首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Acacia gerrardii is the only native tree species of the Kuwaiti desert ecosystem. However, anthropogenic disturbances and harsh arid climate have contributed towards the disappearance of this keystone species from its habitat. In this study, effects of different seed pretreatments to break dormancy, water entry pathway, and ecology (seasonal timing) of dormancy loss and germination of A. gerrardii were investigated. Effects of mechanical scarification, hot water treatment (30 s, 1, 2, and 5 min), and concentrated acid scarification (10, 20, and 30 min) on germination percentage and rate (time to 50% germination and final germination) were also examined. Pretreatment with mechanical scarification produced the highest germination in the least time and 20 °C, 40% RH with 12 h of light (2370 Lux) were found to provide the best germination environment. Seeds were rapidly aged at 60% RH and 45 or 50 °C to determine longevity, and the results were analyzed using probit analysis. Times taken for viability of A. gerrardii seeds aged at 45 and 50 °C to fall to 50% (p50) were 38.6 and 9.3 days, respectively, and therefore the seeds can be considered to have medium longevity. Experiments to find the water entry pathway in A. gerrardii indicated that the micropyle region was the primary point of water entry into the seed. Seed burial experiments indicated that though seed retention decreased over time, there was no significant decrease in number of viable seeds after 31 weeks. The findings of this study are important to nursery managers, seed banks, and those involved in conservation and restoration activities.  相似文献   

2.
Invasive plants have wide-ranging impacts on native systems including reducing native plant richness and altering soil chemistry, microbes, and nutrient cycling. Increasingly, these effects are found to linger long after removal of the invader. We examined how soil chemistry, bacterial communities, and litter decomposition varied with cover of Euonymus fortunei, an invasive evergreen liana, in two central Kentucky deciduous forests. In one forest, E. fortunei invaded in the late 1990s but invasion remained patchy and we paired invaded and uninvaded plots to examine the associations between E. fortunei cover and our response variables. In the second forest, E. fortunei had completely invaded the forest by 2005; areas where it had been selectively removed by 2010 were paired with an adjacent invaded plot. Where E. fortunei had patchily invaded, E. fortunei patches had up to 3.5× nitrogen, 2.7× carbon, and 1.9× more labile glomalin in soils than uninvaded plots, whereas there were no differences in soil characteristics between invaded and removal plots. In the patchily invaded forest, bacterial community composition varied among invaded and non-invaded plots, whereas bacterial communities did not vary among invaded and removal plots. Finally, E. fortunei leaf litter decomposed faster (k = 4.91 year?1) than the native liana (k = 3.77 year?1), Vitis vulpina; decomposition of both E. fortunei and V. vulpina was faster in invaded (k = 7.10 year?1) than removal plots (k = 4.77 year?1). Our findings suggest that E. fortunei invasion increases the rate of leaf litter decomposition via high-quality litter, alters the decomposition environment, and shifts in the soil biotic communities associated with a dense mat of wintercreeper. Land managers with limited resources should target the densest mats for the greatest restoration potential and remove wintercreeper patches before they establish dense mats.  相似文献   

3.
Maize is an economically important crop in northern Mexico. Different fungi cause ear and root rot in maize, including Fusarium verticillioides (Sacc.) Nirenberg. Crop management of this pathogen with chemical fungicides has been difficult. By contrast, the recent use of novel biocontrol strategies, such as seed bacterization with Bacillus cereus sensu lato strain B25, has been effective in field trials. These approaches are not without their problems, since insufficient formulation technology, between other factors, can limit success of biocontrol agents. In response to these drawbacks, we have developed a powder formulation based on Bacillus B25 spores and evaluated some of its characteristics, including shelf life and efficacy against F. verticillioides, in vitro and in maize plants. A talc-based powder formulation containing 1 × 109 c.f.u. g?1 was obtained and evaluated for seed adherence ability, seed germination effect, shelf life and antagonism against F. verticillioides in in vitro and in planta assays. Seed adherence of viable bacterial spores ranged from 1.0 to 1.41 × 107 c.f.u. g?1. Bacteria did not display negative effects on seed germination. Spore viability for the powder formulation slowly decreased over time, and was 53 % after 360 days of storage at room temperature. This formulation was capable of controlling F. verticillioides in greenhouse assays, as well as eight other maize phytopathogenic fungi in vitro. The results suggest that a talc-based powder formulation of Bacillus B25 spores may be sufficient to produce inoculum for biocontrol of maize ear and root rots caused by F. verticillioides.  相似文献   

