首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The afterglow (AG) luminescence is a delayed chlorophyll fluorescence emitted by the photosystem II that seems to reflect the level of assimilatory potential (NADPH+ATP) in chloroplast. In this work, the thermoluminescence (TL) emissions corresponding to the AG band were investigated in plants of the WT and the Ljgln2‐2 photorespiratory mutant from Lotus japonicus grown under either photorespiratory (air) or non‐photorespiratory (high concentration of CO2) conditions. TL glow curves obtained after two flashes induced the strongest overall TL emissions, which could be decomposed in two components: B band (tmax = 27–29°C) and AG band (tmax = 44–45°C). Under photorespiratory conditions, WT plants showed a ratio of 1.17 between the intensity of the AG and B bands (IAG/IB). This ratio increased considerably under non‐photorespiratory conditions (2.12). In contrast, mutant Ljgln2‐2 plants grown under both conditions showed a high IAG/IB ratio, similar to that of WT plants grown under non‐photorespiratory conditions. In addition, high temperature thermoluminescence (HTL) emissions associated to lipid peroxidation were also recorded. WT and Ljgln2‐2 mutant plants grown under photorespiratory conditions showed both a significant HTL band, which increased significantly under non‐photorespiratory conditions. The results of this work indicate that changes in the amplitude of IAG/IB ratio could be used as an in vivo indicator of alteration in the level of photorespiratory metabolism in L. japonicus chloroplasts. Moreover, the HTL results suggest that photorespiration plays some role in the protection of the chloroplast against lipid peroxidation.  相似文献   

2.
Thermoluminescence Investigation of Low Temperature Stress in Maize   总被引:3,自引:0,他引:3  
Janda  T.  Szalai  G.  Páldi  E. 《Photosynthetica》2000,38(4):635-639
The thermoluminescence (TL) emission of photosynthesising materials originates from the recombination of charge pairs created by a previous excitation. Using a recently described TL set-up the effect of chilling stress on TL bands occurring at positive temperatures (AG, B, and HTL) was investigated in intact leaves. The far-red irradiation of leaves at low, but non-freezing temperatures induced a TL band peaking at around 40–45 °C (AG band), together with a B band peaking between 20 and 35 °C. Low temperature stress first caused a downshift and a temporary increase in the AG band after 4 h at 0 °C in the light, then a decrease in the AG and B TL bands after 1 d at 0 °C in the light. This decrease was less pronounced in cold-tolerant genotypes and in those grown at acclimating temperatures. Furthermore, an additional band appeared above 80 °C after severe cold stress. This band indicates the presence of lipid peroxides. Thus TL is a useful technique for studying the effects of low temperature stress.  相似文献   

3.
Thermoluminescence experiments have been carried out to study the effect of a transmembrane proton gradient on the recombination properties of the S2 and S3 states of the oxygen evolving complex with QA - and QB -, the reduced electron acceptors of Photosystem II. We first determined the properties of the S2QA - (Q band), S2QB - and S3QB - (B bands) recombinations in the pH range 5.5 to 9.0, using uncoupled thylakoids. The, a proton gradient was created in the dark, using the ATP-hydrolase function of ATPases, in coupled unfrozen thylakoids. A shift towards low temperature of both Q and B bands was observed to increase with the magnitude of the proton gradient measured by the fluorescence quenching of 9-aminoacridine. This downshift was larger for S3QB - than for S2QB - and it was suppressed by nigericin, but not by valinomycin. Similar results were obtained when a proton gradient was formed by photosystem I photochemistry. When Photosystem II electron transfer was induced by a flash sequence, the reduction of the plastoquinone pool also contributed to the downshift in the absence of an electron acceptor. In leaves submitted to a flash sequence above 0°C, a downshift was also observed, which was supressed by nigericin infiltration. Thus, thermoluminescence provides direct evidence on the enhancing effect of lumen acidification on the S3S2 and S2S1 reverse-transitions. Both reduction of the plastoquinone pool and lumen acidification induce a shift of the Q and B bands to lower temperature, with a predominance of lumen acidification in non-freezing, moderate light conditions.Abbreviations 9-AA 9-aminoacridine - EA activation energy - F0 constant fluorescence level - FM maximum fluorescence, when all PS-II centers are closed - FV variable fluorescence (FM–F0) - PS I, PS II Photosystem I, photosystem II - PQ plastoquinone - TL thermoluminescence  相似文献   

