首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hierarchical view of niche relations reconciles the scale‐dependent effects of abiotic and biotic processes on species distribution patterns and underlies most current approaches to distribution modeling. A key prediction of this framework is that the effects of biotic interactions will be averaged out at macroscales – an idea termed the Eltonian noise hypothesis (ENH). We test this prediction by quantifying regional variation in local abiotic and biotic niche relations and assess the role of macroclimate in structuring biotic interactions, using a non‐native invasive grass, Microstegium vimineum, in its introduced range. Consistent with hierarchical niche relations and the ENH, macroclimate structures local biotic interactions, while local abiotic relations are regionally conserved. Biotic interactions suppress M. vimineum in drier climates but have little effect in wetter climates. A similar approach could be used to identify the macroclimatic conditions under which biotic interactions affect the accuracy of local predictions of species distributions.  相似文献   

2.
Questions: We addressed two poorly understood aspects of plant response to climate change: the impact of extreme climatic events and the mediating role of biotic interactions, through a study of heatwave effects on tree seedling survival rates and ability of the tree canopy to alter seedling responses. Location: Mountain belt of the northern French Alps (Maurienne Valley). Methods: The survival rates of two seedling cohorts from four tree species (Abies alba, Acer pseudoplatanus, Fraxinus excelsior and Picea abies) were measured during both the 2003 European heatwave and an average summer (2004) in deciduous broadleaf mountain forests. Seedlings were transplanted into two soil moisture conditions, and in experimental gaps or under the tree canopy. Results: The heatwave strongly decreased tree seedling survival rates, while there was an important species‐specific mediating role of biotic interactions. In the wettest conditions, the tree canopy strongly increased survival of Abies, buffering the negative impact of the heatwave. In contrast, in the driest conditions, the tree canopy decreased survival of Picea and Acer, amplifying the negative impact of the heatwave. We found evidence of increasing soil water stress in the understorey of the driest community, but further studies including vapour pressure deficit measurements are needed to elucidate the driving mechanism of facilitation. Conclusions: The high species specificity of the mediating role of biotic interactions and its variation along stress gradients leads to questions on our ability to predict large‐scale responses of species to climate changes.  相似文献   

3.
4.
Biotic interactions influence species niches and may thus shape distributions. Nevertheless, species distribution modelling has traditionally relied exclusively on environmental factors to predict species distributions, while biotic interactions have only seldom been incorporated into models. This study tested the ability of incorporating biotic interactions, in the form of host plant distributions, to increase model performance for two host‐dependent lepidopterans of economic interest, namely the African silk moth species, Gonometa postica and Gonometa rufobrunnea (Lasiocampidae). Both species are dependent on a small number of host tree species for the completion of their life cycle. We thus expected the host plant distribution to be an important predictor of Gonometa distributions. Model performance of a species distribution model trained only on abiotic predictors was compared to four species distribution models that additionally incorporated biotic interactions in the form of four different representations of host plant distributions as predictors. We found that incorporating the moth–host plant interactions improved G. rufobrunnea model performance for all representations of host plant distribution, while for G. postica model performance only improved for one representation of host plant distribution. The best performing representation of host plant distribution differed for the two Gonometa species. While these results suggest that incorporating biotic interactions into species distribution models can improve model performance, there is inconsistency in which representation of the host tree distribution best improves predictions. Therefore, the ability of biotic interactions to improve species distribution models may be context‐specific, even for species which have obligatory interactions with other organisms.  相似文献   

5.
Species’ ranges are complex often exhibiting multidirectional shifts over space and time. Despite the strong fingerprint of recent historical climate change on species’ distributions, biotic factors such as loss of vegetative habitat and the presence of potential competitors constitute important yet often overlooked drivers of range dynamics. Furthermore, short‐term changes in environmental conditions can influence the underlying processes of local extinction and local colonization that drive range shifts, yet are rarely considered at broad scales. We used dynamic state‐space occupancy models to test multiple hypotheses of the relative importance of major drivers of range shifts of Golden‐winged Warblers (Vermivora chrysoptera) and Blue‐winged Warblers (V. cyanoptera) between 1983 and 2012 across North America: warming temperatures; habitat changes; and occurrence of congeneric species, used here as proxy for biotic interactions. Dynamic occupancies for both species were most influenced by spatial relative to temporal variation in temperature and habitat. However, temporal variation in temperature anomalies and biotic interactions remained important. The two biotic factors considered, habitat change and biotic interactions, had the largest relative effect on estimated extinction rates followed by abiotic temperature anomalies. For the Golden‐winged Warbler, the predicted presence of the Blue‐winged Warbler, a hypothesized competitor, most influenced extinction probabilities, contributing to evidence supporting its role in site‐level species replacement. Given the overall importance of biotic factors on range‐wide dynamic occupancies, their consideration alongside abiotic factors should not be overlooked. Our results suggest that warming compounds the negative effect of habitat loss emphasizing species’ need for habitat to adapt to a changing climate. Notably, even closely related species exhibited individual responses to abiotic and biotic factors considered.  相似文献   