4.
The carbon (C) dynamics of a bioenergy system are key to correctly defining its viability as a sustainable alternative to conventional fossil fuel energy sources. Recent studies have quantified the greenhouse gas mitigation potential of these bioenergy crops, often concluding that C sequestration in soils plays a primary role in offsetting emissions through energy generation. Miscanthus is a particularly promising bioenergy crop and research has shown that soil C stocks can increase by more than 2 t C ha?1 yr?1. In this study, we use a stable isotope (13C) technique to trace the inputs and outputs from soils below a commercial Miscanthus plantation in Lincolnshire, UK, over the first 7 years of growth after conversion from a conventional arable crop. Results suggest that an unchanging total topsoil (0–30 cm) C stock is caused by Miscanthus additions displacing older soil organic matter. Further, using a comparison between bare soil plots (no new Miscanthus inputs) and undisturbed Miscanthus controls, soil respiration was seen to be unaffected through priming by fresh inputs or rhizosphere. The temperature sensitivity of old soil C was also seen to be very similar with and without the presence of live root biomass. Total soil respiration from control plots was dominated by Miscanthus-derived emissions with autotrophic respiration alone accounting for ~50 % of CO2. Although total soil C stocks did not change significantly over time, the Miscanthus-derived soil C accumulated at a rate of 860 kg C ha?1 yr?1 over the top 30 cm. Ultimately, the results from this study indicate that soil C stocks below Miscanthus plantations do not necessarily increase during the first 7 years.  相似文献   

5.
The N2-fixing shrub Alnus viridis is currently encroaching on montane grasslands in the Alps as a result of reduced land management and complete abandonment. Alnus introduces large amounts of nitrogen (N) into these formerly N-poor grasslands and restricts the succession to montane forests. We studied pools and fluxes of N and the associated C pools in pastures (controls) and adjacent Alnus shrublands at two elevations (1650 versus 1950 m a.s.l.) in three valleys in the Swiss central Alps. The total N and C pools stored in 50-year-old Alnus shrubland did not exceed those in adjacent pastures with a total of approximately 610 g N m?2 in phytomass plus soil (down to 30 cm) at both elevations. In Alnus stands, reduced soil N pools balanced the gain in phytomass N pools, a likely result of a faster turnover of soil N. The soil solution under Alnus was continuously enriched with nitrate, with a total N leaching of 0.79 g N m?2 season?1 (June–October) under 50-year-old stands at both elevations and the highest flux of 1.76 g N m?2 season?1 in 25-year-old shrubland at low elevation, clearly indicating an excess of available N in Alnus shrubland. In contrast, N leaching across all pastures was close to zero (0.08 g N m?2) throughout the season. At the catchment scale, streamlet water showed increased nitrate concentrations with typical flushing peaks in spring and autumn, provided more than one fifth of the catchment area was covered by Alnus shrubs. We conclude that the expansion of Alnus rapidly converts centuries-old, N-poor grassland into N saturated shrubland, irrespective of elevation, and it reduces the C storage potential of the landscape because the Alnus dominance constrains re-establishment of a natural montane forest.  相似文献   

6.
Human activities have recently caused severe destruction of Sphagnum wetlands in subtropical high-mountain regions, calling for urgent efforts to restore Sphagnum wetlands. Through a greenhouse experiment in western Hubei, China, we studied the effects of different substrate types (peat and mountain soil) and different levels of nitrogen (N) (0, 2, 4, 6, 10 g m?2 year?1) and phosphorus (P) (0, 0.2, 0.5, 1, 2 g m?2 year?1) on the growth of Sphagnum palustre, which was evaluated by four growth indicators: length growth, number of capitula, coverage change and biomass. We aimed to determine the optimal nutrient conditions for S. palustre growth, which would contribute to the rapid colonization and restoration of Sphagnum wetlands. The results showed that the different substrates significantly influenced S. palustre growth. Compared with those of peat, the acidic properties of the local yellow brown soil in the subtropical high-mountain regions were more favorable for S. palustre growth. As N addition increased, the four growth indicators responded inconsistently to the different substrates. While the number of capitula markedly increased, the other three indicators significantly decreased in the mountain soil or exhibited no definitive changes in the peat. The addition of P markedly promoted S. palustre growth in both substrates. However, a threshold for P fertilization existed; the highest productivity occurred at P additions of 0.2 and 0.5 g m?2 year?1 in the peat and mountain soil, respectively. The N and P contents in the capitula increased in parallel as the N and P fertilization rates increased, suggesting that these nutrients were absorbed proportionately and were used during the growth of S. palustre.  相似文献   