4.
A set-up for recording thermoluminescence emission together with the constant F0 fluorescence yield is described briefly. It is driven by a microcomputer through plugged-in cards.Practical aspects of the simulation of TL bands and of decomposition of complex TL signals are examined. A reproducible and linear temperature gradient and the use of photon counting for luminescence detection are important features for further analyzing the recorded signal. The simulation procedure used is a step-by-step calculation of the number of charge recombinations, which is then substracted from the number of remaining charge pairs able to produce luminescence. This procedure consists first of a graphical fitting, followed by a numerical minimization, with a maximum of five simulated components. The quality of the simulation is evaluated by the sum of squares of differences (signal-simulation), related to the signal area. Equivalent decomposition patterns may be found for the same recording and additional information is needed for interpretation of TL data. Averaging signals is feasible, provided that maximum temperatures Tm of averaged bands are sufficiently similar (±3°C). Simultaneous measurement of the antenna fluorescence yield F0, using an ultra-weak pulsed blue LED, gives an estimate of the luminescence yield. This has to be taken into account in the analysis of the Q band and of high temperature (>40°C) bands.The simulation parameters appear to be dependent on plant growth conditions. Quantitative analysis of thermoluminescence emission could be useful in the study of the effects of climatic factors on the photosynthetic apparatus in plants.Abbreviations PS-II Photosystem II - TL thermoluminescence - F0 constant fluorescence emission, under ultra-low light intensity - QA and QB respectively, primary and secondary electron acceptors of Photosystem II - S2 and S3 respectively, the two and three positively charged states of the oxygen evolving system - SSD sum of squares of differences between the signal and a simulation (fitting) or between the signal and a smoothed curve (noise)  相似文献   

5.
We investigated the influence of CO2/HCO3 -depletion and of the presence of acetate and formate on the in vivo photosynthetic electron transport in the two green algae Chlamydobotrys stellata and Chlamydomonas reinhardtii by means of thermoluminescence technique and mathematical glow curve analysis. The main effects of the removal of CO2 from the algal cultures was: (1) A shift of the glow curve peak position to lower temperatures resulting from a decrease of the B band and an increase of the Q band. (2) Treatment of CO2-deficient Chl. stellata with DCMU yielded two thermoluminescence bands in the Q band region peaking at around +12°C and +5°C; in case of Chl. reinhardtii DCMU treatment induced only one band with an emission maximum at +5°C. The presence of acetate or formate in CO2-depleted algal cultures lowered the intensities of all of the individual TL bands but that of a HT band (TL+37). The effects of CO2-depletion and of the presence of anions were fully reversible.Abbreviations DCMU 3-(3,4)-dichlorophenyl-1,1-dimethylurea - HT band high temperature TL band - P680 reaction center chlorophyll of PS II - QA and QB primary and secondary quinone acceptors of PS II, respectively - PS II Photosystem II - S2/3 redox states of the oxygen evolving complex of PS II - TL thermoluminescence  相似文献   

