首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
脂质占人体内源性代谢物的一半以上,种类繁多,结构复杂,因而具有多种生物功能,与多种生命活动密切相关。脂质组学是代谢组学分支的新兴学科,它可以通过比较不同生理状态下脂质含量的变化,寻找代谢通路中关键的脂质生物标志物,最终揭示脂质在各种生命活动中的作用机制。随着质谱技术的进步,脂质组学在疾病脂类生物标志物的识别、疾病诊断、药物作用机制的研究等方面已展现出广泛的应用前景。本文主要就脂质组学近几年的分析方法进展及其在癌症中的最新应用进行了综述。  相似文献   

2.
脂质组学研究方法及其应用   总被引:1,自引:0,他引:1  
脂质不仅是生物膜的骨架成分和能量贮存物质, 越来越多的证据表明, 脂质也参与细胞的许多重要功能。脂质组学是代谢组学的一个重要分支, 主要研究生物体内所有的脂质分子的特性以及它们在蛋白质表达和基因调控过程中的作用。脂质组学是依赖技术驱动的科学。近年来, 随着人们对脂质研究的重视, 脂质组学研究方法和策略有了突破性进展, 在动物上开发出的脂质组学分析方法已经扩展应用到植物上。该文重点介绍脂质组学的研究方法及其应用, 以期推动脂质组学,特别是植物脂质组学的进一步发展。  相似文献   

3.
脂质不仅是生物膜的骨架成分和能量贮存物质,越来越多的证据表明,脂质也参与细胞的许多重要功能。脂质组学是代谢组学的一个重要分支,主要研究生物体内所有的脂质分子的特性以及它们在蛋白质表达和基因调控过程中的作用。脂质组学是依赖技术驱动的科学。近年来,随着人们对脂质研究的重视,脂质组学研究方法和策略有了突破性进展,在动物上开发出的脂质组学分析方法已经扩展应用到植物上。该文重点介绍脂质组学的研究方法及其应用,以期推动脂质组学,特别是植物脂质组学的进一步发展。  相似文献   

4.
Diatoms are very efficient in their use of available nutrients. Changes in nutrient availability influence the metabolism and the composition of the cell constituents. Since diatoms are valuable candidates to search for oil producing algae, measurements of diatom-produced compounds can be very useful for biotechnology. In order to explore the diversity of lipophilic compounds produced by diatoms, we describe the results from an analysis of 13 diatom strains. With the help of a lipidomics platform, which combines an UPLC separation with a high resolution/high mass accuracy mass spectrometer, we were able to measure and annotate 142 lipid species. Out of these, 32 were present in all 13 cultures. The annotated lipid features belong to six classes of glycerolipids. The data obtained from the measurements were used to create lipidomic profiles. The metabolomic overview of analysed cultures is amended by the measurement of 96 polar compounds. To further increase the lipid diversity and gain insight into metabolomic adaptation to nitrogen limitation, diatoms were cultured in media with high and low concentrations of nitrate. The growth in nitrogen-deplete or nitrogen-replete conditions affects metabolite accumulation but has no major influence on the species-specific metabolomic profile. Thus, the genetic component is stronger in determining metabolic patterns than nitrogen levels. Therefore, lipid profiling is powerful enough to be used as a molecular fingerprint for diatom cultures. Furthermore, an increase of triacylglycerol (TAG) accumulation was observed in low nitrogen samples, although this trend was not consistent across all 13 diatom strains. Overall, our results expand the current understanding of metabolomics diversity in diatoms and confirm their potential value for producing lipids for either bioenergy or as feed stock.  相似文献   

5.
Metabolomics, including lipidomics, is emerging as a quantitative biology approach for the assessment of energy flow through metabolism and information flow through metabolic signaling; thus, providing novel insights into metabolism and its regulation, in health, healthy ageing and disease. In this forward-looking review we provide an overview on the origins of metabolomics, on its role in this postgenomic era of biochemistry and its application to investigate metabolite role and (bio)activity, from model systems to human population studies. We present the challenges inherent to this analytical science, and approaches and modes of analysis that are used to resolve, characterize and measure the infinite chemical diversity contained in the metabolome (including lipidome) of complex biological matrices. In the current outbreak of metabolic diseases such as cardiometabolic disorders, cancer and neurodegenerative diseases, metabolomics appears to be ideally situated for the investigation of disease pathophysiology from a metabolite perspective.  相似文献   

