首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Key message

Analysis of sap flux density during drought suggests that the large sapwood and rooting volumes of larger trees provide a buffer against drying soil.

Abstract

The southern conifer Agathis australis is amongst the largest and longest-lived trees in the world. We measured sap flux densities (F d) in kauri trees with a DBH range of 20–176 cm to explore differences in responses of trees of different sizes to seasonal conditions and summer drought. F d was consistently higher in larger trees than smaller trees. Peak F d was 20 and 8 g m?2 s?1 for trees of diameters of 176 and 20 cm, respectively, during the wet summer. Multiple regression analysis revealed photosynthetically active radiation (PAR) and vapour pressure deficit (D) were the main drivers of F d. During drought, larger trees were more responsive to D whilst smaller trees were more responsive to soil drying. Our largest tree had a sapwood area of 3,600 cm2. Preliminary analysis suggests stem water storage provides a buffer against drying soil in larger trees. Furthermore, F d of smaller trees had higher R 2 values for soil moisture at 30 and 60 cm depth than soil moisture at 10 cm depth (R 2 = 0.68–0.97 and 0.55–0.67, respectively) suggesting that deeper soil moisture is more important for these trees. Larger trees did not show a relationship between F d and soil moisture, suggesting they were accessing soil water deeper than 60 cm. These results suggest that larger trees may be better prepared for increasing frequency and intensity of summer droughts due to deeper roots and/or larger stem water storage capacity.
  相似文献   

2.
Coarse woody debris (CWD) plays an important role in long-term carbon storage in forest ecosystems. However, few studies have examined CWD in mangrove forests. A secondary mangrove forest on an estuary of the Trat River showed different structures along vegetation zones ranging from the river’s edge to inland parts of the forest (the SonneratiaAvicennia, Avicennia, Rhizophora, and Xylocarpus zones, respectively). The mass distribution of CWD stock in downed wood and standing dead trees along these vegetation zones was evaluated. Most of the CWD stock in the SonneratiaAvicennia and Avicennia zones was found in downed wood, while it mainly accumulated in standing dead trees in the Rhizophora and Xylocarpus zones. The total mass of CWD stock that accumulated in each zone ranged from 1.56–8.39 t ha?1, depending on the forest structure and inundation regimes. The annual woody debris flux in each zone was calculated by summing the necromass (excluding foliage) of dead trees and coarse litter from 2010 to 2013. The average woody debris flux was 5.4 t ha?1 year?1, and its zonal variation principally depended on the necromass production that resulted from forest succession, high tree-density, and lightning. Over all the zones, the above- and below-ground net primary production (ANPP and BNPP, respectively) was estimated at 18.0 and 3.6 t ha?1 year?1, respectively. The magnitude of BNPP and its contribution to the NPP was markedly increased when fine root production was taken into consideration. The contribution of the woody debris flux without root necromass to the ANPP ranged from 12 to 28%.  相似文献   

3.
Invasive plants have wide-ranging impacts on native systems including reducing native plant richness and altering soil chemistry, microbes, and nutrient cycling. Increasingly, these effects are found to linger long after removal of the invader. We examined how soil chemistry, bacterial communities, and litter decomposition varied with cover of Euonymus fortunei, an invasive evergreen liana, in two central Kentucky deciduous forests. In one forest, E. fortunei invaded in the late 1990s but invasion remained patchy and we paired invaded and uninvaded plots to examine the associations between E. fortunei cover and our response variables. In the second forest, E. fortunei had completely invaded the forest by 2005; areas where it had been selectively removed by 2010 were paired with an adjacent invaded plot. Where E. fortunei had patchily invaded, E. fortunei patches had up to 3.5× nitrogen, 2.7× carbon, and 1.9× more labile glomalin in soils than uninvaded plots, whereas there were no differences in soil characteristics between invaded and removal plots. In the patchily invaded forest, bacterial community composition varied among invaded and non-invaded plots, whereas bacterial communities did not vary among invaded and removal plots. Finally, E. fortunei leaf litter decomposed faster (k = 4.91 year?1) than the native liana (k = 3.77 year?1), Vitis vulpina; decomposition of both E. fortunei and V. vulpina was faster in invaded (k = 7.10 year?1) than removal plots (k = 4.77 year?1). Our findings suggest that E. fortunei invasion increases the rate of leaf litter decomposition via high-quality litter, alters the decomposition environment, and shifts in the soil biotic communities associated with a dense mat of wintercreeper. Land managers with limited resources should target the densest mats for the greatest restoration potential and remove wintercreeper patches before they establish dense mats.  相似文献   