7.
Single cells of five different Microcystis species (M. ichthyoblabe, M. viridis, M. flos-aquae, M. wesenbergii, and M. aeruginosa) were batch-cultured at different temperatures and light intensities: (a) 25 °C and 50 μmol photons m?2 s?1 (control culture); (b) 25 °C and 10 μmol photons m?2 s?1; and (c) 15 °C and 50 μmol photons m?2 s?1. The extracellular polysaccharide content was significantly higher in treatments b and c than in the control treatment. All Microcystis species existed as single cells under the control treatment but formed colonies in treatments b and c. All of the colonies were irregular with indistinct margins. M. ichthyoblabe, M. viridis, M. flos-aquae, and M. wesenbergii formed colonies with similar morphologies and their cells were loosely aggregated. In contrast, M. aeruginosa formed denser colonies with no distinct holes. The colony morphologies differed from the classic morphology of M. ichthyoblabe field-grown colonies but resembled that of small colonies found in Lake Taihu (Yangtze Delta Plain, China) during early spring. This indicates that field- and laboratory-grown colonies are governed by similar formation processes. We suggest that in laboratory and field environments, M. ichthyoblabe (or M. flos-aquae) colonies are representative of small colonies formed from single Microcystis cells, whereas the morphology of older colonies evolves to resemble M. wesenbergii and M. aeruginosa colonies.  相似文献   

8.
Effects of oxygen transfer on recombinant protein production by Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter were investigated. Recombinant glucose isomerase was chosen as the model protein. Two groups of oxygen transfer strategies were applied, one of which was based on constant oxygen transfer rate where aeration rate was Q O/V = 3 and 10 vvm, and agitation rate was N = 900 min?1; while the other one was based on constant dissolved oxygen concentrations, C DO = 5, 10, 15, 20 and 40 % in the fermentation broth, by using predetermined exponential glucose feeding with μ o = 0.15 h?1. The highest cell concentration was obtained as 44 g L?1 at t = 9 h of the glucose fed-batch phase at C DO = 20 % operation while the highest volumetric and specific enzyme activities were obtained as 4440 U L?1 and 126 U g?1 cell, respectively at C DO = 15 % operation. Investigation of specific enzyme activities revealed that keeping C DO at 15 % was more advantageous with an expense of relatively higher by-product formation and lower specific cell growth rate. For this strategy, the highest oxygen transfer coefficient and oxygen uptake rate were K L a = 0.045 s?1 and OUR = 8.91 mmol m?3 s?1, respectively.  相似文献   

9.
Horse heart carboxymethylated cytc (CM-cytc) displays myoglobin-like properties. Here, the effect of cardiolipin (CL) liposomes on the nitrite reductase activity of ferrous CM-cytc [CM-cytc-Fe(II)], in the presence of sodium dithionite, is reported between pH 5.5 and 7.6, at 20.0 °C. Cytc-Fe(II) displays a very low value of the apparent second-order rate constant for the NO2 ?-mediated conversion of cytc-Fe(II) to cytc-Fe(II)-NO [k on = (7.3 ± 0.7) × 10?2 M?1 s?1; at pH 7.4], whereas the value of k on for NO2 ? reduction by CM-cytc-Fe(II) is 1.1 ± 0.2 M?1 s?1 (at pH 7.4). CL facilitates the NO2 ?-mediated nitrosylation of CM-cytc-Fe(II) in a dose-dependent manner, the value of k on for the NO2 ?-mediated conversion of CL–CM-cytc-Fe(II) to CL–CM-cytc-Fe(II)-NO (5.6 ± 0.6 M?1 s?1; at pH 7.4) being slightly higher than that for the NO2 ?-mediated conversion of CL–cytc-Fe(II) to CL–cytc-Fe(II)-NO (2.6 ± 0.3 M?1 s?1; at pH 7.4). The apparent affinity of CL for CM-cytc-Fe(II) is essentially pH independent, the average value of B being (1.3 ± 0.3) × 10?6 M. In the absence and presence of CL liposomes, the nitrite reductase activity of CM-cytc-Fe(II) increases linearly on lowering pH and the values of the slope of the linear fittings of Log k on versus pH are ?1.05 ± 0.07 and ?1.03 ± 0.03, respectively, reflecting the involvement of one proton for the formation of the transient ferric form, NO, and OH?. These results indicate that Met80 carboxymethylation and CL binding cooperate in the stabilization of the highly reactive heme-Fe atom of CL–CM-cytc.  相似文献   