6.
Thermoluminescence and delayed luminescence investigations of the autotrophically and photoheterotrophically cultivated green alga, Chlamydobotrys stellata, demonstrated that both the thermoluminescence and delayed luminescence yields are much lower in the photoheterotophic algae than in the autotrophic ones due to an efficient luminescence quenching of unknown mechanism. The relative contributions of the so called Q (S2Q?A charge recombination) and B (S2Q?B and S3Q?B charge recombinations) thermoluminescence bands to the glow curve as well as the QA(S2Q?B charge recombination) and QB (S2Q?B and S3Q?B charge recombinations) delayed luminescence components to the delayed luminescence decay of autotrophically and photoheterotrophically cultivated Chl. stellata were compared using a computer assisted curve resolution method. It was found that, while in the autotrophic cells the area of the B band was considerably larger than of the Q band, in photoheterotrophic cells the Q band was more effectively charged than the B band. In the delayed luminescence decay curves measured in the seconds to minutes time region the amplitude of the QA component relative to that of the QB component was larger in the photoheterotrophic cells than in the autotrophic ones. These observations demonstrate that, after light-induced charge separation in the photosystem II reaction centers of autotrophic cells, electrons are “quasipermanently” stored mainly in the secondary quinone acceptor pool, QB but in the nonquenched photosystem II reaction centers of photoheterotrophic cells the main reservoir of electrons is the primary quinone acceptor, QA. This behaviour indicates an inhibition of electron transport in the photoheterotrophic alga at the level of the secondary quinone acceptor, QB.  相似文献   

7.
Characteristics of thermoluminescence (TL) glow curves were studied in thylakoids (isolated from pea leaves) or in intact pea leaves after an exposure to very high light for 2 min in the TL device. The inhibition of photosynthesis was detected as decreases of oxygen evolution rates and/or of variable fluorescence.In thylakoids exposed to high light, then dark adapted for 5 min, a flash regime induced TL glow curves which can be interpreted as corresponding to special B bands since: 1) they can be fitted by a single B band (leaving a residual band at –5°C) with a lower activation energy and a shift of the peak maximum by –5 to –6°C and, 2) the pattern of oscillation of their amplitudes was normal with a period of 4 and maxima on flashes 2 and 6. During a 1 h dark adaptation, no recovery of PS II activity occurred but the shift of the peak maximum was decreased to –1 to –2°C, while the activation energy of B bands increased. It is supposed that centers which remained active after the photoinhibitory treatment were subjected to reversible and probably conformational changes.Conversely, in intact leaves exposed to high light and kept only some minutes in the dark, TL bands induced by a flash regime were composite and could be deconvoluted into a special B band peaking near 30°C and a complex band with maximum at 2–5°C. In the case of charging bands by one flash, this low temperature band was largely decreased in size after a 10 min dark adaptation period; parallely, an increase of the B band type component appeared. Whatever was the flash number, bands at 2–5°C were suppressed by a short far red illumination given during the dark adaptation period and only remained a main band a 20°C; therefore, the origin of the low temperature band was tentatively ascribed to recombinations in centers blocked in state S2QA QB 2–. In vivo, the recovery of a moderately reduced state in the PQ pool, after an illumination, would be slow and under the dependence of a poising mechanism, probably involving an electron transfer between cytosol and chloroplasts or the so-called chlororespiration process.Abbreviations Ea- activation energy - FR- far-red - MV- methylviologen - pBQ- p-benzoquinone - PQ- plastoquinone - PS II- Photosystem II - QA- primary quinone electron acceptor of PS II - QB- secondary quinone electron acceptor of PS II - TL- thermoluminescence  相似文献   

8.
Many herbicides of different chemical structure inhibit photosynthetic electron flow by interrupting the photosyn‐thetic electron flow by interrupting the photosynthetic electron transport chain between the primary acceptor (QA) and the secondary acceptor (QB) of photosystem 2 (PS2). Thermoluminescence (TL) originates from PS2, and the bands of the glow curve can be related to the charge recombination between positively charged donors and negatively charged acceptors. The glow curve of TL is strongly influenced by addition of PS2 herbicides. The herbicide treatment shifts the peak position and activation energy of the TL band related to QA, suggesting that herbicide binding affects the midpoint redox potential not only of Q B but also that of QA. On the basis of the band shift the herbicides of various chemical structures can be classified into different “thermodynamical” groups which relfect the differences in the binding properties of these herbicides. As a new approach TL seems to be a useful technique in studying the mechanism and site of action of herbicides that inhibit electron transport of PS2.  相似文献   

