首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2The immobilization parameters were optimized for the hydantoinase and the L-N-carbamoylase from Arthrobacter aurescens DSM 3747 or 3745, respectively. To optimize activity yields and specific activities for the immobilization to Eupergit C, Eupergit C 250 L, and EAH-Sepharose wild-type, recombinant and genetically modified ('tagged') enzymes were investigated concerning the influence of the protein concentration, the kind of support and the immobilization method. For both enzymes, the use of the recombinant proteins resulted in enhanced specific activities especially when using a hydrophilic support for immobilization such as Sepharose. In the case of a genetically modified hydantoinase carrying a His(6)-tag, affinity coupling led to a loss of activity of higher than 80%. Both enzymes were significantly stabilized by immobilization: In packed bed reactors, Eupergit C 250 L (NH(2))-immobilized hydantoinase and EAH-Sepharose-immobilized L-N-carbamoylase showed half-life times of approx. 14000 and 900 hours, respectively. Together with specific activities of the immobilized enzymes of 2.5 U/g wet carrier (hydantoinase) and 10 U/g wet carrier (L-N-carbamoylase) the newly developed biocatalysts are sufficient to fulfill industrial requirements.In comparison to the free enzymes, temperature and pH-optima were increased by 10 degrees C and one pH unit, respectively, after immobilization. The pH and temperature optima of the hydantoinase (L-N-carbamoylase) were determined to be pH 8.5-10 (pH 9.5) and 45-60 degrees C (60 degrees C).In order to provide sufficient amounts of biocatalyst for the process development in mini plant scale, a 50 fold scale-up of the optimized immobilization procedure was carried out for both enzymes. Because of the overlapping optima, both immobilized enzymes can be operated together in one reactor.  相似文献   

2.
The reaction parameters and the stereospecificity of the enzymatic cleavage of D,L-5-indolylmethylhydantoin in producing L-tryptophan with resting cells of Arthrobacter sp. DSM 3747 were studied. When intact cells were tested, the optimal pH was between 8.5 and 9.0 and the optimal temperature was 50 degrees C. Both, L-N-carbamoylase and hydantoinase could be stabilized over 24 h at 30 and 40 degrees C by the addition of D,L-5-indolylmethylhydantoin. Furthermore, the hydantoinase was stable over 24 h at 50 degrees C by the addition of 0.5 mM Mn2+ ions. The treatment with sodium desoxycholate turned out to be successful in overcoming the poor availability of D,L-5-indolylmethylhydantoin for the cells. The optimal temperature with permeabilized cells decreased to 30 degrees C and therefore ensured a good enzyme stability. While the L-N-carbamoylase proved to be absolutely L-specific, the hydantoinase led to a mixture of enantiomers of N-carbamoyltryptophan. The produced D-N-carbamoyl-tryptophan caused an inhibition of the L-N-carbamoylase. The transformation yield from D,L-5-indolylmethylhydantoin always reached 100%.  相似文献   

3.
Using directed evolution, we have improved the hydantoinase process for production of L-methionine (L-met) in Escherichia coli. This was accomplished by inverting the enantioselectivity and increasing the total activity of a key enzyme in a whole-cell catalyst. The selectivity of all known hydantoinases for D-5-(2-methylthioethyl)hydantoin (D-MTEH) over the L-enantiomer leads to the accumulation of intermediates and reduced productivity for the L-amino acid. We used random mutagenesis, saturation mutagenesis, and screening to convert the D-selective hydantoinase from Arthrobacter sp. DSM 9771 into an L-selective enzyme and increased its total activity fivefold. Whole E. coli cells expressing the evolved L-hydantoinase, an L-N-carbamoylase, and a hydantoin racemase produced 91 mM L-met from 100 mM D,L-MTEH in less than 2 h. The improved hydantoinase increased productivity fivefold for >90% conversion of the substrate. The accumulation of the unwanted intermediate D-carbamoyl-methionine was reduced fourfold compared to cells with the wild-type pathway. Highly D-selective hydantoinase mutants were also discovered. Enantioselective enzymes rapidly optimized by directed evolution and introduced into multienzyme pathways may lead to improved whole-cell catalysts for efficient production of chiral compounds.  相似文献   

