首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irradiation with UV light results in damage to the DNA of human cells. The most numerous lesions are pyrimidine dimers; however, other lesions are known to occur and may contribute to the overall deleterious effect of UV irradiation. We have observed evidence of a UV-induced lesion other than pyrimidine dimers in the DNA of human cells by measuring DNA strand breaks induced by irradiating with 313-nm light following UV (254-nm) irradiation. These breaks, measured by alkaline sucrose sedimentation, increased linearly with the dose of UV light over the range tested (10-40 J/m2). The breaks cannot be photolytically induced 5 h after a UV dose of 20 J/m2 in normal cells; however, in xeroderma pigmentosum variant cells, the breaks are inducible for up to 24 h after UV irradiation. Xeroderma pigmentosum group A cells in the same 5-h period show an increase in the number of strand breaks seen with 313-nm light photolysis from about 2 to 4 breaks/10(9) dalton DNA. These breaks can then be induced for up to 24 h. These data suggest that, in normal cells, the lesion responsible for this effect is rapidly repaired or altered; whereas, in xeroderma pigmentosum variant cells it seems to remain unchanged. Some change apparently occurs in the DNA of xeroderma pigmentosum group A cells which results in an increase in photolability. These data indicate a deficiency in DNA repair of xeroderma pigmentosum variant cells as well as in xeroderma pigmentosum group A cells.  相似文献   

2.
We have examined the ability of normal fibroblasts and of excision-deficient xeroderma pigmentosum (XP) and XP variant fibroblasts to perform postreplication DNA repair after increasing doses of either ultraviolet (UV) irradiation or mutagenic benzo(a)pyrene derivatives. XP cells defective in the excision of both UV-induced pyrimidine dimers and guanine adducts induced by treatment with the 7,8-diol-9,10-epoxides of benzo(a)pyrene were partially defective in their ability to synthesize high molecular weight DNA after the induction of both classes of DNA lesions. This defect was more marked in XP variant cells, despite their ability to remove by excision repair both pyrimidine dimers and the diol epoxide-induced lesions to the same degree as observed in normal cells. The benzo(a)pyrene 9,10-oxide had no effect in any of the 3 cell lines. The response of the excision and postreplication DNA repair mechanisms operating in human fibroblasts treated with benzo(a)pyrene 7,8-diol-9,10-epoxides, therefore, appears to resemble closely that seen after the induction of pyrimidine dimers by UV irradiation.  相似文献   

3.
Host-cell reactivation, that is, the degree of survival of Herpes simplex virus after UV irradiation, was high in African green monkey BSC-1 cells, intermediate in normal human fibroblasts and human FL cells, and low in both xeroderma pigmentosum (XP) cells and mouse L cells. However, colony-forming ability after UV was high for FL, normal human fibroblasts and L cells, slightly low for BSC-1 cells and extremely low for XP cells. During the 24-h post-UV incubation period, up to about 50% of the thymine-containing dimers in the acid-insoluble DNA fraction disappeared at an almost equal rate for BSC-1, FL and normal human cells but remained unaltered for the XP cells. Alkaline sucrose gradient centrifugation of DNA after UV irradiation revealed only a slight difference between FL and BSC-1 cells in the kinetics of formation of single-strand breaks and their apparent repair. From these and the previously known characters of L cells possessing reduced excision-repair ability, if any, we may conclude that, if the survival of UV-irradiated Herpes simplex virus on a test line of human or other mammalian cells is as low as that on excisionless XP cells, then it is very probable that the test cell line is defective in excision repair. This reasoning leads to the presumptive conclusion that mouse L cells have an enhanced post-replication repair other than excision repair to deal with UV damage responsible for inactivation of colony-forming ability.  相似文献   

4.
7 strains of human primary fibroblasts were chosen from the complementation groups A through G of xeroderma pigmentosum; these strains are UV-sensitive and deficient in excision repair of UV damage on the criterion of unscheduled DNA synthesis (UDS). They were compared with normal human fibroblasts and one xeroderma pigmentosum variant with regard to their capacity to remove pyrimidine dimers, induced in their DNA by UV at 253.7 nm. The XP variant showed a normal level of dimer removal, whereas 6 of the other XP strains had a greatly reduced capacity to remove this DNA damage, in agreement with their individual levels of UDS. Strain XP230S (complementation group F), however, only showed a 20% reduction in the removal of dimers, which is much less than expected from the low level of UDS in this strain.  相似文献   