9.
Changes in characteristics of flash-induced thermoluminescence (TL) glow curves in thylakoids of lettuce following incubation of the organelles with ATP, under illumination or in the dark, were investigated. TL bands were induced by 1 or 2 flashes fired at –10°C or 1°C in thylakoids: TL curves in control thylakoids which were dark-adapted or submitted to an illumination without ATP, can be deconvoluted as the sum of one single B band and minor contributions. In thylakoids incubated for 90 s with 0.5 mM ATP, either under light or in the dark (after a 90 s preillumination), bands presented complex shapes; after deconvolution, they appeared composed of a B band with a low Ea (activation energy): 0.6 e.v. as compared to 0.75 in control, and a supplementary band peaking at about 10°C. The band at low temperature was suppressed by low concentrations (10–20 nM) of valinomycin, nigericin or FCCP as well as by 10 mM ammonium chloride, leaving B bands with the same characteristics as in control material. Finally with higher nigericin concentrations, the bands became single B bands with high Ea (0.9 e.v.). These characteristics would define 3 different energized states (in the form of a transmembrane electrochemical potential) for thylakoids based upon the presence of the 10°C band and the value of the activation energy for the B band component. The presence of a large 10°C band was also correlated to the existence of a larger transmembrane pH gradient, in the dark, after an ATP-treatment, than in controls. The 10°C band was specifically suppressed by the action of low concentrations of alkaline phosphatase with minor changes in characteristics of the remaining B band suggesting that phosphorylation of PS II proteins is also involved in the appearance of this low temperature band. The main mechanism at the origin of the low temperature band would be a destabilization of S2/3QB charge pairs in energized membranes.  相似文献   

10.
The afterglow (AG) band of thermoluminescence (TL) has been investigated in leaves of Arabidopsis thaliana. Excitation of dark-adapted leaves with two saturating single turn-over flashes induced the appearance of a complex TL glow curve that could be well simulated by three components: the two components, B1 and B2, of the usually called B-band, peaking at 18 and 26 °C, respectively, and a band with tmax at 41 °C, which we attributed to an AG emission. Illumination of dark-adapted leaves with 720 nm monochromatic and FR lights generated the emission of a sharp single band peaking also around at 41 °C, that it is usually assigned to an AG emission band. Dark-incubation of whole plants increased the intensity of AG-band in TL curves induced by two flashes and, in parallel, decreased B-bands. Selective illumination of leaves with light mostly absorbed by PS II (650 nm light) completely abolished the AG-band induced by two flashes, B-band being the only TL band observed. The single AG-band induced by 720 nm light was abolished if leaves were also illuminated with 650 nm light. On the other hand, AG-band could be restored if 650 nm illuminated leaves were afterwards illuminated with 720 nm light. The changes in the intensity of B and AG bands induced by selective illuminations seem to be related to alterations in the redox state of QB and plastoquinone pool.  相似文献   

