首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drylands encompass over 40% of terrestrial ecosystems and face significant anthropogenic degradation causing a loss of ecosystem integrity, services, and deterioration of social‐ecological systems. To combat this degradation, some dryland restoration efforts have focused on the use of biological soil crusts (biocrusts): complex communities of cyanobacteria, algae, lichens, bryophytes, and other organisms living in association with the top millimeters of soil. Biocrusts are common in many ecosystems and especially drylands. They perform a suite of ecosystem functions: stabilizing soil surfaces to prevent erosion, contributing carbon through photosynthesis, fixing nitrogen, and mediating the hydrological cycle in drylands. Biocrusts have emerged as a potential tool in restoration; developing methods to implement effective biocrust restoration has the potential to return many ecosystem functions and services. Although culture‐based approaches have allowed researchers to learn about the biology, physiology, and cultivation of biocrusts, transferring this knowledge to field implementation has been more challenging. A large amount of research has amassed to improve our understanding of biocrust restoration, leaving us at an opportune time to learn from one another and to join approaches for maximum efficacy. The articles in this special issue improve the state of our current knowledge in biocrust restoration, highlighting efforts to effectively restore biocrusts through a variety of different ecosystems, across scales and utilizing a variety of lab and field methods. This collective work provides a useful resource for the scientific community as well as land managers.  相似文献   

2.
Restoration and rehabilitation of native vegetation in dryland ecosystems, which encompass over 40% of terrestrial ecosystems, is a common challenge that continues to grow as wildfire and biological invasions transform dryland plant communities. The difficulty in part stems from low and variable precipitation, combined with limited understanding about how weather conditions influence restoration outcomes, and increasing recognition that one‐time seeding approaches can fail if they do not occur during appropriate plant establishment conditions. The sagebrush biome, which once covered over 620,000 km2 of western North America, is a prime example of a pressing dryland restoration challenge for which restoration success has been variable. We analyzed field data on Artemisia tridentata (big sagebrush) restoration collected at 771 plots in 177 wildfire sites across its western range, and used process‐based ecohydrological modeling to identify factors leading to its establishment. Our results indicate big sagebrush occurrence is most strongly associated with relatively cool temperatures and wet soils in the first spring after seeding. In particular, the amount of winter snowpack, but not total precipitation, helped explain the availability of spring soil moisture and restoration success. We also find considerable interannual variability in the probability of sagebrush establishment. Adaptive management strategies that target seeding during cool, wet years or mitigate effects of variability through repeated seeding may improve the likelihood of successful restoration in dryland ecosystems. Given consistent projections of increasing temperatures, declining snowpack, and increasing weather variability throughout midlatitude drylands, weather‐centric adaptive management approaches to restoration will be increasingly important for dryland restoration success.  相似文献   

3.
South Africa’s Succulent Karoo is home to unmatched numbers of dryland plant species. Unfortunately, decades of overstocking these rangelands with small livestock and historical ploughing for fodder have led to extensive degradation. Some areas are severely degraded, negatively affecting both agricultural livestock productivity and ecosystem health. Land degradation reduces land use options and leaves land users, and the ecosystems on which they depend, more vulnerable to environmental and economic stressors. Ecological restoration is promoted as an effective and cost-efficient option for building the resilience of local and regional ecosystems. However, dryland restoration confronts many environmental challenges that have limited its success to date. Here, we present the results of a local-scale participatory restoration trial and an assessment of the costs of regional-scale ecological restoration in the Nama Khoi area in Namaqualand, South Africa. In combination, these analyses are useful for identifying opportunities and barriers for the improved efficiency and effectiveness of dryland restoration. In Namaqualand, we find that ecological restoration is difficult and expensive. The expected impacts of climate change will only exacerbate these challenges. However, we argue that a holistic suite of land management actions that include sound management, the prevention of further degradation, and prudent investments in restoration even where costs are high is likely to be the only real option for sustaining land-based livelihoods in this region over the longer term.  相似文献   