6.
Lipidomics is a branch of the field of metabolomics. Although only about a decade since its inception, lipidomics has already had a major influence on the way in which questions about lipid metabolism and signaling are posed. The field is intertwined in the culture and rich history of mass spectrometry. Early work emphasized analytical issues such as limits of detection and numbers of molecular species quantitated in single injections. Increased sophistication in applications of lipidomic analysis and emerging technologies, such as imaging mass spectrometry, are facilitating the study of lipid metabolism and signaling species in cellular functions and human diseases. In the coming years we anticipate a richer understanding of how specific lipid species mediate complex biological processes and interconnections between cellular pathways that were thought to be disparate.  相似文献   

7.
Escherichia coli is among the simplest and best-understood free-living organisms. It has served as a valuable model for numerous biological processes, including cellular metabolism. Just as E. coli stood at the front of the genomic revolution, it is playing a leading role in the development of cellular metabolomics: the study of the complete metabolic contents of cells, including their dynamic concentration changes and fluxes. This review briefly describes the essentials of cellular metabolomics and its fundamental differentiation from biomarker metabolomics and lipidomics. Key technologies for metabolite quantitation from E. coli are described, with a focus on those involving mass spectrometry. In particular emphasis is given to the cell handling and sample preparation steps required for collecting data of high biological reliability, such as fast metabolome quenching. Future challenges, both in terms of data collection and application of the data to obtain a comprehensive understanding of metabolic dynamics, are discussed.  相似文献   

8.
In recent years, lipidomics or lipid profiling, an extension of metabolomics where the lipid complement of a cell, tissue or organism is measured, has been the recipient of increasing attention as a research tool in a range of diverse disciplines including physiology, lipid biochemistry, clinical biomarker discovery and pathology. The advancement of the field has been driven by the development of analytical technologies, and in particular advances in liquid chromatography mass spectrometry and chemometric methods. In this review, we give an overview of the current methods with which lipid profiling is being performed. The benefits and shortcomings of mass spectrometry both in the presence and absence of chromatographic separation techniques such as liquid-, gas- and thin layer chromatography are explored. Alone these techniques have their limitations but through a combination many of the disadvantages may be overcome providing a valuable analytical tool for a variety of disease processes.  相似文献   

9.
Mass spectrometry(MS)-based omics technologies are now widely used to profile small molecules in multiple matrices to confer comprehensive snapshots of cellular metabolic phenotypes.The metabolomes of cells,tissues,and organisms comprise a variety of molecules including lipids,amino acids,sugars,organic acids,and so on.Metabolomics mainly focus on the hydrophilic classes,while lipidomics has emerged as an independent omics owing to the complexities of the organismal lipidomes.The potential roles of lipids and small metabolites in disease pathogenesis have been widely investigated in various human diseases,but system-level understanding is largely lacking,which could be partly attributed to the insufficiency in terms of metabolite coverage and quantitation accuracy in current analytical technologies.While scientists are continuously striving to develop high-coverage omics approaches,integration of metabolomics and lipidomics is becoming an emerging approach to mechanistic investigation.Integration of metabolome and lipidome offers a complete atlas of the metabolic landscape,enabling comprehensive network analysis to identify critical metabolic drivers in disease pathology,facilitating the study of interconnection between lipids and other metabolites in disease progression.In this review,we summarize omics-based findings on the roles of lipids and metabolites in the pathogenesis of selected major diseases threatening public health.We also discuss the advantages of integrating lipidomics and metabolomics for in-depth understanding of molecular mechanism in disease pathogenesis.  相似文献   

10.
Metabolomics is the study of metabolite profiles in biological samples, particularly urine, saliva, blood plasma and fat biopsies. The metabolome is now considered by some to be the most predictive phenotype: consequently, the comprehensive and quantitative study of metabolites is a desirable tool for diagnosing disease, identifying new therapeutic targets and enabling appropriate treatments. A wealth of information about metabolites has been accumulated with global profiling tools and several candidate technologies for metabolomic studies are now available. Many high-throughput metabolomics methodologies are currently under development and have yet to be applied in clinical practice on a routine basis. In the cardiovascular field, few recent metabolomic studies have been reported so far. This minireview provides an updated overview of alternative technical approaches for metabolomics studies and reviews initial applications of metabolomics that relate to both cardiovascular disease and lipid metabolism research.  相似文献   