4.
Despite the significance of biological invasions in the Antarctic region, understanding of the rates of spread and impact of introduced species is limited. Such information is necessary to develop and to justify management actions. Here we quantify rates of spread and changes in impact of the introduced wasp Aphidius matricariae Haliday, which parasitizes the invasive aphid Rhopalosiphum padi (L.), on sub-Antarctic Marion Island, to which the wasp was introduced in ca. 2001. Between 2006 and 2011, the wasp had colonised all coastal sites, with an estimated rate of spread of 3–5 km year?1. Adult abundance doubled over the period, while impact, measured as mean percentage parasitism of R. padi, had increased from 6.9 to 30.1 %. Adult wasps have thermal tolerances (LT50s) of between ?18 and 33.8 °C, with a crystallization temperature of ?22.9 °C, and little tolerance (ca. 37 h) of low humidity at 10 °C. Desiccation intolerance is probably limiting for the adult wasps, while distribution of their aphid host likely sets ultimate distributional limits, especially towards higher elevations where R. padi is absent, despite the presence of its host grass on the island, Poa cookii (Hook. f.). Rising temperatures are benefitting P. cookii, and will probably do the same for both R. padi and A. matricariae. Our study shows that once established, spread of introduced species on the island may be rapid, emphasizing the importance of initial quarantine.  相似文献   

5.

Background

Male European seabass, already predominant (~?70%) in cultured stocks, show a high incidence (20–30%) of precocious sexual maturation under current aquaculture practices, leading to important economic losses for the industry. In view of the known modulation of reproductive development by swimming exercise in other teleost species, we aimed at investigating the effects of sustained swimming on reproductive development in seabass males during the first year of life in order to determine if swimming could potentially reduce precocious sexual maturation.

Methods

Pre-pubertal seabass (3.91?±?0.22 g of body weight (BW)) were subjected to a 10 week swimming regime at their optimal swimming speed (Uopt) in an oval-shaped Brett-type flume or kept at rest during this period. Using Blazka-type swim tunnels, Uopt was determined three times during the course of the experiment: 0.66 m s??1 at 19?±?1 g BW, 10.2?±?0.2 cm of standard length (SL) (week 1); 0.69 m s??1 at 38?±?3 g BW, 12.7?±?0.3 cm SL (week 5), and also 0.69 m s??1 at 77?±?7 g BW, 15.7?±?0.5 cm SL (week 9). Every 2 weeks, size and gonadal weight were monitored in the exercised (N?=?15) and non-exercised fish (N?=?15). After 10 weeks, exercised and non-exercised males were sampled to determine plasma 11-ketotestosterone levels, testicular mRNA expression levels of genes involved in steroidogenesis and gametogenesis by qPCR, as well as the relative abundance of germ cells representing the different spermatogenic stages by histological examination.

Results

Our results indicate that sustained swimming exercise at Uopt delays testicular development in male European seabass as evidenced by decreased gonado-somatic index, slower progression of testicular development and by reduced mRNA expression levels of follicle stimulating hormone receptor (fshR), 3-beta-hydroxysteroid dehydrogenase (3βhsd), 11-beta hydroxysteroid dehydrogenase (11βhsd), estrogen receptor-beta (erβ2), anti-mullerian hormone (amh), structural maintenance of chromosomes protein 1B (smc1β), inhibin beta A (inhba) and gonado-somal derived factor 1 (gsdf1) in exercised males as compared with the non-exercised males.