4.
Biological soil crusts (biocrusts) and arbuscular mycorrhizal (AM) fungi are communities of soil organisms often targeted to assist in the achievement of multiple ecological restoration goals. In drylands, benefits conferred from biocrust and AM fungal inoculation, such as improved native plant establishment and soil stabilization, have primarily been studied separately. However, comparisons between these two types of soil inoculants and investigations into potential synergies between them, particularly at the plant community scale, are needed to inform on‐the‐ground management practices in drylands. We conducted two full‐factorial experiments—one in greenhouse mesocosms and one in field plots—to test the effects of AM fungal inoculation, biocrust inoculation, and their interaction on multiple measures of dryland restoration success. Biocrust inoculation promoted soil stabilization and plant drought tolerance, but had mixed effects on native plant diversity (positive in greenhouse, neutral in field) and productivity (negative in greenhouse, neutral in field). In greenhouse mesocosms, biocrust inoculation reduced plant biomass, which was antagonistic to % root length colonized by AM fungi. Inoculation with native or commercial AM fungi did not influence plant establishment, drought tolerance, or soil stabilization in either study, and few synergistic effects of simultaneous inoculation of AM fungi and biocrusts were observed. These results suggest that, depending on the condition of existing soil communities, inoculation with AM fungi may not be necessary to promote dryland restoration goals, while inoculation with salvaged biocrust inoculation may be beneficial in some contexts.  相似文献   

5.
张璐  吕楠  程临海 《生态学报》2023,43(15):6486-6498
在日益加剧的气候变化和土地开垦、放牧等人类活动干扰下,具有多稳态特征的干旱区生态系统可能会经历从相对健康状态到退化状态的稳态转换,导致生态系统的功能下降。早期预警信号的识别是生态系统稳态转换研究的热点,也是管理实践中防止生态系统退化的关键环节。以往预警信号研究聚焦于通用信号如自相关性、方差等统计学指标,然而这些指标对于具有特定机制的干旱区生态系统可能并不适用。基于干旱区景观格局特征所发展起来的空间指标为生态系统稳态转换提供了独特的空间视角,对于理解干旱区生态系统退化过程和机理具有科学意义和实践价值。介绍了干旱区生态系统稳态转换现象及其转换机制;聚焦景观生态学的指标和方法,从空间视角总结基于干旱区景观格局特征的关键预警指标(植被覆盖度、植被斑块形态、植被斑块大小频率分布和水文连通性等),重点剖析这些关键指标的概念、量化方法、识别特征及其实践应用;最后针对指标的优势和局限性对未来的研究方向进行展望,包括发掘潜在景观指标,加强干旱区生态系统变化的多种驱动要素的相互作用机制研究,开展多时空尺度的实证研究,构建生态系统稳态转换预警信号的整体分析框架,以及加强指标阈值的量化研究等方面。  相似文献   

6.
Drylands are one of the most diverse yet highly vulnerable social–ecological systems on Earth. Water scarcity has contributed to high levels of heterogeneity, variability and unpredictability, which together have shaped the long coadaptative process of coupling humans and nature. Land degradation and desertification in drylands are some of the largest and most far-reaching global environmental and social change problems, and thus are a daunting challenge for science and society. In this study, we merged the Drylands Development Paradigm, Holling''s adaptive cycle metaphor and resilience theory to assess the challenges and opportunities for livelihood development in the Amapola dryland social–ecological system (DSES), a small isolated village in the semi-arid region of Mexico. After 450 years of local social–ecological evolution, external drivers (neoliberal policies, change in land reform legislation) have become the most dominant force in livelihood development, at the cost of loss of natural and cultural capital and an increasingly dysfunctional landscape. Local DSESs have become increasingly coupled to dynamic larger-scale drivers. Hence, cross-scale connectedness feeds back on and transforms local self-sustaining subsistence farming conditions, causing loss of livelihood resilience and diversification in a globally changing world. Effective efforts to combat desertification and improve livelihood security in DSESs need to consider their cyclical rhythms. Hence, we advocate novel dryland stewardship strategies, which foster adaptive capacity, and continuous evaluation and social learning at all levels. Finally, we call for an effective, flexible and viable policy framework that enhances local biotic and cultural diversity of drylands to transform global drylands into a resilient biome in the context of global environmental and social change.  相似文献   