11.
Environmental metabolomics: a critical review and future perspectives   总被引:1,自引:0,他引:1  
Environmental metabolomics is the application of metabolomics to characterise the interactions of organisms with their environment. This approach has many advantages for studying organism–environment interactions and for assessing organism function and health at the molecular level. As such, metabolomics is finding an increasing number of applications in the environmental sciences, ranging from understanding organismal responses to abiotic pressures, to investigating the responses of organisms to other biota. These interactions can be studied from individuals to populations, which can be related to the traditional fields of ecophysiology and ecology, and from instantaneous effects to those over evolutionary time scales, the latter enabling studies of genetic adaptation. This review provides a comprehensive and current overview of environmental metabolomics research. We begin with an overview of metabolomic studies into the effects of abiotic pressures on organisms. In the field of ecophysiology, studies on the metabolic responses to temperature, water, food availability, light and circadian rhythms, atmospheric gases and season are reviewed. A section on ecotoxicogenomics discusses research in aquatic and terrestrial ecotoxicology, assessing organismal responses to anthropogenic pollutants in both the laboratory and field. We then discuss environmental metabolomic studies of diseases and biotic–biotic interactions, in particular herbivory. Finally, we critically evaluate the contribution that metabolomics has made to the environmental sciences, and highlight and discuss recommendations to advance our understanding of the environment, ecology and evolution using a metabolomics approach.  相似文献   

12.
Lipids have many central physiological roles including as structural components of cell membranes, energy storage sources and intermediates in signaling pathways. Lipid-related disturbances are known to underlie many diseases and their co-morbidities. The emergence of lipidomics has empowered researchers to study lipid metabolism at the cellular as well as physiological levels at a greater depth than was previously possible. The key challenges ahead in the field of lipidomics in medical research lie in the development of experimental protocols and in silico techniques needed to study lipidomes at the systems level. Clinical questions where lipidomics may have an impact in healthcare settings also need to be identified, both from the health outcomes and health economics perspectives. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.  相似文献   

13.
The circadian timing system plays a key role in orchestrating lipid metabolism. In concert with the solar cycle, the circadian system ensures that daily rhythms in lipid absorption, storage, and transport are temporally coordinated with rest-activity and feeding cycles. At the cellular level, genes involved in lipid synthesis and fatty acid oxidation are rhythmically activated and repressed by core clock proteins in a tissue-specific manner. Consequently, loss of clock gene function or misalignment of circadian rhythms with feeding cycles (e.g., in shift work) results in impaired lipid homeostasis. Herein, we review recent progress in circadian rhythms research using lipidomics, i.e., large-scale profiling of lipid metabolites, to characterize circadian-regulated lipid pathways in mammals. In mice, novel regulatory circuits involved in fatty acid metabolism have been identified in adipose tissue, liver, and muscle. Extensive diversity in circadian regulation of plasma lipids has also been revealed in humans using lipidomics and other metabolomics approaches. In future studies, lipidomics platforms will be increasingly used to better understand the effects of genetic variation, shift work, food intake, and drugs on circadian-regulated lipid pathways and metabolic health.  相似文献   

14.
脂质与许多慢性病(如糖尿病、高血压)和精神系统疾病(如阿尔茨海默病)等有关。脂质组学是以现代生物技术为手段,对生物体中的全脂质进行定性和定量的一门新兴学科。目前,生物质谱分析法是对脂质谱进行分析和定量的最有效方法,国内对脂质组学的系统研究还比较匮乏。综述脂质组学的概念与分类,探究不同的生物样品前处理方法,系统介绍近几年国际上生物质谱分析法在脂质组学的应用,并对脂质组学的发展趋势进行展望。  相似文献   

15.
The ability to translate vast amounts of information, as obtained from lipidomic analysis, into the knowledge and understanding of biological phenomena is an important challenge faced by the lipidomics community. While many of the informatics and computational tools from other domains such as bioinformatics and metabolomics are also applicable to lipidomics data processing and analysis, new solutions and strategies are needed for the studies of lipidomes at the systems level. This is due to enormous functional and structural diversity of lipids as well as because of their complex regulation at multiple spatial and temporal scales. In order to better understand the lipidomes at the physiological level, lipids need to be modeled not only at the level of biological pathways but also at the level of the biophysical systems they are part of, such as cellular membranes or lipoprotein particles. Herein the current state, recent advances and new opportunities in the field of lipid bioinformatics are reviewed.  相似文献   

16.
脂质组学研究进展   总被引:4,自引:0,他引:4  
综述了脂质组学的研究现状和发展趋势.脂质组学是对生物体、组织或细胞中的脂质以及与其相互作用的分子进行系统分析的一门新兴学科.脂质具有多种重要的生物功能,脂质代谢异常可引发诸多人类疾病,包括糖尿病、肥胖症、癌症以及神经退行性疾病等.目前,脂质组学研究已成为一个前景广阔的热门领域,并广泛地应用到包括药物研发、分子生理学、分子病理学、功能基因组学、营养学以及环境与健康等重要领域.  相似文献   