Conclusions

Swimming exercise may represent a natural and non-invasive tool to reduce the incidence of sexually precocious males in seabass aquaculture.
  相似文献   

6.
Inheritance pattern of wood traits viz. specific gravity, fibre dimensions and fibre-derived biometrical indices and their interactions among themselves and with that of growth are reported in Hevea brasiliensis. Girth (h2 =???0.02?±?0.44 to h2 =?0.35?±?0.24) showed moderate genetic control. Among wood traits, specific gravity (h2?=?0.15?±?0.31 to h2 =?0.33?±?0.28) was found to be under moderate genetic control. Fibre traits viz., fibre length (h2 =???0.26?±?0.30 to h2 =?0.50?±?0.34), fibre diameter (h2 =?0.19?±?0.49 to h2 =?0.70?±?0.11), fibre lumen diameter (h2 =???0.18?±?0.35 to h2 =?0.56?±?0.47) and fibre wall thickness (h2 =???5.17?±?5.26 to h2 =?0.50?±?0.50) were under moderate to strong genetic control. Among fibre-derived indices, flexibility coefficient (h2 =?0.48?±?0.21 to h2 =?0.89?±?0.29) showed moderate to very strong genetic control. The Runkel ratio (h2 =???0.40?±?0.27 to h2 =?0.42?±?0.29) and slenderness ratio (h2 =???0.36?±?0.29 to h2 =?0.43?±?0.28) showed moderate genetic control. Girth showed very strong positive genetic correlation with fibre wall thickness and strong positive correlation with fibre width indicating scope of indirect selection potential for these traits. Wood specific gravity was not correlated with either girth or fibre traits. Hence, it would be possible to concomitantly improve growth and fibre traits without adversely affecting wood specific gravity. Moderate to very high estimates of heritability for fibre traits, girth and specific gravity indicated that considerable genetic gain can be realised for these traits. Implications of the above findings in genetic improvement of wood in Hevea are discussed.  相似文献   

7.

Key message

The paper demonstrates the prospects and applications of dendrochronology for understanding climate change effects on riparian forests in the savanna landscape. 

Abstract

Riparian trees in savannas have a potential for dendro-climatic studies, but have been neglected hitherto. We examined ring-width series of Afzelia africana (evergreen) and Anogeissus leiocarpus (deciduous) to study the influence of climatic factors on the growth of riparian trees in the humid (HS) and dry (DS) savanna zones of the Volta basin in Ghana. A total of 31 stem discs belonging to A. africana and A. leiocarpus were selected from HS and DS to establish species-specific local chronologies of tree growth. Each individual of A. africana and A. leiocarpus from the two savanna sites showed distinct growth rings. Cross-dating of individual tree-ring patterns was successful using standard dendrochronological techniques. The mean annual growth rates of A. africana in the HS (1.38 ± 0.09) and DS (1.34 ± 0.08) were not statistically different. Furthermore, mean annual growth rate of A. leiocarpus in the DS (3.75 ± 0.27) was higher than in the HS (2.83 ± 0.16) suggesting that species in drier environment can have higher growth rates when sufficient soil moisture is available. The growth rates of both species at the same sites were different, which might indicate different water use strategies. High correlations of individual tree-ring series of A. africana and A. leiocarpus trees at HS and DS suggest a strong climatic forcing controlled by the seasonal movement of the inter-tropical convergence zone. The annual growth of A. africana and A. leiocarpus at both the HS and DS was significantly correlated with local temperature and precipitation. The negative correlations of the growth of the two tree species to global sea surface temperatures were however, indications that the growth of riparian forests can be impacted during El Niño-Southern Oscillation years. The result of our study shows that riparian trees in the humid and dry savanna zones of West Africa can be successfully used for dendrochronological studies.
  相似文献   

8.

Key message

High root productions, especially in the fine roots, estimated by ingrowth cores were confirmed in mangrove forests. The zonal variation in root production was caused by inundation regime and soil temperature.