7.
Plant–plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant–plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of – and interrelationships among – these factors as drivers of plant–plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modelling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant–plant co-occurrence levels measured. Functional traits, specifically facilitated plants’ height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant–plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant–plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant–plant interactions at broader spatial scales. In our global-scale study on drylands, plant–plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: (1) positive plant–plant interactions are more likely to occur for taller facilitated species in drylands, and (2) plant–plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants.  相似文献   

8.
Precise vegetation restoration is critical in drylands, as some inappropriate restoration attempts have even increased water scarcity and degradation in afforestation areas. Potential natural vegetation (PNV) is widely used to provide a reference for the appropriate location and vegetation type of restoration programs while the appropriate restored areas remain unknown. Therefore, we proposed a PNV–potential normalized difference vegetation index (PNDVI) coupling framework based on multiple machine learning (ML) algorithms for precise dryland vegetation restoration. Taking the lower Tarim River Basin (LTRB) with a total area of 1,182 km2 as a case study, its present suitable restoration locations, area, and appropriate planting species were quantitatively estimated. The results showed that the model developed by incorporating PNDVI into PNV with easily measurable and available data such as temperature and soil properties can accurately identify dryland restoration patterns. In LTRB, the potentially suitable habitats of trees and grass are closer to the riverbank, while shrubby habitats are further away from the course, covering 1.88, 2.96, and 25.12 km2, respectively. There is still enormous land potential for further expansion of the current trees and grass in the LTRB, with 2.56 and 1.54% of existing land supposed to be trees and grass, respectively. This study's novel aspect is combining PNV and PNDVI to quantify and estimate precise restoration patterns through multiple ML algorithms. The model developed here can be used to evaluate the suitable reforestation locations, area, and vegetation types in drylands and to provide a basis for precise vegetation restoration.  相似文献   

9.
Biocrusts' functional importance and vulnerability to disturbance have motivated consistent interest in biocrust restoration, as well as a recent increase in research to cultivate biocrusts in laboratory and greenhouse settings for use in ecological restoration. As part of a sustainable approach to developing biocrust restoration, we argue that a complementary step is to improve and accelerate methods for salvaging biocrusts that would otherwise be destroyed in a forthcoming disturbance. The increasing rate and scale of disturbance pressures in drylands where biocrusts flourish means that the supply of salvageable biocrust and demand for that material in restoration greatly exceed the present cultivable supply. In this article we describe the state of knowledge for biocrust salvage, present a simple set of steps for conducting a salvage harvest, discuss risks and benefits when considering using salvage, and suggest future research directions to facilitate scaling up biocrust restoration using salvaged material. A focus on the use of salvaged biocrust as a restoration source may prove an important step to improve ecological restoration in notoriously difficult to restore dryland ecosystems.  相似文献   

10.
马华  钟炳林  岳辉  曹世雄 《生态学报》2015,35(18):6148-6156
自然修复主要通过封山育林、禁止农作、禁牧禁伐措施,减少人类对环境的扰动,利用自然生态环境的自我演替能力,恢复生态环境,实现生态平衡。自然修复作为一种成本低、无污染的生态修复手段很早就受到人们重视,但关于自然修复适用范围的研究较少。为了正确认识自然修复的适用性,选择了我国南方红壤地区长期遭受严重土壤侵蚀危害的福建省长汀县为研究对象,通过对长期自然修复样地的监测资料分析,发现在坡度条件为20%—30%下,当植被覆盖度低于20%的退化阈值时,严重的土壤侵蚀引发的土壤肥力损失将导致生态系统自我退化,自然修复不仅无法改善当地的生态系统,反而会引起生态系统的进一步恶化。由此可见,自然修复并不适合所有的生态系统,当生态系统退化到一定程度时,退化生态系统必须通过人工干预来修复。因此,必须探索适合当地的生态修复模式,在生态系统退化突破阈值时,红壤丘陵区应通过恢复土壤肥力、促进自然植被覆盖度增加、综合提高生态系统健康水平。  相似文献   

