首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
It has proved difficult to activate skinned muscle fibers to produce high tension (3 kg/cm2 level) without loss of clear striations. A new method was developed which permits high tension production in skinned muscle fibers while retaining clear striations. Clear striations allow reliable measurement of the sarcomere lengths during contraction by microscopy and diffractometry. The method is to increase the Ca++ concentration of the bathing solution very gradually over a time period of 5 to 10 minutes. Once the skinned fiber is conditioned by this slow activation, subsequent contractions can be elicited by ordinary quick activations without loss of striations. When the experiments are carried out with careful controls for the uniformity of the sarcomere length distribution along the entire length of the fiber, contractions are highly repeatable. Using the new method and stringent quality control of fibers, the sarcomere length-isometric tension relationship of skinned rabbit soleus fibers was obtained. The results differ from those previously obtained by conventional activation methods in that tension increases with sarcomere length not only at low (pCa = 5.8), but also at high (pCa = 5.2), calcium concentration.  相似文献   

4.
  相似文献   

5.
We analyzed the microstructure in the first-order laser diffraction line from both resting and tetanically contracting single twitch fibers from frog anterior tibial muscle to see if the distribution of sarcomere lengths is continuous or discrete. Measuring the distance between adjacent microstructural elements lying parallel, we plotted a histogram of the corresponding differences of sarcomere length. The histograms obtained both from resting and contracting fibers had a prominent peak at approximately 12-14 nm. The result suggests that the sarcomere length distribution may be discrete with unit separation of approximately 12-14-nm sarcomere length.  相似文献   

6.
7.
8.
9.
Existing models describing sarcomere assembly have arisen primarily from studies using cardiac muscle. In contrast to cardiac muscle, skeletal muscle differentiation is characterised by dramatic changes in protein expression, from non-muscle to muscle-specific isoforms before organisation of the sarcomeres. Consequently, little is understood of the potential influence of non-muscle cytoskeletal proteins on skeletal sarcomere assembly. To address this issue, transfectant (gamma33-B1) and control mouse C2 myoblasts were differentiated to form myotubes, and various stages of skeletal sarcomere assembly were studied. Organisation of non-muscle gamma-actin and co-localisation with sarcomeric alpha-actinin, an early marker of sarcomere assembly and a major component of Z lines, was noted. gamma-Actin was also identified in young myotubes with developing sarcomeric myofibrils in regenerating adult mouse muscle. Localisation of gamma-actin in a different area of the myotube to the muscle-specific sarcomeric alpha-actin also indicated a distinct role for gamma-actin. The effects of aberrant gamma-actin expression in other myoblast lines, further suggested a sequestering role for gamma-actin. These observations make the novel suggestion that non-muscle gamma-actin plays a role in skeletal sarcomere assembly both in vitro and in vivo. Consequently, a modified model is proposed which describes the role of gamma-actin in skeletal sarcomere assembly.  相似文献   

10.
The active length-tension relation was determined for the left digastric muscle of seven New Zealand White rabbits anesthetized with pentobarbital. Measurements of muscle length and fiber architecture were made from photographs of resting and actively contracting muscle. There was a marked difference between length-tension curves based upon resting as compared to active muscle length. The active length-tension relation had a longer descending limb than ascending limb, whereas the length-tension relation based on passive muscle length tended to be symmetrical around optimum length. On the average, muscle fibers lengthened 0.77 mm for each 1 mm of extension of the muscle belly. Since the rabbit digastric muscle is unipinnate, this suggests that pinnation serves to enhance the range of muscle excursion in this muscle.  相似文献   

11.
A position-sensitive optical diffractometer has been used to examine the diffraction spectra produced by single skeletal muscle fibers during twitch and tetanic contraction. First-order diffraction lines were computer-analyzed for mean sarcomere length, line intensity, and percent dispersion in sarcomere length. Line intensity was observed to decrease rapidly by about 60 percent during a twitch, with an exponential recovery to resting intensity persisting well beyond cessation of sarcomere shortening; recovery was particularly prolonged at zero myofilament overlap. A number of single fibers at initial lengths from 2.5 to 3.5 MICRON EXHIBITED a splitting of the first-order line into two or more components during relaxation, with components merging back into a single peak by 200 ms after stimulation. This splitting reflects the asynchronous nature of myofibrillar relaxation within a single fiber. During tetanus, the dispersion decreased by more than 10 percent from onset to plateau, implying a gradual stabilization of sarcomeres.  相似文献   