11.
An effect of desiccation (a decrease of relative water content from 97% to 10% within 35 h) on Photosystem II was studied in barley leaf segments (Hordeum vulgare L. cv. Akcent) using chlorophyll a fluorescence and thermoluminescence (TL). The O-J-I-P fluorescence induction curve revealed a decrease of FP and a slight shift of the J step to a shorter time with no change in its height. The analysis of the fluorescence decline after a saturating light flash revealed an increased portion of slow exponential components with increasing desiccation. The TL bands obtained after excitation by continuous light were situated at about –27°C (Zv band – recombination of P680+QA ), –14 °C (A band – S3QA ), +12 °C (B band – S2/3QB ) and +45 °C (C band – TyrD+QA ). The bands related to the S-states of oxygen evolving complex (A and B) were reduced by desiccation and shifted to higher and lower temperatures, respectively. In accordance with this, the band observed at about +27 °C (S2QB ) after excitation by 1 flash fired at –10 °C and band at about +20 °C (S2/3QB ) after 2 flashes decreased with increasing water deficit and shifted to lower temperatures. A new band around 5 °C appeared in both regimes of TL excitation for a relative water content of under 42% and was attributed to the Q band (S2QA ). It is suggested that under desiccation, an inhibition of the formation of S2- and S3-states in OEC occurred simultaneously with a lowering of electron transport on the acceptor side of PS II. The temperature down-shift of the TL bands obtained after the flash excitation was induced at the initial phases of water stress, indicating a decrease of the activation energy for the S2/3QB recombination. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Leaf discs of dark-adapted tobacco plants were excited by 2 flashes and kept in darkness at 20 °C for various time periods, then thermoluminescence emission was recorded without freezing the sample. The B band at 30 °C decreased with a half-time t1/2~1 min and the AG band at 45 °C with a t1/2~5 min. This corresponds to the decay kinetics of S2/3 in PS II centres in the state S2/3 QB- (B band) or S2/3 QB. Assuming that the 45 °C band is an ‘afterglow’ emission originating from those centres with an oxidized QB on which an electron is back-transferred from stroma reductants through a pathway induced by warming, the theoretical ratio of the B and AG band was compared to that measured experimentally. After 2 or 3 flashes producing mainly S3, the intensity of AG band encompassed several fold that of the B band, because recombining S3 recreated S2 QB AG-emitting centres. In order to confirm that the AG band is governed by the heat-induced activation of a dark QB-reducing pathway rather than by PS II charge recombination, the AG emission was characterized in triazine-resistant Chenopodium album weed biotypes. In these mutants where the QB pocket is altered, the B band is strongly downshifted to 18 °C, compared to 32 °C in the wild type, whereas the AG band is only downshifted by 3 or 4 °C, demonstrating that S2/3 QB- is not the limiting step of the AG emission.  相似文献   

13.
Plant materials (intact leaves, chloroplasts or subchloroplast particles) pre-illuminated at a low temperature (e.g. -60 degrees C) were rapidly cooled to -196 degrees C and then the luminescence emitted from the sample on raising the temperature was measured as a function of temperature, by means of a sensitive photo-electron counting technique. Mature spinach leaves showed five luminescence bands at different temperatures which were denoted as ZV, A, B1, B2 and C bands. The A, B1, B2 and C bands appeared at constant temperatures, -10, +25, +40 and +55 degrees C, respectively, being independent of the illumination temperature, but the ZV band appeared at a variable temperature slightly higher than the illumination temperature. The B1 and B2 bands were absent in the thermoluminescence profiles of samples devoid of the oxygen-evolving activity, such as heat-treated spinach leaves, wheat leaves greened under intermittent illumination and photosystem-II particles prepared with Triton X-100. It was deduced that these luminescence bands arise from the energy stored by the electron flow in photosystem II to evolve oxygen, and other bands were ascribed to charge-separation in some other sites not related to the oxygen evolving system.  相似文献   

14.
Energy transfer between photosystem II (PSII) centers is known from previous fluorescence studies. We have studied the theoretical consequences of energetic connectivity of PSII centers on photosynthetic thermoluminescence (TL) and predict that connectivity affects the TL Q band. First, connectivity is expected to make the Q band wider and more symmetric than an ideal first-order TL band. Second, the presence of closed PSII centers in an energetically connected group of PSII centers is expected to lower the probability that an exciton originating in a recombination reaction becomes retrapped. The latter effect would shift the Q band toward lower temperature, and the shift would be greater the higher the percentage of closed PSII centers at the beginning of the measurement. These effects can be generalized as second-order effects, as they make the Q band resemble the second-order TL bands obtained from semiconducting solids. We applied the connected-units model of chlorophyll fluorescence to derive equations for quantifying the second-order effects in TL. To test the effect of the initial proportion of closed reaction centers, we measured the Q band with different intensities of the excitation flash and found that the peak position changed by 2.5°C toward higher temperature when the flash intensity was lowered from saturating to 0.39% of saturating. The result shows that energy transfer between reaction centers of PSII forms the physical basis of retrapping in photosynthetic TL. The second-order effects partially explain the deviation of the form of the Q band from ideal first-order TL.  相似文献   