5.
We have exposed confluent normal human fibroblasts to ultraviolet (UV) fluences of 5, 14, or 40 J/m2 and monitored the specific activity of post-UV repair synthesis in chromatin with [3H]thymidine pulses. We have shown that under conditions where no semiconservative deoxyribonucleic acid (DNA) synthesis is detectable, the specific activity of repair label in micrococcal nuclease resistant (core particle) DNA is about one-fifth that in bulk DNA at all three UV fluences. On the other hand, the distribution of thymine-containing pyrimidine dimers in bulk and nuclease-resistant regions measured either immediately after irradiation or at later times showed no significant differences; preferential labeling of linker (nuclease-sensitive) DNA during repair synthesis is thus apparently not due to a predominance of UV-induced photoproducts in linker relative to core particle DNA in the nucleosome. Pulse and pulse--chase experiments at 14 or 40 J/m2 with normal human or repair-deficient xeroderma pigmentosum (XP) cells showed that at most 30% of repair label in all these cells shifts from nuclease-sensitive (linker) DNA to nuclease-resistant (core particle) DNA.  相似文献   

6.
Excision repair was measured in normal human and xeroderma pigmentosum group C fibroblasts treated with ultraviolet radiation and the carcinogens acridine mustard (ICR-170) or 4-nitroquinoline 1-oxide (4NQO) by the techniques of unscheduled synthesis, photolysis of bromodeoxyuridine incorporated into parental DNA during repair, and assays of sites sensitive to ultraviolet (UV)-endonuclease. Doses of ICR-170 and 4NQO, low enough not to inhibit unscheduled DNA synthesis (UDS), caused damage to DNA that was repaired by a long patch type mechanism and the rates of UDS decreased rapidly in the first 12 h after treatment. Repair after a combined action of UV plus ICR-170 or UV plus 4NQO was additive in normal cells and no inhibition of loss of endonuclease sensitive sites was detected. In xeroderma pigmentosum (XP) C cells there was less repair after UV plus ICR-170 than after each treatment separately; whereas there was an additive effect after UV plus 4NQO and no inhibition of loss of endonuclease sensitive sites. The results indicate that in normal human fibroblasts there are different rate limiting steps for removal of chemical and physical damages from DNA and that XP cells have a different repair system for ICR-170, not just a lower level, than normal cells. Possibly the same long patch repair system works on 4NQO damage in both normal and XP cells.  相似文献   

7.
《The Journal of cell biology》1984,99(4):1275-1281
The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior to their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. These results suggest that there may be a relationship between the sensitivity of xeroderma pigmentosum cells from each complementation group to specific DNA damaging agents and their inability to regulate nucleotide excision repair during cell stimulation.  相似文献   

8.
9.
DNA synthesized in human cells within the first hour after ultraviolet (UV) irradiation is made in segments of lower molecular weight than in nonirradiated cells. The size of these segments approximates the average distance between pyrimidine dimers in the parental DNA. This suggests that the dimers interrupt normal DNA synthesis and result in gaps in the newly synthesized DNA. However, DNA synthesized in human cells at long times after irradiation is made in segments equal or nearly equal to those synthesized by nonirradiated cells. The recovery of the ability to synthesize DNA in segments of normal size occurs in normal human cells, where the dimers are excised, and also in cells of the human mutants xeroderma pigmentosum (XP), where the dimers remain in the DNA. This observation implies that the pyrimidine dimer may not be the lesion that causes DNA to be synthesized in smaller than normal segments.  相似文献   

10.
Human fibroblasts irradiated with ultraviolet light were either tested for survival (colony formation) or infected with simian virus 40 and examined for transformation (foci formation). For normal cell cultures, the fractions of surviving colonies which were also transformed increased with increasing irradiation dose. In contrast, little increase in the transformation of ultraviolet-irradiated repair-deficient (xeroderma pigmentosum and xeroderma pigmentosum variant) cells was observed. Similar experiments with xeroderma pigmentosum variant cells treated with caffeine following irradiation indicated that, under these conditions, the deficient cells produced more transformants among the survivors of ultraviolet irradiation than did unirradiated cells. These results suggest (1) that DNA repair functions, not DNA damage per se, are required for enhanced viral transformation in normal cells; (2) that functions involved in excision repair and functions needed for replication of ultraviolet-damaged DNA appear necessary for this stimulation; and (3) that blocking DNA replication in ultraviolet-irradiated xeroderma pigmentosum variant cells by caffeine enhances viral transformation.  相似文献   