12.
The isometric length-tension diagram for individual fibers and for whole muscle is considered, and it is proposed that the tensionp may be represented for any muscle whose fibers are parallel and not in series, in the form
$$p = f\left( x \right) + \beta \phi \left( {\alpha ,l,x} \right),$$  相似文献   

13.
During partial Ca2+ activation, skinned cardiac cells with sarcoplasmic reticulum destroyed by detergent developed spontaneous tension oscillations consisting of cycles (0.1-1 Hz) of rapid decrease of tension corresponding to the yield of some sarcomeres and slow redevelopment of tension corresponding to the reshortening of these sarcomeres. Such myofilament-generated tension oscillations were never observed during the full activation induced by a saturating [free Ca2+] or during the rigor tension induced by decreasing [MgATP] in the absence of free Ca2+ or when the mean sarcomere length (SL) of the preparation was greater than 3.10 microm during partial Ca2+ activation. A stiff parallel elastic element borne by a structure that could be digested by elastase hindered the study of the SL--active tension diagram in 8-13-microm-wide skinned cells from the rat ventricle, but this study was possible in 2-7-microm-wide myofibril bundles from the frog or dog ventricle. During rigor the tension decreased linearly when SL was increased from 2.35 to 3.80 microm. During full Ca2+ activation the tension decreased by less than 20% when SL was increased from 2.35 to approximately 3.10 microm. During partial Ca2+ activation the tension increased when SL was increased from 2.35 to 3.00 microm. From this observation of an apparent increase in the sensitivity of the myofilaments to Ca2+ induced by increasing SL during partial Ca2+ activation, a model was proposed that describes the tension oscillations and permits the derivation of the maximal velocity of shortening (Vmax). Vmax was increased by increasing [free Ca2+] or decreasing [free Mg2+] but not by increasing SL.  相似文献   

14.
15.
16.
A model of calcium movement during activation of frog skeletal muscle is described. The model was based on the half sarcomere of a myofibril and included compartments representing the terminal cisternae, the longitudinal sarcoplasmic reticulum, the extramyofibrillar space, and the myofibrillar space. The calcium-binding proteins troponin, parvalbumin, and calsequestrin were present in appropriate locations and with realistic binding kinetics. During activation a time-dependent permeability in the terminal cisternal wall led to calcium release into the myoplasm and its diffusion through the myoplasm longitudinally and radially was computed. After adjustment of three parameters, the model produced a myoplasmic free-calcium concentration that was very similar to those recorded experimentally with calcium indicators. The model has been used to demonstrate the importance of parvalbumin in the relaxation of skeletal muscle, to describe the time course and magnitude of calcium gradients associated with diffusion across the sarcomere, and to estimate the errors associated with the use of aequorin as an intracellular calcium indicator in muscle.  相似文献   

17.
18.
The sarcomere is the functional unit of striated muscle contraction. Mutations in sarcomeric proteins are now known to cause around 20 different skeletal muscle diseases. The diseases vary in severity from paralysis at birth, to mild conditions compatible with normal life span. The identification of the disease genes allows more accurate diagnosis, including prenatal diagnosis. Although many disease genes have been identified, the pathophysiology of the gene defects remains remarkably obscure, considering that many of the proteins have been researched for decades. The short-term goals are to determine the remaining disease genes and to decipher pathogenesis. The long-term goal is to develop effective therapies-a daunting task when humans are up to 40% muscle and the mutated proteins are fundamental to muscle contraction. The affected patients and families hope for help sooner rather than later. The onus is on all scientists researching sarcomeric proteins to help develop treatments.  相似文献   

19.
20.
Experiments were designed to gain information about the effects of extremely long sarcomere lengths (greater than 3.8 microns) on muscle activation. The amount of energy liberated in an isometric twitch by muscles stretched to sarcomere lengths where myofilament overlap is vanishingly small (greater than 3.6 microns) is thought to be an indirect measure of the Ca2+ cycled during contraction. The effects of altering sarcomere length from 3.8 to 4.3 microns on the amount of Ca2+ cycled was measured using twitch energy liberation as an indicator of the Ca2+ cycled. Twitch energy liberation decreased by approximately 20% over this sarcomere length region, suggesting that the amount of Ca2+ released by a single action potential is not altered dramatically when a muscle is stretched to extreme lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号