15.
Characteristics of thermoluminescence glow curves were compared in three types of Euglena cells: (i) strictly autotrophic, Cramer and Myers cells; (ii) photoheterotrophic cells sampled from an exponentially growing culture containing lactate as substrate repressing the photosynthetic activity; (iii) semiautotrophic cells, sampled when the lactate being totally exhausted, the photosynthesis was enhanced.In autotrophic and semiautotrophic cells, composite curves were observed after series of two or more actinic flashes fired at –10°C, which can be deconvoluted into a large band peaking in the range 12–22°C and a smaller one near 40°C, This second band presents the characteristics of a typical B band (due to S2/3QB - recombination), whereas the first one resembled the band, shifted by -15–20°C, which is observed in herbicide resistant plants. The amplitude of this major band, which was in all cases very low after one flash, exhibited oscillations of period four but rapidly damping, with maxima after two and six flashes. In contrast, photoheterotrophic Euglena displayed single, non-oscillating curves with maxima in the range 5–10°C.In autotrophic and semiautotrophic cells, oxidizing pretreatments by either a preillumination with one or more (up to twenty-five) flashes, or a far-red preillumination in the presence of methylviologen, followed by a short dark period, induced thermoluminescence bands almost single and shifted by +3–5°C, or +12°C, respectively. In autotrophic cells, far-red light plus methyl viologen treatment induced a band peaking at 31°C, as in isolated thylakoids from Euglena or higher plants, while it had barely any effect in photoheterotrophic cells.Due to metabolic activities in dark-adapted cells, a reduction of redox groups at the donor and acceptor sides of PS II dark-adapted cells is supposed to occur. Two different explanations can be proposed to explain such a shift in the position of the main band in dark-adapted autotrophic control. The first explanation would be that in these reducing conditions a decreasing value of the equilibrium constant for the reaction: SnQA -QBSnQAQB -, would determine the shift of the main TL band towards low temperatures, as observed in herbicide resistant material. The second explanation would be that the main band would correspond to peak III already observed in vivo and assigned to S2/3QB 2- recombinations.Abbreviations CM Cramer and Myers - D1 a 32 kDa protein component of the PS II reaction center, psbA.gene product - D2 a 34 kDa protein component of the PS II reaction center, psbD gene product - FR lar-red illumination - Lexpo and Lstat cells from lactate culture samples at exponential and stationary phase of growth - MV methylviologen - pBQ parabenzoquinone - PQ plastoquinone - PS II photosystem II - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - TL thermoluminescence  相似文献   

16.
Michel Havaux  Dominique Rumeau 《BBA》2005,1709(3):203-213
Far-red illumination of plant leaves for a few seconds induces a delayed luminescence rise, or afterglow, that can be measured with the thermoluminescence technique as a sharp band peaking at around 40-45 °C. The afterglow band is attributable to a heat-induced electron flow from the stroma to the plastoquinone pool and the PSII centers. Using various Arabidopsis and tobacco mutants, we show here that the electron fluxes reflected by the afterglow luminescence follow the pathways of cyclic electron transport around PSI. In tobacco, the afterglow signal relied mainly on the ferredoxin-quinone oxidoreductase (FQR) activity while the predominant pathway responsible for the afterglow in Arabidopsis involved the NAD(P)H dehydrogenase (NDH) complex. The peak temperature Tm of the afterglow band varied markedly with the light conditions prevailing before the TL measurements, from around 30 °C to 45 °C in Arabidopsis. These photoinduced changes in Tm followed the same kinetics and responded to the same light stimuli as the state 1-state 2 transitions. PSII-exciting light (leading to state 2) induced a downward shift while preillumination with far-red light (inducing state 1) caused an upward shift. However, the light-induced downshift was strongly inhibited in NDH-deficient Arabidopsis mutants and the upward shift was cancelled in plants durably acclimated to high light, which can perform normal state transitions. Taken together, our results suggest that the peak temperature of the afterglow band is indicative of regulatory processes affecting electron donation to the PQ pool which could involve phosphorylation of NDH. The afterglow thermoluminescence band provides a new and simple tool to investigate the cyclic electron transfer pathways and to study their regulation in vivo.  相似文献   