4.
Summary The ability of microorganisms to produce hydantoinase and L-N-carbamoylase could be established by an overlay assay. Enzyme producing strains form clear areas around their colonies caused by the cleavage of D,L-indolylmethylhydantoin. A second overlayer with a tryptophan-auxotroph yeast enables us to detect microorganisms which are able to produce L-tryptophan from D,L-indolylmethylhydantoin.  相似文献   

5.
In Arthrobacter aurescens DSM 3747 three enzymes are involved in the complete conversion of slowly racemizing 5'-monosubstituted D,L-hydantoins to L-amino acids, a stereoselective hydantoinase, a stereospecific L-N-carbamoylase and a hydantoin racemase. The gene encoding the hydantoin racemase, designated hyuA, was identified upstream of the previously described L-N-carbamoylase gene in the plasmid pAW16 containing genomic DNA of A. aurescens. The gene hyuA which encodes a polypeptide of 25.1 kDa, was expressed in Escherichia coli and the recombinant protein purified to homogeneity and further characterized. The optimal condition for racemase activity were pH 8.5 and 55 degrees C with L-5-benzylhydantoin as substrate. The enzyme was completely inhibited by HgCL2 and iodoacetamide and stimulated by addition of dithiothreitol. No effect on enzyme activity was seen with EDTA. The enzyme showed preference for hydantoins with arylalkyl side chains. Kinetic studies revealed substrate inhibition towards the aliphatic substrate L-5-methylthioethylhydantoin. Enzymatic racemization of D-5-indolylmethylenehydantoin in D2O and NMR analysis showed that the hydrogen at the chiral center of the hydantoin is exchanged against solvent deuterium during the racemization.  相似文献   

6.
The immobilization procedure of the two industrially important hydantoin cleaving enzymes--hydantoinase and L-N-carbamoylase from Arthrobacter aurescens DSM 3747--was optimized. Using different methods (carbodiimide, epoxy activated carriers) it was possible to immobilize the crude hydantoinase from A. aurescens DSM 3747 to supports containing primary amino groups with a yield of up to 60%. Immobilization on more hydrophobic supports such as Eupergit C and C 250 L resulted in lower yields of activity, whereas the total protein coupled remained constant. All attempts to immobilize the crude L-N-carbamoylase resulted in only low activity yields. Therefore, the enzyme was highly purified and used in immobilization experiments. The pure enzyme could easily be obtained in large amounts by cultivation of a recombinant Escherichia coli strain following a three step purification protocol consisting of cell disruption, chromatography on Streamline diethylaminoethyl and Mono Q. The immobilization of the L-N-carbamoylase was optimized with respect to the coupling yield by varying the coupling method as well as the concentrations of protein, carrier and carbodiimide. Using 60 mM of water-soluble carbodiimide, nearly 100% of the enzyme activity and protein could be immobilized to EAH Sepharose 4B.  相似文献   

7.
节杆菌BT801 N-氨甲酰氨基酸水解酶基因的克隆与表达   总被引:1,自引:0,他引:1  
通过PCR从质粒pUC18 16 9中扩增得到N 氨甲酰氨基酸水解酶基因 (hyuC) ,置于原核表达载体pQE6 0的T5启动子下游构成表达质粒pQE6 0 hyuC ,并在大肠杆菌M15中实现了该基因的高表达。SDS PAGE检测表达产物 ,在相对分子量 44kD处有一表达带 ,经薄层扫描分析目的蛋白占全菌蛋白的 40 % ,主要以可溶性形式存在。酶活性分析结果表明 ,工程菌M15 pQE6 0 hyuC的N 氨甲酰氨基酸水解酶的比活分别比原始菌株ArthrobacterBT80 1和亚克隆DH5α pUC18 16 9提高了 5 2倍和 72倍。在节杆菌BT80 1和大肠杆菌DH5α pUC18 16 9的反应体系中加入等量菌体的工程菌M15 pQE6 0 hyuC ,可使乙内酰脲酶总比活分别提高 8 1倍和 3 0倍。  相似文献   