11.
In dry areas, natural plant communities are mainly affected by climatic stress and human disturbances – overgrazing, ploughing and biomass harvesting – that accelerate their degradation. Management techniques, including creation of national parks (fencing), are needed to conserve natural resources/biodiversity. The long‐term effects of protection on the plant communities should be monitored. This study assessed the results of long‐term protection on the composition and diversity of the natural plant communities of Sidi Toui National Park (southern Tunisia) using the point‐quadrat method and ecological indicators of the ecosystem structure. Comparison of these indicators for the period 1990–2011 inside (fenced) and outside (disturbed) the Park showed that regeneration of natural vegetation increased during the first decade of the fencing period (1990–2001), but declined during the period (2008–2011). After a long period of fencing, plant tufts were bigger and aged, and the ecosystem dynamics decreased. In the absence of animal activities, the hardpan at the soil surface impedes seedling emergence. This suggests that long‐term fencing is not recommended for conserving floral diversity in dryland ecosystems. To ensure and maintain the regeneration of these ecosystems, fencing periods alternating with controlled grazing (by introducing wild herbivores) are recommended.  相似文献   

12.
Ecological processes are centered to water availability in drylands; however, less known nutrient stoichiometry can help explain much of their structure and ecological interactions. Here we look to the foliar stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) of 38 dominant plant species from the Sonoran Desert, grouped in four different functional types to describe ecological characteristics and processes. We found that foliar N, C:N, C:P, and N:P stoichiometric ratios, but not P, were higher than those known to most other ecosystems and indicate P but not N limitations in leaves. Biological N fixers (BNF) had even higher leaf N concentrations, but bio-elemental concentrations and stoichiometry ratios were not different to other non-N-fixing legume species which underscores the need to understand the physiological mechanisms for high N, and to how costly BNF can succeed in P-limiting drylands environments. Stoichiometry ratios, and to lesser extent elemental concentrations, were able to characterize BNF and colonizing strategies in the Sonoran Desert, as well as explain leaf attribute differences, ecological processes, and biogeochemical niches in this dryland ecosystem, even when no direct reference is made to other water-limitation strategies.  相似文献   

13.
Dryland ecosystems may be especially vulnerable to expected 21st century increases in temperature and aridity because they are tightly controlled by moisture availability. However, climate impact assessments in drylands are difficult because ecological dynamics are dictated by drought conditions that are difficult to define and complex to estimate from climate conditions alone. In addition, precipitation projections vary substantially among climate models, enhancing variation in overall trajectories for aridity. Here, we constrain this uncertainty by utilizing an ecosystem water balance model to quantify drought conditions with recognized ecological importance, and by identifying changes in ecological drought conditions that are robust among climate models, defined here as when >90% of models agree in the direction of change. Despite limited evidence for robust changes in precipitation, changes in ecological drought are robust over large portions of drylands in the United States and Canada. Our results suggest strong regional differences in long‐term drought trajectories, epitomized by chronic drought increases in southern areas, notably the Upper Gila Mountains and South‐Central Semi‐arid Prairies, and decreases in the north, particularly portions of the Temperate and West‐Central Semi‐arid Prairies. However, we also found that exposure to hot‐dry stress is increasing faster than mean annual temperature over most of these drylands, and those increases are greatest in northern areas. Robust shifts in seasonal drought are most apparent during the cool season; when soil water availability is projected to increase in northern regions and decrease in southern regions. The implications of these robust drought trajectories for ecosystems will vary geographically, and these results provide useful insights about the impact of climate change on these dryland ecosystems. More broadly, this approach of identifying robust changes in ecological drought may be useful for other assessments of climate impacts in drylands and provide a more rigorous foundation for making long‐term strategic resource management decisions.  相似文献   