10.
A recombinant alcohol dehydrogenase (ADH) from Kangiella koreensis was purified as a 40 kDa dimer with a specific activity of 21.3 nmol min?1 mg?1, a K m of 1.8 μM, and a k cat of 1.7 min?1 for all-trans-retinal using NADH as cofactor. The enzyme showed activity for all-trans-retinol using NAD + as a cofactor. The reaction conditions for all-trans-retinol production were optimal at pH 6.5 and 60 °C, 2 g enzyme l?1, and 2,200 mg all-trans-retinal l?1 in the presence of 5 % (v/v) methanol, 1 % (w/v) hydroquinone, and 10 mM NADH. Under optimized conditions, the ADH produced 600 mg all-trans-retinol l?1 after 3 h, with a conversion yield of 27.3 % (w/w) and a productivity of 200 mg l?1 h?1. This is the first report of the characterization of a bacterial ADH for all-trans-retinal and the biotechnological production of all-trans-retinol using ADH.  相似文献   

11.

Objective

To improve the production of trans-10,cis-12-conjugated linoleic acid (t10,c12-CLA) from linoleic acid in recombinant Yarrowia lipolytica.

Results

Cells of the yeast were permeabilized by freeze/thawing. The optimal conditions for t10,c12-CLA production by the permeabilized cells were at 28 °C, pH 7, 200 rpm with 1.5 g sodium acetate l?1, 100 g wet cells l?1, and 25 g LA l?1. Under these conditions, the permeabilized cells produced 15.6 g t10,c12-CLA l?1 after 40 h, with a conversion yield of 62 %. The permeabilized cells could be used repeatedly for three cycles, with the t10,c12-CLA extracellular production remaining above 10 g l?1.

Conclusion

Synthesis of t10,c12-CLA was achieved using a novel method, and the production reported in this work is the highest value reported to date.
  相似文献   

12.

Objectives

To enhance activity of cis-epoxysuccinate hydrolase from Klebsiella sp. BK-58 for converting cis-epoxysuccinate to tartrate.

Results

By semi-saturation mutagenesis, all the mutants of the six important conserved residues almost completely lost activity. Then random mutation by error-prone PCR and high throughput screening were further performed to screen higher activity enzyme. We obtained a positive mutant F10D after screening 6000 mutations. Saturation mutagenesis on residues Phe10 showed that most of mutants exhibited higher activity than the wild-type, and the highest mutant was F10Q with activity of 812 U mg?1 (k cat /K m , 9.8 ± 0.1 mM?1 s?1), which was 230 % higher than that of wild-type enzyme 355 U mg?1 (k cat /K m , 5.3 ± 0.1 mM?1 s?1). However, the thermostability of the mutant F10Q slightly decreased.

Conclusions

The catalytic activity of a cis-epoxysuccinate hydrolase was efficient improved by a single mutation F10Q and Phe10 might play an important role in the catalysis.
  相似文献   

13.
This study examined the co-immobilization of the cyanobacterium Synechococcus elongatus with the plant growth-promoting bacterium Azospirillum brasilense in alginate beads and its potential application for the removal of phosphorus from aquaculture wastewater. Co-immobilization of both microorganisms significantly increased the cell density of S. elongatus (2852.5?×?104 cells mL?1) compared with that of immobilization of cyanobacteria alone (1325.2?×?104 cells mL?1). Chlorophyll a content was similar in co-immobilized (11.1?±?3.5 pg cell?1) and immobilized S. elongatus (14.5?±?4.9 pg cell?1). Azospirillum brasilense showed continuous growth until day 2, after which its cell concentration declined until the end of the assay. Co-immobilized S. elongatus removed more phosphorus (44.8 %) than immobilized cyanobacteria cells alone (32.0 %). In conclusion, phosphate removal was greater with free cells of S. elongatus but overlapped with the values that were obtained with the treatment of co-immobilization of cells. Our results demonstrate that A. brasilense enhances the growth of S. elongatus and improves its removal of phosphorus when they are co-immobilized in alginate beads compared with only immobilization of cyanobacteria cells alone.  相似文献   

14.