8.
An N-carbamoyl-L-amino acid amidohydrolase (L-N-carbamoylase) from Sinorhizobium meliloti CECT 4114 was cloned and expressed in Escherichia coli. The recombinant enzyme catalyzed the hydrolysis of N-carbamoyl alpha-amino acid to the corresponding free amino acid, and its purification has shown it to be strictly L-specific. The enzyme showed broad substrate specificity, and it is the first L-N-carbamoylase that hydrolyses N-carbamoyl-L-tryptophan as well as N-carbamoyl L-amino acids with aliphatic substituents. The apparent Km values for N-carbamoyl-L-methionine and tryptophan were very similar (0.65 +/- 0.09 and 0.69 +/- 0.08 mM, respectively), although the rate constant was clearly higher for the L-methionine precursor (14.46 +/- 0.30 s(-1)) than the L-tryptophan one (0.15 +/- 0.01 s(-1)). The enzyme also hydrolyzed N-formyl-L-methionine (kcat/Km = 7.10 +/- 2.52 s(-1) x mM(-1)) and N-acetyl-L-methionine (kcat/Km = 12.16 +/- 1.93 s(-1) x mM(-1)), but the rate of hydrolysis was lower than for N-carbamoyl-L-methionine (kcat/Km = 21.09 +/- 2.85). This is the first L-N-carbamoylase involved in the 'hydantoinase process' that has hydrolyzed N-carbamoyl-L-cysteine, though less efficiently than N-carbamoyl-L-methionine. The enzyme did not hydrolyze ureidosuccinic acid or 3-ureidopropionic acid. The native form of the enzyme was a homodimer with a molecular mass of 90 kDa. The optimum conditions for the enzyme were 60 degrees C and pH 8.0. Enzyme activity required the presence of divalent metal ions such as Ni2+, Mn2+, Co2+ and Fe2+, and five amino acids putatively involved in the metal binding were found in the amino acid sequence.  相似文献   

9.
10.
A high-cell-density fed-batch fermentation for the production of heterologous proteins in Escherichia coli was developed using the positively regulated Escherichia coli rhaBAD promoter. The expression system was improved by reducing of the amount of expensive L-rhamnose necessary for induction of the rhamnose promoter and by increasing the vector stability. Consumption of the inducer L-rhamnose was inhibited by inactivation of L-rhamnulose kinase encoding gene rhaB of Escherichia coli W3110, responsible for the first irreversible step in rhamnose catabolism. Plasmid instability caused by multimerization of the expression vector in the recombination-proficient W3110 was prevented by insertion of the multimer resolution site cer from the ColE1 plasmid into the vector. Fermentation experiments with the optimized system resulted in the production of 100 g x L(-1) cell dry weight and 3.8 g x L(-1) of recombinant L-N-carbamoylase, an enzyme, which is needed for the production of enantiomeric pure amino acids in a two-step reaction from hydantoins.  相似文献   

11.
Summary A bacterium that stereospecifically produces D-p-hydroxyphenylglycine (D-PHPG) from DL-5-p-hydroxyphenylhydantoin (DL-5-PHPH) was isolated from soil and identified as Agrobacterium sp. IP-I 671. The hydantoinase and the N-carbamyl-amino acid amido-hydrolase involved in this biotransformation process were both strictly D-stereospecific. Their biosynthesis was found to be inducible by addition of 2-thiouracil to the cultivation media, or to a lesser extent by uracil. The amidohydrolase activity of Agrobacterium sp. was strongly inhibited by ammonium ions co-produced with D-PHPG, whereas the hydantoinase activity under the same conditions was unaffected. Optimum temperature and pH were respectively 55° C and 10 for the partially purified hydantoinase, 45° and 6.75 when resting cells were used. Biotransformation under these slightly acidic conditions allowed to complete conversion of 30 g/1 DL-5-PHPH into 25 g/l of D-PHPG (molar yield 96%) and involved enzymatic racemization of DL-5-PHPH. Offprint requests to: S. Runser  相似文献   