14.
Urban greenspace has gained considerable attention during the last decades because of its relevance to wildlife conservation, human welfare, and climate change adaptation. Biodiversity loss and ecosystem degradation worldwide require the formation of new concepts of ecological restoration and rehabilitation aimed at improving ecosystem functions, services, and biodiversity conservation in cities. Although relict sites of natural and semi-natural ecosystems can be found in urban areas, environmental conditions and species composition of most urban ecosystems are highly modified, inducing the development of novel and hybrid ecosystems. A consequence of this ecological novelty is the lack of (semi-) natural reference systems available for defining restoration targets and assessing restoration success in urban areas. This hampers the implementation of ecological restoration in cities. In consideration of these challenges, we present a new conceptual framework that provides guidance and support for urban ecological restoration and rehabilitation by formulating restoration targets for different levels of ecological novelty (i.e., historic, hybrid, and novel ecosystems). To facilitate the restoration and rehabilitation of novel urban ecosystems, we recommend using established species-rich and well-functioning urban ecosystems as reference. Such urban reference systems are likely to be present in many cities. Highlighting their value in comparison to degraded ecosystems can stimulate and guide restoration initiatives. As urban restoration approaches must consider local history and site conditions, as well as citizens’ needs, it may also be advisable to focus the restoration of strongly altered urban ecosystems on selected ecosystem functions, services and/or biodiversity values. Ecosystem restoration and rehabilitation in cities can be either relatively inexpensive or costly, but even expensive measures can pay off when they effectively improve ecosystem services such as climate change mitigation or recreation. Successful re‐shaping and re-thinking of urban greenspace by involving citizens and other stakeholders will help to make our cities more sustainable in the future.  相似文献   

15.
恢复及演替过程中的土壤生态学考虑   总被引:3,自引:0,他引:3       下载免费PDF全文
 人类社会的日益扩张,导致人类加速占据地球表面景观,并胁迫地球上生态系统提供不断增长的资源需求和废物吸收能力。所以保护尚未“开放”的自然生态系统及恢复退化的生态系统成为人类长期生存的重要保证。该文着重讨论了恢复过程中的土壤生态学问题。土壤是所有陆地生态系统的结构与功能基础。土壤微生物与动物的种群变化,土壤有机质的积累,及主要元素地球化学循环的改变是恢复生态的重要环节。生态恢复与演替有许多共性,所以演替理论对于认识生态系统恢复中的结构与功能变化有着很大帮助。与自然演替不同的是,人的积极参与在生态恢复中占有中心位置。从最初样地的确立与物种的选择,到后续的灌溉与施肥管理,人的选择影响着土壤的演化,生态系统的发展方向,和最终恢复生态的结果。为保障恢复生态系统的可持续性,短期的工作目标,如提供养分促进植物生长,务必与长期的工作目标,如土壤的恢复相结合。植物与土壤的相互反馈是生态恢复成功的重要标志。成功的生态恢复不仅是对现有生态学理论的“试金检验”,也是推动生态学学科发展的重要原动力。  相似文献   

16.
淡水湖泊生态系统退化驱动因子及修复技术研究进展   总被引:7,自引:0,他引:7  
王志强  崔爱花  缪建群  王海  黄国勤 《生态学报》2017,37(18):6253-6264
目前我国多数淡水湖泊污染、退化问题非常严重,诸多修复技术也已初见成效。影响淡水湖泊生态系统退化的驱动因子众多,既有生物因素也有非生物因素,它们之间相互联系,相互作用,且作用机理错综复杂。首先介绍了淡水湖泊生态系统退化的含义及形式;其次,分析、总结了淡水湖泊生态系统退化的驱动因子,从退化的生态学完整性意义和退化修复的技术手段上看,淡水湖泊生态系统主要受物理、化学和生物三大驱动因子影响,且基本遵循"环境变化-驱动力-压力(阈值)-状态-响应"原理;再次,在厘清湖泊生态系统退化驱动原理的基础上,从淡水湖泊生态系统功能模块和湖泊生态系统修复实践经验总结的角度出发,构建了淡水湖泊生态系统修复模块技术体系,并就湖泊富营养化和湖滨湿地生态系统退化修复的技术进行了讨论和对比;最后,对淡水湖泊生态系统修复的环境变化驱动因子的作用机制、作用途径和修复技术的长效机制等方面进行了展望。  相似文献   