Key message

Analysis of sap flux density during drought suggests that the large sapwood and rooting volumes of larger trees provide a buffer against drying soil.

Abstract

The southern conifer Agathis australis is amongst the largest and longest-lived trees in the world. We measured sap flux densities (F d) in kauri trees with a DBH range of 20–176 cm to explore differences in responses of trees of different sizes to seasonal conditions and summer drought. F d was consistently higher in larger trees than smaller trees. Peak F d was 20 and 8 g m?2 s?1 for trees of diameters of 176 and 20 cm, respectively, during the wet summer. Multiple regression analysis revealed photosynthetically active radiation (PAR) and vapour pressure deficit (D) were the main drivers of F d. During drought, larger trees were more responsive to D whilst smaller trees were more responsive to soil drying. Our largest tree had a sapwood area of 3,600 cm2. Preliminary analysis suggests stem water storage provides a buffer against drying soil in larger trees. Furthermore, F d of smaller trees had higher R 2 values for soil moisture at 30 and 60 cm depth than soil moisture at 10 cm depth (R 2 = 0.68–0.97 and 0.55–0.67, respectively) suggesting that deeper soil moisture is more important for these trees. Larger trees did not show a relationship between F d and soil moisture, suggesting they were accessing soil water deeper than 60 cm. These results suggest that larger trees may be better prepared for increasing frequency and intensity of summer droughts due to deeper roots and/or larger stem water storage capacity.
  相似文献   

15.
Inheritance pattern of wood traits viz. specific gravity, fibre dimensions and fibre-derived biometrical indices and their interactions among themselves and with that of growth are reported in Hevea brasiliensis. Girth (h2 =???0.02?±?0.44 to h2 =?0.35?±?0.24) showed moderate genetic control. Among wood traits, specific gravity (h2?=?0.15?±?0.31 to h2 =?0.33?±?0.28) was found to be under moderate genetic control. Fibre traits viz., fibre length (h2 =???0.26?±?0.30 to h2 =?0.50?±?0.34), fibre diameter (h2 =?0.19?±?0.49 to h2 =?0.70?±?0.11), fibre lumen diameter (h2 =???0.18?±?0.35 to h2 =?0.56?±?0.47) and fibre wall thickness (h2 =???5.17?±?5.26 to h2 =?0.50?±?0.50) were under moderate to strong genetic control. Among fibre-derived indices, flexibility coefficient (h2 =?0.48?±?0.21 to h2 =?0.89?±?0.29) showed moderate to very strong genetic control. The Runkel ratio (h2 =???0.40?±?0.27 to h2 =?0.42?±?0.29) and slenderness ratio (h2 =???0.36?±?0.29 to h2 =?0.43?±?0.28) showed moderate genetic control. Girth showed very strong positive genetic correlation with fibre wall thickness and strong positive correlation with fibre width indicating scope of indirect selection potential for these traits. Wood specific gravity was not correlated with either girth or fibre traits. Hence, it would be possible to concomitantly improve growth and fibre traits without adversely affecting wood specific gravity. Moderate to very high estimates of heritability for fibre traits, girth and specific gravity indicated that considerable genetic gain can be realised for these traits. Implications of the above findings in genetic improvement of wood in Hevea are discussed.  相似文献   

16.
Sublethal concentrations of chemical insecticides may cause changes in some behavioral characteristics of natural enemies such as functional responses. The residual effect of three synthetic insecticides including deltamethrin, fenvalerate and azadirachtin were studied on functional response of Habrobracon hebetor Say to Ephestia kuehniella Zeller larvae. Seven host densities (2, 4, 8, 16, 32, 64 and 96) were used during a 24 h period. The resulting data were appropriately fit to Type II functional response models in all treatments: (1) control (0.0916 h?1; and T h  = 0.2011 h); (2) deltamethrin (a = 0.0839 h?1; and T h  = 0.3560 h); (3) fenvalerate (a = 0.0808 h?1 and T h  = 0.3623 h); and (4) azadirachtin (a = 0.0900 h?1 and T h  = 0.2042 h). Maximum theoretical parasitism rate (T/T h ) was 119.34 estimated for control wasps. There was no significant difference between the values of attack rates (a and a + D a ) in all treatments while the handling time was statistically affected in female wasps treated with fenvalerate. Our findings will be useful in safe application of these insecticides in pest management programmes.  相似文献   