Abstract

Mangrove forests have high net primary productivity (NPP), and it is well known that these trees allocate high amounts of biomass to their root systems. In particular, fine root production (FRP) comprises a large component of the NPP. However, information on root production remains scarce. We studied FRP in three zones (Avicennia, Rhizophora, and Xylocarpus) of a mangrove forest in eastern Thailand using ingrowth cores (0–30 cm of soil depth). The root biomass and necromass were periodically harvested from the cores and weighed during the one-year study. The FRP was determined by summation of the fine root biomass (FRB) and root necromass. The results showed that the FRB clearly increased in the wet and cool dry seasons. Magnitude of FRB in the Rhizophora and Xylocarpus zones was 1171.07 and 764.23 g/m2/30 cm, respectively. The lowest FRB (292.74 g/m2/30 cm) was recorded in the Avicennia zone locating on the river edge where there is a greater frequency of inundation than the other zones. Root necromass was high in the Rhizophora and Xylocarpus zones, and accumulated noticeably when soil temperatures rapidly declined during the middle of the wet season to cool dry season. However, root necromass in the Avicennia zone varied within a small range. We attributed the small accumulation of root necromass in the Avicennia zone to the relative high soil temperature that likely caused a high root decomposition rate. The average FRP (3.403–4.079 ton/ha/year) accounted for 74.4, 81.5, and 92.4 % of the total root production in the Avicennia, Rhizophora, and Xylocarpus zone, respectively. The root production and causative factors (i.e., soil temperature and inundation regime) are discussed in relation to the carbon cycle of a mangrove forest.
  相似文献   

9.
Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) is a dominant legume tree species occurring at low elevations of nutrient-poor black-water (igapó) and nutrient-rich white-water floodplain forests (várzea) of Amazonia. As a consequence of the annual long-term flooding this species forms distinct annual tree rings allowing dendrochronological analyses. From both floodplain types in Central Amazonia we sampled cores from 20 large canopy trees growing at identical elevations with a flood-height up to 7 m. We determined tree age, wood density (WD) and mean radial increment (MRI) and synchronized ring-width patterns of single trees to construct tree-ring chronologies for every study site. Maximum tree age found in the igapó was more than 500 years, contrary to the várzea with ages not older than 200 years. MRI and WD were significantly lower in the igapó (MRI=1.52±0.38 mm year?1, WD=0.39±0.05 g cm?3) than in the várzea (MRI=2.66±0.67 mm year?1, WD=0.45±0.03 g cm?3). In both floodplain forests we developed tree-ring chronologies comprising the period 1857–2003 (n=7 trees) in the várzea and 1606–2003 (n=13 trees) in the igapó. The ring-width in both floodplain forests was significantly correlated with the length of the terrestrial phase (vegetation period) derived from the daily recorded water level in the port of Manaus since 1903. In both chronologies we found increased wood growth during El Niño events causing negative precipitation anomalies and a lower water discharge in Amazonian rivers, which leads to an extension of the terrestrial phase. The climate signal of La Niña was not evident in the dendroclimatic proxies.  相似文献   

10.
The introduction and establishment of non-native plant pathogens into new areas can result in severe outbreaks. Septoria leaf spot and canker caused by Sphaerulina musiva is one of the most damaging poplar diseases in northeastern and north-central North America. Stem and branch cankers can be devastating on susceptible trees, leading to tree death and reduced biomass in commercial plantations. In the Pacific Northwest region of North America, the first report of the disease was made in 2006 in the Fraser Valley of British Columbia (BC), Canada. To investigate the incidence and distribution of S. musiva from its point of introduction into BC, five plantations of Populus trichocarpa (black cottonwood), 500 P. trichocarpa trees from natural populations, and 23 plantations of hybrid poplars were surveyed by using real-time PCR assays targeting S. musiva and its native sister species, S. populicola. Our survey suggests a strong anthropogenic signature to the emergence of the non-native S. musiva. Detection frequency of S. musiva was high in hybrid poplar plantations (116 trees infected, 54.2 % of the sampled trees), while detection of the native S. populicola was limited to 13.1 % (22 trees infected). By contrast, in natural stands of P. trichocarpa, less than 2 % of the trees were positive for S. musiva (7 trees) while ~75 % were positive for S. populicola (433 trees). All the S. musiva detections in natural stands of the native P. trichocarpa were from trees located in the vicinity (<2.5 km) of hybrid poplar plantations. Identification of the genotypes found in the hybrid poplar plantations revealed that they are in majority F1 progeny from P. trichocarpa × P. deltoides (T × D) (82 %) and P. nigra × P. maximowiczii (N × M) (7.8 %) crosses, which are generally susceptible (intermediate level of susceptibility between the two parental species) to the canker disease. Our results suggest that the emergence of S. musiva in BC is related to the planting of susceptible hybrid poplars. Even if the disease has not yet established itself in natural poplar populations outside of the Fraser Valley, infected plantations could act as a reservoir that could promote its spread into nearby native P. trichocarpa populations.  相似文献   