11.
The proximity of repair patches to persistent pyrimidine dimers in normal human cells and xeroderma pigmentosum group C and D cells was analyzed by sequential digestion of repaired DNA with Micrococcus luteus UV-endonuclease and Escherichia coli DNA polymerase I. Although this enzymatic digestion removed one-third of the pyrimidine dimers, less than 3% of the label associated with repair patches and a similar amount of uniformly labeled DNA were removed. The repair patches therefore appear to be similarly distant from persistent dimers in all cell types, and, in particular, are not adjacent to unexcised dimers in xeroderma pigmentosum group D cells. A previous model that suggested that patches are inserted adjacent to dimers in xeroderma pigmentosum group D cells receives no support from these results.  相似文献   

12.
We have cloned human xeroderma pigmentosum group A complementing (XPAC) cDNA that encodes a "zinc finger" protein with a predicted size of 31 kDa. To detect the xpac protein in cells, we raised antibody against a recombinant human xpac protein. Using this antibody, we identified the xpac protein in the nucleus of cells. In normal human cells, 40- and 38-kDa proteins were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A reduced amount of the smaller protein was detected in XP 39OSSV cells, which show low UV sensitivity, and no xpac proteins were detected in XP 2OSSV cells, which show high UV sensitivity. These levels of xpac proteins in xeroderma pigmentosum cells were determinants of heterogeneity of the DNA repair defect in group A xeroderma pigmentosum. Synthesis of the xpac protein did not increase after UV irradiation.  相似文献   

13.
Effect of Caffeine on Postreplication Repair in Human Cells   总被引:2,自引:0,他引:2       下载免费PDF全文
DNA synthesized shortly after ultraviolet (UV) irradiation of human cells is made in segments that are smaller than normal, but at long times after irradiation the segments made are normal in size. Upon incubation, both the shorter and the normal segments are elongated and joined by the insertion of exogenous nucleotides to form high molecular weight DNA as in nonirradiated cells. These processes occur in normal human cells, where UV-induced pyrimidine dimers are excised, as well as in xeroderma pigmentosum (XP) cells, where dimers are not excised. The effect of caffeine on these processes was determined for both normal human and XP cells. Caffeine, which binds to denatured regions of DNA, inhibited DNA chain elongation and joining in irradiated XP cells but not in irradiated normal human or nonirradiated cells. Caffeine also caused an alteration in the ability to recover synthesis of DNA of normal size at long times after irradiation in XP cells but not in normal cells.  相似文献   

14.
Summary Recombination frequencies for two sets of genetic markers of herpes simplex virus were determined in various host cells with and without ultraviolet irradiation of the virus. UV irradiation increased the recombination frequency in all the cell types studied in direct proportion to the unrepaired lethal damage. In human skin fibroblasts derived from a patient with xeroderma pigmentosum (XP) of complementation group A, a given dose of UV stimulated recombination more than that in fibroblasts from normal individuals. On the other hand, UV stimulation of HSV recombination was slightly less than normal in fibroblasts derived from a patient with a variant form XP and from an ataxia telangiectasia patient. Caffeine, an agent known to inhibit repair of UV damage, reduced recombination in most of the cell types studied but did not suppress the UV-induced increase in recombination. These findings suggest that for virus DNA with the same number of unrepaired UV-lesions, each of the tested cell types promoted HSV-recombination to an equivalent extent.  相似文献   

15.
UV stimulation of DNA-mediated transformation of human cells.   总被引:8,自引:5,他引:3  
Irradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells (complementation groups A and F), which are deficient in the excision repair of UV-induced pyrimidine dimers in the DNA. Also, exposure to UV of the transfected (xeroderma pigmentosum) cells enhanced the transfection efficiency. Removal of the pyrimidine dimers from the DNA by photoreactivating enzyme before transfection completely abolished the stimulatory effect, indicating that dimer lesions are mainly responsible for the observed enhancement. A similar stimulation of the transformation efficiency is exerted by 2-acetoxy-2-acetylaminofluorene modification of the DNA. No stimulation was found after damaging vector DNA by treatment with DNase or gamma rays. These findings suggest that lesions which are targets for the excision repair pathway induce the increase in transformation frequency. The stimulation was found to be independent of sequence homology between the irradiated DNA and the host chromosomal DNA. Therefore, the increase of the transformation frequency is not caused by a mechanism inducing homologous recombination between these two DNAs. UV treatment of DNA before transfection did not have a significant effect on the amount of DNA integrated into the xeroderma pigmentosum genome.  相似文献   