17.
Luminescence from photosynthetic material observed in darkness following illumination is a delayed fluorescence produced by a recombination of charge pairs stored in photosystem II, i.e. the back-reaction of photosynthetic charge separation. Thermoluminescence (TL) is a technique consisting of a rapid cooling followed by the progressive warming of a preilluminated sample to reveal the different types of charge pairs as successive emission bands, which are resolved better than the corresponding decay phases recorded at constant temperatures. Progress in thermoelectric Peltier elements and in compact light detectors made the development of simple, affordable and transportable instruments possible. These instruments take advantage of multifurcated light guides for combined TL, fluorescence and absorbance/reflectance measurements. Meanwhile, experiments on unfrozen leaf discs, with excitation by single turn-over flashes or far red light and infiltration by specific inhibitors/uncouplers, have led to a better understanding of in vivo TL signals. Much like chlorophyll fluorescence and in a complementary way, TL in the 0-60 degrees C temperature range not only informs on the state of photosystem II in leaf tissues and its possible alterations, but also gives a broader insight into the energetic state inside the chloroplast by probing (1) the light-induced or dark-stable thylakoid proton gradient through the protonation of the Mn oxygen-evolving complex, (2) the induction of cyclic/chlororespiratory electron flow towards the plastoquinone pool, (3) the [NADPH+ATP] assimilatory potential. By a different mechanism, warming above 60 degrees C without preillumination reveals chemiluminescence high temperature thermoluminescence (HTL) bands due to the radiative thermolysis of peroxides, which are indicators of oxidative stress in leaves.  相似文献   

18.
Sándor Demeter  Imre Vass 《BBA》1984,764(1):24-32
In the glow curves of chloroplasts excited by a series of flashes at +1°C the intensity of the main thermoluminescence band appearing at +30°C (B band; B, secondary acceptor of Photosystem II) exhibits a period-4 oscillation with maxima on the 2nd and 6th flashes indicating the participation of the S3 state of the water-splitting system in the radiative charge recombination reaction. After long-term dark adaptation of chloroplasts (6 h), when the major part of the secondary acceptor pool (B pool) is oxidized, a period-2 contribution with maxima occurring at uneven flash numbers appears in the oscillation pattern. The B band can even be excited at ?160°C as well as by a single flash in which case the water-splitting system undergoes only one transition (S1 → S2). The experimental observations and computer simulation of the oscillatory patterns suggest that the B band originates from charge recombination of the S2B? and S3B? redox states. The half-time of charge recombination responsible for the B band is 48 s. When a major part of the plastoquinone pool is reduced due to prolonged excitation of the chloroplasts by continuous light, a second band (Q band; Q, primary acceptor of Photosystem II) appears in the glow curve at +10°C which overlaps with the B band. In chloroplasts excited by flashes prior to DCMU addition only the Q band can be observed showing maxima in the oscillation pattern at flash numbers 2, 6 and 10. The Q band can also be induced by flashes after DCMU addition which allows only one transition of the water-splitting system (S1 → S2). In the presence of DCMU, electrons accumulate on the primary acceptor Q, thus the Q band can be ascribed to the charge recombination of either the S2Q? or S3Q? states depending on whether the water-splitting system is in the S2 or the S3 state. The half-time of the back reaction of Q? with the donor side of PS II (S2 or S3 states) is 3 s. It was also observed that in a sequence of flashes the peak positions of the Q and B bands do not depend on the advancement of the water-splitting system from the S2 state to the S3 state. This result implies that the midpoint potential of the water-splitting system remains unmodified during the S2 → S3 transition.  相似文献   

19.
20.
Thermoluminescence (TL) from autotrophically and photoheterotrophically cultivated Chlamydobotrys stellata was measured. Strong TL was emitted at 30°C after acetatenutrition of the alga. DCMU enhanced this band, as also did ferricyanide. It also appeared after poisoning of the alga with NH2OH or ANT-2p. These observations suggest that an alternative donor to photosystem II and not the water-splitting system is responsible for the TL + 30 band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号