11.
The plasticity response of Quercus variabilis and Quercus mongolica seedlings to combined nitrogen (N) deposition and drought stress was evaluated, and their performance in natural niche overlaps was predicted. Seedlings in a greenhouse were exposed to four N deposition levels (0, 4, 8, and 20 g N m?2 year?1) and two water levels (80 and 50 % field-water capacity). Plant traits associated with growth, biomass production, leaf physiology, and morphology were determined. Results showed that drought stress inhibited seedling performance, altered leaf morphology, and decreased fluorescence parameters in both species. By contrast increased N supply had beneficial effects on the nutritional status and activity of the PSII complex. The two species showed similar responses to drought stress. Contrary to the effects in Q. mongolica, N deposition promoted leaf N concentration, PSII activity, leaf chlorophyll contents, and final growth of Q. variabilis under well-watered conditions. Thus, Q. variabilis was more sensitive to N deposition than Q. mongolica. However, excessive N supply (20 g N m?2 year?1) did not exert any positive effects on the two species. Among the observed plasticity of the plant traits, plant growth was the most plastic, and leaf morphology was the least plastic. Therefore, drought stress played a primary role at the whole-plant level, but N supply significantly alleviated the adverse effects of drought stress on plant physiology. A critical N deposition load around 20 g N m?2 year?1 may exist for oak seedlings, which may more adversely affect Q. variabilis than Q. mongolica.  相似文献   

12.
This study aimed to overexpress a glucose oxidase gene (GOD1) in Aureobasidium sp. P6 to achieve Ca2+-gluconic acid (GA) overproduction. The GOD1 gene was cloned, deleted, and overexpressed. A protein deduced from the GOD1 gene of Aureobasidium sp. P6 strain had 1824 bp that encoded a protein with 606 amino acids, with a conserved NADB-ROSSMAN domain and a GMC-oxred domain. Deleting the GOD1 gene made the disruptant GOK1 completely lose the ability to produce GA and GOD1 activity, whereas overexpressing the GOD1 gene rendered the transformant GOEX8 to produce considerably more Ca2+-GA (160.5?±?5.6 g/L) and higher GOD1 activity (1438.6?±?73.2 U/mg of protein) than its parent P6 strain (118.7?±?4.3 g/L of Ca2+-GA and 1100.0?±?23.6 U/mg of GOD1 protein). During a 10-L fermentation, the transformant GOEX8 grown in the medium containing 160.0 g/L of glucose produced 186.8?±?6.0 g/L of Ca2+-GA, the yield was 1.2 g/g of glucose, and the volumetric productivity was 1.7 g/L/h. Most of the produced GOD1 were located in the yeast cell wall. The purified product was identified to be a GA. The transformant GOEX8 overexpressing the GOD1 gene could produce considerably more Ca2+-GA (186.8?±?6.0 g/L) than its wild-type strain P6.  相似文献   

