci 《Genetics》2014,198(3):1231-1235
Stress-induced mutagenesis was investigated in the absence of selection for growth fitness by using synthetic biology to control perceived environmental stress in Escherichia coli. We find that controlled intracellular RpoS dosage is central to a sigmoidal, saturable three- to fourfold increase in mutation rates and associated changes in DNA repair proteins.  相似文献   

18.
To investigate regulatory networks in Legionella pneumophila, the gene encoding the homolog of the Escherichia coli stress and stationary-phase sigma factor RpoS was identified by complementation of an E. coli rpoS mutation. An open reading frame that is approximately 60% identical to the E. coli rpoS gene was identified. Western blot analysis showed that the level of L. pneumophila RpoS increased in stationary phase. An insertion mutation was constructed in the rpoS gene on the chromosome of L. pneumophila, and the ability of this mutant strain to survive various stress conditions was assayed and compared with results for the wild-type strain. Both the mutant and wild-type strains were more resistant to stress when in stationary phase than when in the logarithmic phase of growth. This finding indicates that L. pneumophila RpoS is not required for a stationary-phase-dependent resistance to stress. Although the mutant strain was able to kill HL-60- and THP-1-derived macrophages, it could not replicate within a protozoan host, Acanthamoeba castellanii. These data suggest that L. pneumophila possesses a growth phase-dependent resistance to stress that is independent of RpoS control and that RpoS likely regulates genes that enable it to survive in the environment within protozoa. Our data indicate that the role of rpoS in L. pneumophila is very different from what has previously been reported for E. coli rpoS.  相似文献   

19.
Many bacteria are naturally competent, able to bind and take up DNA from their extracellular environment. This DNA can serve as a significant source of nutrients, in addition to providing genetic material for recombination. The regulation of competence in several model organisms highlights the importance of this nutritional function, although it has often been overlooked. Natural competence is induced by starvation in Haemophilus influenzae, the model for competence regulation in the gamma‐proteobacteria. This induction depends on the activation of the global metabolic regulator CRP, which occurs upon depletion of phosphotransferase sugars. In this work, we show that the depletion of purine nucleotides under competence‐inducing conditions activates the CRP‐dependent competence‐specific regulator Sxy. Depletion of extra‐ or intra‐cellular purine nucleotides activates Sxy translation, while high levels inhibit it. This is modulated by the stem structure formed by sxy mRNA. The exact mechanism by which the nucleotide depletion signal is transduced is unclear, but it does not involve direct binding of purine intermediates to the sxy stem, and does not require Hfq or competence proteins. Similar regulation occurs in the relatives of H. influenzae, Actinobacillus pneumoniae and A. suis, confirming the importance of processes enabling competent bacteria to exploit the abundant DNA in their environments.  相似文献   

20.
The Vibrio harveyi rpoS gene which encodes an alternative sigma factor (sigma(s) or sigma(38)), has been cloned and characterized. The predicted protein sequence is closely related to RpoS proteins in other bacteria with up to 86% sequence identity. A rpoS null mutant of V. harveyi was constructed and the phenotype studied. Comparison of the properties of the V. harveyi wild type and rpoS deletion mutant showed that rpoS affected the ability of the cells to survive only under specific types of environmental stresses. The rpoS null mutant had a lower survival rate compared to the wild type parental strain at high concentrations of ethanol and in the stationary phase. In contrast to other bacteria, deletion of rpoS in V. harveyi did not affect the resistance of the cells to high osmolarity or hydrogen peroxide, suggesting the existence of alternative systems in V. harveyi responsible for resistance to these stresses. RpoS appears not to be involved in the control of luminescence in V. harveyi even though it is implicated in regulation of other acyl-homoserine dependent quorum sensing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号