17.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

18.
Transgenic hairy roots of Datura spp., established using strain A4 of Agrobacterium rhizogenes, are genetically stable and produce high levels of tropane alkaloids. To increase biomass and tropane alkaloid content of this plant tissue, four Pseudomonas strains, Pseudomonas fluorescens P64, P66, C7R12, and Pseudomonas putida PP01 were assayed as biotic elicitors on transgenic hairy roots of Datura stramonium, Datura tatula, and Datura innoxia. Alkaloids were extracted from dried biomass, and hyoscyamine and scopolamine were quantified using liquid chromatography-tandem mass spectrometry analysis. D. stramonium and D. innoxia biomass production was stimulated by all Pseudomonas spp. strains after a 5-d treatment. All strains of P. fluorescens increased hyoscyamine yields compared to untreated cultures after both 5 and 10 d of treatment. Hyoscyamine yields were highest in D. tatula cultures exposed to a 5-d treatment with C7R12 (16.633 + 0.456 mg g?1 dry weight, a 431% increase) although the highest yield increases compared to the control were observed in D. stramonium cultures exposed to strains P64 (511% increase) and C7R12 (583% increase) for 10 d. D. innoxia showed the highest scopolamine yields after elicitation with P. fluorescens strains P64 for 5 d (0.653 + 0.021 mg g?1 dry weight, a 265% increase) and P66 for 5 and 10 d (5 d, 0.754 + 0.0.031 mg g?1 dry weight, a 321% increase; 10 d 0.634 + 0.046 mg g?1 dry weight, a 277% increase). These results show that the Pseudomonas strains studied here can positively and significantly affect biomass and the yields of hyoscyamine and scopolamine from transgenic roots of the three Datura species.  相似文献   

19.
Drosophila suzukii Matsumura (Diptera: Drosophilidae) is a harmful invasive fruit pest, which is currently spreading in Europe. Since its arrival in 2008, the spotted wing drosophila has caused major losses in several soft-skinned fruit crops. This critical situation urgently requires efficient practices of residue-free pest control. In the present laboratory study, entomopathogenic nematodes (EPNs) were investigated for their ability to infect larvae and pupae of D. suzukii within directly sprayed fruit, fruit placed on soil, and soil. Steinernema feltiae Filipjev (Rhabditida: Steinernematidae), and Steinernema carpocapsae Weiser (Rhabditida: Steinernematidae) were more efficient at infecting soil-pupating host larvae than Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae) at application rates ranging from 25 to 400 EPN cm?2. Applied as a soil drench, S. feltiae and S. carpocapsae were able to infect D. suzukii larvae in the soil as well as hidden inside fruit. Direct application of EPNs on the fruit was less successful, although emergence of flies was significantly reduced.  相似文献   

20.
Carbon balancing within the plant species is an important feature for climatic adaptability. Photosynthesis and respiration traits are directly linked with carbon balance. These features were studied in 20 wild rice accessions Oryza spp., and cultivars. Wide variation was observed within the wild rice accessions for photosynthetic oxygen evolution or photosynthetic rate (A), dark (R d), and light induced respiration (LIR) rates, as well as stomatal density and number. The mean rate of A varied from 10.49 μmol O2 m?2 s?1 in cultivated species and 13.09 μmol O2 m?2 s?1 in wild spp., The mean R d is 2.09 μmol O2 m?2 s?1 and 2.31 μmol O2 m?2 s?1 in cultivated and wild spp., respectively. Light induced Respiration (LIR) was found to be almost twice in wild rice spp., (16.75 μmol O2 m?2 s?1) compared to cultivated Oryza spp., Among the various parameters, this study reveals LIR and A as the key factors for positive carbon balance. Stomatal contribution towards carbon balance appears to be more dependent on abaxial surface where several number of stomata are situated. Correlation analysis indicates that R d and LIR increase with the increase in A. In this study, O. nivara (CR 100100, CR 100097), O. rufipogon (IR 103404) and O. glumaepatula (IR104387) were identified as potential donors which could be used in rice breeding program. Co-ordination between gas exchange and patchiness in stomatal behaviour appears to be important for carbon balance and environmental adaptation of wild rice accessions, therefore, survival under harsh environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号