13.
Heparinases are widely used for production of clinically and therapeutically important bioactive oligosaccharides and in analyzing the polydisperse, heterogeneous, and complex structures of heparin/heparan sulfate. In the present study, the gene (1911 bp) encoding heparinase II/III of family 12 polysaccharide lyase (PsPL12a) from Pseudopedobacter saltans was cloned, expressed, and biochemically and functionally characterized. The purified enzyme PsPL12a of molecular size approximately 76 kDa exhibited maximum activity in the temperature range 45–50 °C and at pH 6.0. PsPL12a gave maximum activity at 1% (w/v) heparin under optimum conditions. The kinetic parameters, K m and Vmax, for PsPL12a were 4.6?±?0.5 mg/ml and 70?±?2 U/mg, respectively. Ten millimolars of each Mg2+ and Mn2+ ions enhanced PsPL12a activity by 80%, whereas Ni2+ inhibited by 75% and Co2+ by 10%, and EDTA completely inactivated the enzyme. Protein melting curve of PsPL12a gave a single peak at 55 °C and 10 mM Mg2+ ions and shifted the peak to 60 °C. The secondary structure analysis of PsPL12a by CD showed 65.12% α-helix, 11.84% β-strand, and 23.04% random coil. The degradation products of heparin by PsPL12a analyzed by ESI-MS spectra displayed peaks corresponding to heparin di-, tetra-, penta-, and hexa-saccharides revealing the endolytic mode of enzyme action. Heparinase II/III (PsPL12a) from P. saltans can be used for production of low molecular weight heparin oligosaccharides for their utilization as anticoagulants. This is the first report on heparinase cloned from P. saltans.  相似文献   

14.
Growth models describe the change in length or weight as a function of age. Growth curves in tunas can take different forms from relatively simple von Bertalanffy growth curves (Atlantic bluefin, albacore tunas) to more complex two- or three-stanza growth curves (yellowfin, bigeye, skipjack, southern bluefin tunas). We reviewed the growth of the principal market tunas (albacore, bigeye, skipjack, yellowfin and the three bluefin tuna species) in all oceans to ascertain the different growth rates among tuna species and their implications for population productivity and resilience. Tunas are among the fastest-growing of all fishes. Compared to other species, tunas exhibit rapid growth (i.e., relatively high K) and achieve large body sizes (i.e., high L ). A comparison of their growth functions reveals that tunas have evolved different growth strategies. Tunas attain asymptotic sizes (L ), ranging from 75 cm FL (skipjack tuna) to 400 cm FL (Atlantic bluefin tuna), and reach L at different rates (K), varying from 0.95 year?1 (skipjack tuna) to 0.05 year?1 (Atlantic bluefin tuna). Skipjack tuna (followed by yellowfin tuna) is considered the “fastest growing” species of all tunas. Growth characteristics have important implications for population dynamics and fisheries management outcomes since tunas, and other fish species, with faster growth rates generally support higher estimates of Maximum Sustainable Yield (MSY) than species with slower growth rates.  相似文献   

15.
Bioenergy crops have a secondary benefit if they increase soil organic C (SOC) stocks through capture and allocation below-ground. The effects of four genotypes of short-rotation coppice willow (Salix spp., ‘Terra Nova’ and ‘Tora’) and Miscanthus (M.?×?giganteus (‘Giganteus’) and M. sinensis (‘Sinensis’)) on roots, SOC and total nitrogen (TN) were quantified to test whether below-ground biomass controls SOC and TN dynamics. Soil cores were collected under (‘plant’) and between plants (‘gap’) in a field experiment on a temperate agricultural silty clay loam after 4 and 6 years’ management. Root density was greater under Miscanthus for plant (up to 15.5 kg m?3) compared with gap (up to 2.7 kg m?3), whereas willow had lower densities (up to 3.7 kg m?3). Over 2 years, SOC increased below 0.2 m depth from 7.1 to 8.5 kg m?3 and was greatest under Sinensis at 0–0.1 m depth (24.8 kg m?3). Miscanthus-derived SOC, based on stable isotope analysis, was greater under plant (11.6 kg m?3) than gap (3.1 kg m?3) for Sinensis. Estimated SOC stock change rates over the 2-year period to 1-m depth were 6.4 for Terra Nova, 7.4 for Tora, 3.1 for Giganteus and 8.8 Mg ha?1 year?1 for Sinensis. Rates of change of TN were much less. That SOC matched root mass down the profile, particularly under Miscanthus, indicated that perennial root systems are an important contributor. Willow and Miscanthus offer both biomass production and C sequestration when planted in arable soil.  相似文献   