17.
Nuclear magnetic resonance (NMR) spectroscopy acts as the best tool that can be used in tissue engineering scaffolds to investigate unknown metabolites. Moreover, metabolomics is a systems approach for examining in vivo and in vitro metabolic profiles, which promises to provide data on cancer metabolic alterations. However, metabolomic profiling allows for the activity of small molecules and metabolic alterations to be measured. Furthermore, metabolic profiling also provides high-spectral resolution, which can then be linked to potential metabolic relationships. An altered metabolism is a hallmark of cancer that can control many malignant properties to drive tumorigenesis. Metabolite targeting and metabolic engineering contribute to carcinogenesis by proliferation, and metabolic differentiation. The resulting the metabolic differences are examined with traditional chemometric methods such as principal component analysis (PCA), and partial least squares-discriminate analysis (PLS-DA). In this review, we examine NMR-based activity metabolomic platforms that can be used to analyze various fluxomics and for multivariant statistical analysis in cancer. We also aim to provide the reader with a basic understanding of NMR spectroscopy, cancer metabolomics, target profiling, chemometrics, and multifunctional tools for metabolomics discrimination, with a focus on metabolic phenotypic diversity for cancer therapeutics.  相似文献   

18.
脂质组学在医药研究中的应用   总被引:2,自引:0,他引:2  
脂质组学是对整体脂质进行系统分析的一门新兴学科,通过比较不同生理状态下脂代谢网络的变化,进而识别代谢调控中关键的脂生物标志物,最终揭示脂质在各种生命活动中的作用机制。电喷雾电离-质谱技术是脂质组学领域中最核心的研究手段,目前已能对各种脂质尤其是磷脂进行高分辨率、高灵敏度、高通量的分析。随着质谱技术的进步,脂质组学在疾病脂生物标志物的识别、疾病诊断、药物靶点及先导化合物的发现和药物作用机制的研究等方面已展现出广泛的应用前景。  相似文献   

19.
The field of lipidomics, as coined in 2003, has made profound advances and been rapidly expanded. The mass spectrometry-based strategies of this analytical methodology-oriented research discipline for lipid analysis are largely fallen into three categories: direct infusion-based shotgun lipidomics, liquid chromatography-mass spectrometry-based platforms, and matrix-assisted laser desorption/ionization mass spectrometry-based approaches (particularly in imagining lipid distribution in tissues or cells). This review focuses on shotgun lipidomics. After briefly introducing its fundamentals, the major materials of this article cover its recent advances. These include the novel methods of lipid extraction, novel shotgun lipidomics strategies for identification and quantification of previously hardly accessible lipid classes and molecular species including isomers, and novel tools for processing and interpretation of lipidomics data. Representative applications of advanced shotgun lipidomics for biological and biomedical research are also presented in this review. We believe that with these novel advances in shotgun lipidomics, this approach for lipid analysis should become more comprehensive and high throughput, thereby greatly accelerating the lipidomics field to substantiate the aberrant lipid metabolism, signaling, trafficking, and homeostasis under pathological conditions and their underpinning biochemical mechanisms.  相似文献   

20.
Metabolomic approaches have the potential to make an exceptional contribution to understanding how chemicals and other environmental stressors can affect both human and environmental health. However, the application of metabolomics to environmental exposures, although getting underway, has not yet been extensively explored. This review will use a SWOT analysis model to discuss some of the strengths, weaknesses, opportunities, and threats that are apparent to an investigator venturing into this relatively new field. SWOT has been used extensively in business settings to uncover new outlooks and identify problems that would impede progress. The field of environmental metabolomics provides great opportunities for discovery, and this is recognized by a high level of interest in potential applications. However, understanding the biological consequence of environmental exposures can be confounded by inter- and intra-individual differences. Metabolomic profiles can yield a plethora of data, the interpretation of which is complex and still being evaluated and researched. The development of the field will depend on the availability of technologies for data handling and that permit ready access metabolomic databases. Understanding the relevance of metabolomic endpoints to organism health vs adaptation vs variation is an important step in understanding what constitutes a substantive environmental threat. Metabolomic applications in reproductive research are discussed. Overall, the development of a comprehensive mechanistic-based interpretation of metabolomic changes offers the possibility of providing information that will significantly contribute to the protection of human health and the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号