17.
地下生态系统对生态恢复的影响   总被引:1,自引:0,他引:1  
周庆  欧晓昆  张志明 《生态学杂志》2007,26(9):1445-1453
生态系统破坏与退化的加剧使生态恢复成为全球性的挑战课题,近年来生态恢复的研究已逐渐由地上向地下部分转移,地下部分对生态系统退化所起的作用、机理和过程已倍受关注。本文通过探讨恢复生态学的关键概念,从土壤、地下水循环、生物系统3个方面探讨了地下生态系统对生态恢复的作用机理和反馈机制。针对目前的研究现状,指出地下生态系统研究中存在的问题,并提出今后需要深入研究的几个方向:1)生态系统退化程度的诊断及其标准;2)基于诊断标准,针对不同退化生态系统类型选定恢复的目标植物群落,如何改善土壤性质,确定土壤性质的改善程度;确定地下水位及土壤含水量的阈值;如何有效选择、引入和接种土壤生物;3)生态系统地上和地下部分整合及恢复过程中监测指标的确定。  相似文献   

18.
农牧交错带研究进展   总被引:20,自引:0,他引:20  
刘洪来  王艺萌  窦潇  徐敏云  王堃 《生态学报》2009,29(8):4420-4425
农牧交错带是典型的生态脆弱区、贫困区和多民族聚居区,是我国生态安全的重要屏障.综述了农牧交错带发展的历史演变过程,分析了当前农牧交错带农牧业生产所面临的主要问题,建议今后对农牧交错带的研究应集中在以生态学为基础的跨学科研究;其热点领域应集中在农牧交错带生产力生态学、恢复生态学、界面生态学、放牧生态学,农牧交错带的健康诊断和价值评估等方面.其中生产力生态学是提高生产效率的保证,应加强农牧交错带农田草地系统耦合生产方式的研究;恢复生态学是治理退化农牧交错带的基础;界面生态学是剖析退化农牧交错带的切入点;放牧生态学是调控农牧交错带农田草地退化的手段;健康诊断有助于对农牧交错带进行客观的评价;价值评估则是对农牧交错带生态系统效益和服务的估算.  相似文献   

19.
Warm drylands represent 19% of land surfaces worldwide and host ca. 1100 tree species. The risk of decline due to climate aridification of this neglected biodiversity has been overlooked despite its ecological and societal importance. To fill this gap, we assessed the risk of decline due to climate aridification of tree species in warm drylands based on spatialized occurrence data and climate models. We considered both species vulnerability and exposure, compared the risk of tree species decline across five bioregions and searched for phylogenetic correlates. Depending on the future climate model, from 44% to 88% of warm drylands' tree species will undergo climate aridification with a high risk of decline even under the most optimistic conditions. On a regional scale, the rate of species that will undergo climate aridification in the future varies from 21% in the Old World North, to 90% in Australia, with a risk of decline confirming the high level of risk predicted at the global scale. Using generalized linear mixed models, we found that, species more exposed to climate aridification will be more at risk, but also that species vulnerability is a key driver of their risk of decline. Indeed, the warm drylands specialist species will be less at risk due to climate aridification than species being marginal in warm drylands. We also found that the risk of decline is widespread across the main clades of the phylogeny and involves several evolutionary distinct species. Estimating a high risk of decline for numerous tree species in all warm drylands, including emblematic dryland endemics, our work warns that future increase in aridity could result in an extensive erosion of tree biodiversity in these ecosystems.  相似文献   

20.
洞庭湖湿地土壤环境及其对退田还湖方式的响应   总被引:1,自引:0,他引:1  
刘娜  王克林  谢永宏  杨刚  段亚锋 《生态学报》2011,31(13):3758-3766
土壤物理、化学和生物学特性是构成土壤环境的主要组分,综合影响湿地生态系统的调蓄功能和演替恢复。本文以农田(水田和旱地)和自然湿地系统(苔草地和芦苇地)为对照,以3种退田还湖生态系统(种植杨树、芦苇和自然恢复)为研究对象,采用主成分和聚类分析,探索湿地土壤总体环境与生态系统演替过程的相关性。研究结果表明,土壤总体环境与生态系统恢复有很好的一致性。退田还湖为自然水域后,土壤环境的恢复接近于自然湿地系统,在3种退田还湖方式中恢复最好;杨树林地对土壤环境的恢复效果优于人工芦苇地,在一定程度上对湿地土壤环境有所改善,特别是对土壤有机质积累、土壤粘粒形成等过程的改善,但是其土壤环境与苔草等自然湿地发育的土壤仍然有较大差异;因子重要性分析表明水文情势是控制湿地土壤环境恢复的决定性因素,其次是人类干扰强度和方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号