16.
Fundulus grandis (Baird and Girard), the Gulf Killifish, is an abundant species throughout the marshes of the northern Gulf of Mexico. Its wide distribution and high site fidelity makes it an ideal indicator species for brackish and salt marshes, which experience a variety of anthropogenic disturbances. Despite the ecological, commercial, and scientific importance of F. grandis, age determination methods have not been validated and little is known of its growth pattern. By combining a tag-recapture study with a chemical marker to stain otoliths, we validated an ageing method for F. grandis adults (49–128 mm TL) using whole sagittal otoliths and determined growth rates of recaptured individuals in winter (n = 58) and summer (n = 36) in Louisiana. Mean somatic growth in length was significantly greater during the winter (0.085 mm d?1) than summer (0.054 mm d?1). In contrast, mean otolith growth was significantly greater in summer (1.37 μm d?1) than winter (0.826 μm d?1). The uncoupling of somatic and otolith growth may be primarily attributed to warm summer temperatures, which led to enhanced otolith growth while simultaneously reducing somatic growth. Fundulus grandis was aged to a maximum of 2.25 years. The parameters of the von Bertalanffy growth model were estimated as: L  = 87.27 mm, k = 2.43 year?1, and t 0 = ?0.022. These findings reveal essential age and growth information for F. grandis and provide a benchmark to evaluate responses to environmental disturbances.  相似文献   

17.
A novel Gram-stain positive, aerobic, short rod-shaped, non-motile bacterium, designated strain CHO1T, was isolated from rhizosphere soil from a ginseng agriculture field. Strain CHO1T was observed to form yellow colonies on R2A agar medium. The cell wall peptidoglycan was found to contain alanine, glycine, glutamic acid, d-ornithine and serine. The cell wall sugars were identified as galactose, mannose, rhamnose and ribose. Strain CHO1T was found to contain MK-11, MK-12, MK-13 as the predominant menaquinones and anteiso-C15:0, iso-C16:0, and anteiso-C17:0 as the major fatty acids. Diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, an unidentified phospholipid and three unidentified glycolipids were found to be present in strain CHO1T. Based on 16S rRNA gene sequence analysis, strain CHO1T was found to be closely related to Microbacterium mangrovi DSM 28240T (97.81 % similarity), Microbacterium immunditiarum JCM 14034T (97.45 %), Microbacterium oryzae JCM 16837T (97.33 %) and Microbacterium ulmi KCTC 19363T (97.10 %) and to other species of the genus Microbacterium. The DNA G+C content of CHO1T was determined to be 70.1 mol %. The DNA–DNA hybridization values of CHO1T with M. mangrovi DSM 28240T, M. immunditiarum JCM 14034T, M. oryzae JCM 16837T and M. ulmi KCTC 19363T were 46.7 ± 2, 32.4 ± 2, 32.0 ± 2 and 29.2 ± 2 %, respectively. On the basis of genotypic, phenotypic and phylogenetic properties, it is concluded that strain CHO1T represents a novel species within the genus Microbacterium, for which the name Microbacterium rhizosphaerae sp. nov. is proposed. The type strain of M. rhizosphaerae is CHO1T (= KEMB 7306-513T = JCM 31396T).  相似文献   