12.
Kao CH  Lo HH  Hsu SK  Hsu WH 《Journal of biotechnology》2008,134(3-4):231-239
A dihydropyrimidinase gene (pydB) was cloned from the moderate thermophilic Brevibacillus agri NCHU1002 and expressed in Escherichia coli. The purified dihydropyrimidinase exhibited strict d-enantioselectivity for D,L-p-hydroxyphenylhydantoin and D,L-5-[2-(methylthio)ethyl]hydantoin, and non-enantiospecificity for D,L-homophenylalanylhydantoin (D,L-HPAH). The hydrolytic activity of PydB was enhanced notably by Mn2+, with a maximal activity at 60 degrees C and pH 8.0. This enzyme was completely thermostable at 50 degrees C for 20 days. A whole cell biocatalyst for the production of L-homophenylalanine (L-HPA) from D,L-HPAH by coexpression of the pydB gene and a thermostable L-N-carbamoylase gene from Bacillus kaustophilus CCRC11223 in E. coli JM109 was developed. The expression levels of dihydropyrimidinase and L-N-carbamoylase in the recombinant E. coli cells were estimated to be about 20% of the respective total soluble proteins. When 1% (w/v) isopropyl-beta-D-thiogalactopyranoside-induced cells were used as biocatalysts, a conversion yield of 49% for L-HPA with more than 99% ee could be reached in 16 h at pH 7.0 from 10mM D,L-HPAH. The cells can be reused for at least eight cycles at a conversion yield of more than 43%. Our results revealed that coexpression of pydB and lnc in E. coli might be a potential biocatalyst for L-HPA production.  相似文献   

13.
对一株能转化D,L-对羟基苯乙内酰脲为D-对羟基苯甘氨酸的菌株MMR003进行了细菌分类学鉴定,该菌为皮氏伯克霍尔德氏菌(Burkholderia pickettii)。实验通过Southern杂交,部分文库构建和筛选,并经一系列亚克隆分析,获得一长度为1374bp的完整开放阅读框,编码458个氨基酸的D-乙内酰脲酶基因。用该基因序列构建的高表达质粒xXZPH2转化E.coliBL21(DE3),经IPTG诱导后,检测到D-乙内酰脲酶活性。该基因编码的氨基酸序列经Blast同源比较分析与放射形土壤杆菌NRRL B11291所产相应酶有85%的同源性。以D,L-对羟基苯乙内酰脲为底物测得的表达酶的活力为0.66u/mL,比相同条件下所测出发菌株MMR003的酶活提高了2倍。  相似文献   

14.
AIMS: A microorganism with the ability to release methionine from D,L-(2-methylthioethyl) hydantoin (strain 245) was isolated from soil. The aim of this study was the identification of the strain and the adjustment of the conditions of growth and of the enzymatic reaction, in order to achieve high specific activities of bioconversion of the hydantoin. METHODS AND RESULTS: Strain 245 was identified as Ochrobactrum anthropi. The strain grew at alkaline pH (up to 10.0) and its hydantoinase activity was found to be inducible by the substrate D,L-(2-methylthioethyl) hydantoin. The enzyme is also alkalostable, with a pH optimum of 9.0. Under these conditions, hydantoinase activity was significantly enhanced and its half life prolonged when 200 mmol l-1 ammonium and phosphate were added. The addition of Ca2+, Na+, Cu2+, Co2+, Mg2+, Zn2+ or Fe3+ (0.5 mmol l-1) to the reaction mixture increased the hydantoinase activity of strain 245 up to tenfold after 24 h of incubation, compared with unamended controls. CONCLUSION: The adequate adjustment of some environmental parameters (pH, addition of inducer, presence of ammonium, phosphate, heavy metals and other ions) can considerably increase the D, L-hydantoinase activity of strain 245. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings reported here set up the initial conditions for a further application of strain 245 in the production of methionine from hydantoine.  相似文献   

15.
Hydantoin cleaving bacterial isolates were recovered from terrestrial soil samples originating from different geographic sources (Antarctica, South Africa and China) using culture-based screening methods (selective agar plates and shake flask cultures supplemented with hydantoins). Thirty-two bacterial isolates possessing the capability to transform the model substrates benzylhydantoin and dihydrouracil to the corresponding N-carbamoyl-amino acids were successfully cultured. Amplification and sequencing of the 16S rDNA revealed that the isolates belonged to the genera Arthrobacter, Burkholderia, Bacillus, Delftia, Enterobacter, Flavobacterium, Ochrobactrum, Pseudomonas and Stenotrophomonas, with one isolate assigned to the family Microbacteriacae. We have shown that microorganisms with hydantoinase activity are: (i) distributed in various geographically distinct environmental habitats, (ii) distributed worldwide and (iii) found in certain bacterial genera. Furthermore, we have demonstrated the presence of hydantoinase activity in genera in which hydantoinase activity has not previously been reported.  相似文献   