16.
Benzyl chloride (BC) and 4-chloromethylbiphenyl (4CMB) induce a class of alkaline-stable DNA damage in human cells which, like UV-induced pyrimidine dimers, undergoes repair at a slow rate by an excision-repair pathway which can be inhibited by cytosine arabinoside (araC). In the present study, in an attempt to clarify whether BC and 4CMB are UV-like agents, the excision-deficient xeroderma pigmentosum complementation group A fibroblasts and excision-proficient human alveolar tumour cells (A549) were exposed to various doses of these compounds prior to monitoring the inhibition of cell growth, DNA damage and DNA repair. The data indicate that such XP fibroblasts repair BC- and 4CMB-induced DNA damage at a normal rate, which suggests that the alkaline-stable DNA adducts induced by these chloromethyl compounds and the UV-induced pyrimidine dimers are processed by distinct excision-repair mechanisms in human cells.  相似文献   

17.
18.
DNA polymerase η (polη) belongs to the Y-family of DNA polymerases and facilitates translesion synthesis past UV damage. We show that, after UV irradiation, polη becomes phosphorylated at Ser601 by the ataxia-telangiectasia mutated and Rad3-related (ATR) kinase. DNA damage-induced phosphorylation of polη depends on its physical interaction with Rad18 but is independent of PCNA monoubiquitination. It requires the ubiquitin-binding domain of polη but not its PCNA-interacting motif. ATR-dependent phosphorylation of polη is necessary to restore normal survival and postreplication repair after ultraviolet irradiation in xeroderma pigmentosum variant fibroblasts, and is involved in the checkpoint response to UV damage. Taken together, our results provide evidence for a link between DNA damage-induced checkpoint activation and translesion synthesis in mammalian cells.  相似文献   

19.
We have created a cell line that can repair damage in chromosomal DNA and in herpes virus, while not repairing the same damage in shuttle vectors (pZ189 and pRSVcat). This cell line, a xeroderma pigmentosum (XP) revertant, repairs the minor (6-4)-photoproducts, but not cyclobutane dimers, in chromosomal DNA. The phenotype of this revertant after irradiation with ultraviolet (UV) light is the same as that of normal cells for survival, repair replication, recovery of rates of DNA and RNA synthesis, and sister-chromatid exchange formation, which indicates that a failure to mend cyclobutane dimers may be irrelevant to the fate of irradiated human cells. The two shuttle vectors were grown in Escherichia coli and assayed during transient passage in human cells, whereas the herpes virus was grown and assayed exclusively in mammalian cells. The ability of the XP revertant to distinguish between the shuttle vector and herpes virus DNA molecules according to their 'cultural background', i.e., bacterial or mammalian, may indicate that one component of the repair of UV damage involves gene products that recognize DNA markers that are uniquely mammalian, such as DNA methylation patterns. This component of excision repair may be involved in the original defect and the reversion of XP group A cells.  相似文献   

20.
《Mutation Research Letters》1991,262(3):151-157
The extent of DNA-excision repair was determined in human fibroblast strains from clinically normal and xeroderma pigmentosum complementation group A (XP-A) donors after irradiation with 254-nm ultraviolet (UV) light. Repair was monitored by the use of 1-β-d-arabinofuranosylcytosine (araC), a potent inhibitor of DNA synthesis, and alkaline sucrose velocity sedimentation to quantitate DNA single-strand breaks. In this approach, the number of araC-accumulated breaks in post-UV incubated cultures becomes a measure of the efficiency of a particular strain to perform long-patch excision repair. The maximal rate of removal of araC-detectable DNA lesions equalled ∼ 1.8 sites/108 dalton/h in the normal strains (GM38, GM43), while it was more than 10-fold lower in both XP-A strains (XP4LO, XP12BE) examined. In normal fibroblasts the number of lesions removed during the first 4 h after irradiation saturated at ∼ 10 J/m2. In contrast, the residual amount of repair in the excision-deficient cells increased as a linear function of UV fluence over a range 5–120 J/m2. Thus we conclude that the repair of araC-detectable UV photoproducts in XP group A fibroblasts is limited by availability of damaged regions in the genome to repair complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号