18.
Horse heart carboxymethylated cytc (CM-cytc) displays myoglobin-like properties. Here, the effect of cardiolipin (CL) liposomes on the nitrite reductase activity of ferrous CM-cytc [CM-cytc-Fe(II)], in the presence of sodium dithionite, is reported between pH 5.5 and 7.6, at 20.0 °C. Cytc-Fe(II) displays a very low value of the apparent second-order rate constant for the NO2 ?-mediated conversion of cytc-Fe(II) to cytc-Fe(II)-NO [k on = (7.3 ± 0.7) × 10?2 M?1 s?1; at pH 7.4], whereas the value of k on for NO2 ? reduction by CM-cytc-Fe(II) is 1.1 ± 0.2 M?1 s?1 (at pH 7.4). CL facilitates the NO2 ?-mediated nitrosylation of CM-cytc-Fe(II) in a dose-dependent manner, the value of k on for the NO2 ?-mediated conversion of CL–CM-cytc-Fe(II) to CL–CM-cytc-Fe(II)-NO (5.6 ± 0.6 M?1 s?1; at pH 7.4) being slightly higher than that for the NO2 ?-mediated conversion of CL–cytc-Fe(II) to CL–cytc-Fe(II)-NO (2.6 ± 0.3 M?1 s?1; at pH 7.4). The apparent affinity of CL for CM-cytc-Fe(II) is essentially pH independent, the average value of B being (1.3 ± 0.3) × 10?6 M. In the absence and presence of CL liposomes, the nitrite reductase activity of CM-cytc-Fe(II) increases linearly on lowering pH and the values of the slope of the linear fittings of Log k on versus pH are ?1.05 ± 0.07 and ?1.03 ± 0.03, respectively, reflecting the involvement of one proton for the formation of the transient ferric form, NO, and OH?. These results indicate that Met80 carboxymethylation and CL binding cooperate in the stabilization of the highly reactive heme-Fe atom of CL–CM-cytc.  相似文献   

19.
Phycobiliproteins, light-harvesting pigments found in cyanobacteria and in some eukaryotic algae, have numerous commercial applications in food, cosmetic, and pharmaceutical industries. Colorant production from cyanobacteria offers advantages over their production from higher plants, as cyanobacteria have fast growth rate and high photosynthetic efficiency and require less space. In this study, three cyanobacteria strains were studied for phycobiliprotein production and the influence of sodium nitrate, potassium nitrate and ammonium chloride on the growth and phycobiliprotein composition of the strains were evaluated. In the batch culture period of 12 days, Phormidium sp. and Pseudoscillatoria sp. were able to utilize all tested nitrogen sources; however, ammonium chloride was the best nitrogen source for both strains to achieve maximum growth rate μ?=?0.284?±?0.03 and μ?=?0.274?±?0.13 day?1, chlorophyll a 16.2?±? 0.5 and 12.2?±? 0.2 mg L?1, and phycobiliprotein contents 19.38?±?0.09 and 19.99?±?0.14% of dry weight, whereas, for Arthrospira platensis, the highest growth rate of μ?=?0.304?±?0.0 day?1, chlorophyll a 19.1?±?0.5 mg L?1, and phycobiliprotein content of 22.27?±?0.21% of dry weight were achieved with sodium nitrate. The phycocyanin from the lyophilized cyanobacterial biomass was extracted using calcium chloride and food grade purity (A620/A280 ratio >?0.7) was achieved. Furthermore, phycocyanin was purified using two-step chromatographic method and the analytical grade purity (A620/A280 ratio >?4) was attained. SDS-PAGE demonstrated the purity and presence of two bands corresponding to α- and β-subunits of the C-phycocyanin. The results showed that Phormidium sp. and Pseudoscillatoria sp. could be good candidates for phycocyanin production.  相似文献   

20.

Objective

To engineer Pichia pastoris for heterologous production of cellulase from Musca domestica and explore its potential for industrial applications.

Results

A new beta-glucosidase gene (bg), encoding 562 amino acids, was cloned from M. domestica by using rapid amplification of cDNA ends. The gene bg was linked to pPICZαA and expressed in P. pastoris with a yield of 500 mg l?1. The enzyme has the maximum activity with 27.6 U mg?1 towards cellulose. The beta-glucosidase has stable activity from 20 to 70 °C and can tolerate one-mole glucose. It has the maximum activities for salicin (25.9 ± 1.8 U mg?1), cellobiose (40.1 ± 2.3 U mg?1) and cellulose (27.6 ± 3.5 U mg?1). The wide-range substrate activities of the beta-glucosidase were further verified by matrix-assisted laser desorption/ionization mass spectra. Structural analysis shows that the beta-glucosidase belongs to glycoside hydrolase family Ι and possesses O-glycosylation sites.

Conclusions

Thus, a multifunctional beta-glucosidase was expressed from M. domestica and provides a potential tool for industrial application of cellulose.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号