16.
A hyperthermophilic hydantoinase from Methanococcus jannaschii with an optimum growth at 85°C was cloned and expressed in E. coli. The recombinant hydantoinase was purified by affinity and anion-exchange chromatography and determined to be homotetrameric protein by gel filtration chromatography. The best substrate for the hydantoinase was D,L-5-hydroxyhydantoin, which has the specific activity of 183.4 U/mg. The optimum pH and temperature for the hydantoinase activity was 8.0 and 80°C, respectively. The half-life of the hydantoinase was measured to be 100 min at 90°C in the buffer containing 500 mM KCl. Manganese ions were the most effective for the hydantoinase activity. Stereospecificity was determined to be L-specific for the 5-hydroxymethylhydantoin and 5-methylhydantoin by chiral TLC. The activity yields as well as the operational stabilities of the thermostable M. jannaschii hydantoinase could be significantly improved by immobilization method.  相似文献   

17.
18.
Summary Pseudomonas fluorescens strain DSM 84 was selected as a good hydantoinase (dihydropyrimidinase E.C. 3.5.2.2.) producer from a screening involving 60 collection strains. Optimization of the culture and growth conditions were performed in order to increase the enzyme production. A mineral medium supplemented with 10 g/l of yeast extract having an initial pH of 7.1±0.1 but containing no additional carbon source or inducer was devised. The strain DSM 84 was found to produce the maximal level of hydantoinase in the defined mineral medium within 15 h of incubation at 27°C. When using 5-isopropylhydantoin as substrate, N-carbamyl-valine was detected as the end product of the crude hydantoinase. Conditions leading to the isolation and conservation of a crude hydantoinase as well as its temperature and pH stability are described.  相似文献   

19.
One thousand thermophiles isolated from soils were screened for hydantoinase and its thermostability. One thermophilic bacterium that showed the highest thermostability and activity of hydantoinase was identified to be Bacillus stearothermophilus SD-1 according to morphological and physiological characteristics. The hydantoinase of B. stearothermophilus SD-1 was purified to homogeneity via ammonium sulfate fractionation, anion-exchange chromatography, heat treatment, hydrophobic-interaction chromatography, and preparative gel electrophoresis. The relative molecular mass of the hydantoinase was determined to be 126 kDa by gel-filtration chromatography, and a value of 54 kDa was obtained as a molecular mass of the subunit on analytical sodiumdodecylsulfate/polyacrylamide gel electrophoresis. The hydantoinase was strictly d-specific and metal-dependent. The optimal pH and temperature were about 8.0 and 65°C respectively, and the half-life of the d-hydantoinase was estimated to be 30 min at 80°C, indicating the most thermostable enzyme so far.  相似文献   

20.
Syntheses of trans-(1R,2R) and cis-(1S,2R)-1-amino-2-indanol (AI) were accomplished by a series of enantioselective enzymatic reactions using lipase and transaminase (TA). Lipase catalysed enantioselective hydrolysis of 2-acetoxyindanone was employed to prepare (R)-2-hydroxy indanone (HI). trans-AI (5 mM) (de > 98%) was produced from 20 mM (R)-2- HI using omega-TA and 50 mM (S)-1-aminoindan as an amino donor in water-saturated ethyl acetate. For the production of cis-AI, the diastereomeric (2R)-AI was synthesized from (R)-2-HI using reductive amination, and the kinetic resolution was performed with omega-TA. The enantioselectivity of omega-TA for (2R)-AI was increased to 22.1 in the presence of 5% gamma-cyclodextrin. cis-AI (15.4 mM) (96% de) was obtained from 40 mM (2R)-AI using 30 mM pyruvate and omega-TA (25 mg) in 10 mL of 100 mM phosphate buffer (pH 7.0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号