6.
7.
Biotic interactions have been considered as an important factor to be included in species distribution modelling, but little is known about how different types of interaction or different strategies for modelling affect model performance. This study compares different methods for including interspecific interactions in distribution models for bees, their brood parasites, and the plants they pollinate. Host–parasite interactions among bumble bees (genus Bombus: generalist pollinators and brood parasites) and specialist plant–pollinator interactions between Centris bees and Krameria flowers were used as case studies. We used 7 different modelling algorithms available in the BIOMOD R package. For Bombus, the inclusion of interacting species distributions generally increased model predictive accuracy. The improvement was better when the interacting species was included with its raw distribution rather than with its modeled suitability. However, incorporating the distributions of non‐interacting species sometimes resulted in similarly increased model accuracy despite their being no significance of any interaction for the distribution. For the Centris‐Krameria system the best strategy for modelling biotic interactions was to include the interacting species model‐predicted values. However, the results were less consistent than those for Bombus species, and most models including biotic interactions showed no significant improvement over abiotic models. Our results are consistent with previous studies showing that biotic interactions can be important in structuring species distributions at regional scales. However, correlations between species distributions are not necessarily indicative of interactions. Therefore, choosing the correct biotic information, based on biological and ecological knowledge, is critical to improve the accuracy of species distribution models and forecast distribution change.  相似文献   

8.
Aim There is a debate as to whether biotic interactions exert a dominant role in governing species distributions at macroecological scales. The prevailing idea is that climate is the key limiting factor; thus models that use present‐day climate–species range relationships are expected to provide reasonable means to quantify the impacts of climate change on species distributions. However, there is little empirical evidence that biotic interactions would not constrain species distributions at macroecological scales. We examine this idea, for the first time, and provide tests for two null hypotheses: (H0 1) – biotic interactions do not exert a significant role in explaining current distributions of a particular species of butterfly (clouded Apollo, Parnassius mnemosyne) in Europe; and (H0 2) – biotic interactions do not exert a significant role in predictions of altered species’ ranges under climate change. Location Europe. Methods Generalized additive modelling (GAM) was used to investigate relationships between species and climate; species and host plants; and species and climate + host plants. Because models are sensitive to the variable selection strategies utilised, four alternative approaches were used: AIC (Akaike's Information Criterion), BIC (Bayesian Information Criterion), BRUTO (Adaptive Backfitting), and CROSS (Cross Selection). Results In spite of the variation in the variables selected with different methods, both hypotheses (H0 1 and H0 2) were falsified, providing support for the proposition that biotic interactions significantly affect both the explanatory and predictive power of bioclimatic envelope models at macro scales. Main conclusions Our results contradict the widely held view that the effects of biotic interactions on individual species distributions are not discernible at macroecological scales. Results are contingent on the species, type of interaction and methods considered, but they call for more stringent evidence in support of the idea that purely climate‐based modelling would be sufficient to quantify the impacts of climate change on species distributions.  相似文献   

9.
Species’ geographic range limits often result from maladaptation to the novel environments beyond the range margin. However, we rarely know which aspects of the n‐dimensional environment are driving this maladaptation. Especially of interest is the influence of abiotic versus biotic factors in delimiting species’ distributions. We conducted a 2‐year reciprocal transplant experiment involving manipulations of the biotic environment to explore how spatiotemporal gradients in precipitation, fatal mammalian herbivory, and pollination affected lifetime fitness within and beyond the range of the California annual plant, Clarkia xantiana ssp. xantiana. In the first, drier year of the experiment, fitness outside the range edge was limited mainly by low precipitation, and there was some evidence for local adaptation within the range. In the second, wetter year, we did not observe abiotic limitations to plant fitness outside the range; instead biotic interactions, especially herbivory, limited fitness outside the range. Together, protection from herbivory and supplementation of pollen resulted in three‐ to sevenfold increases in lifetime fitness outside the range margin in the abiotically benign year. Overall, our work demonstrates the importance of biotic interactions, particularly as they interact with the abiotic environment, in determining fitness beyond geographic range boundaries.  相似文献   

10.
Extrafloral nectar (EFN) mediates food‐for‐protection mutualisms between plants and ants. Such mutualisms exist within a complex web of biotic interactions, and in a framework provided by the abiotic environment. Both biotic and abiotic factors, therefore, affect the outcome of ant–plant interactions. We conducted an experiment to determine the effects of ant activity, and light intensity, on herbivory rates, growth, and reproductive fitness in Senna mexicana var. chapmanii, a perennial legume native to pine rockland habitats of south Florida. Forty plants were divided among four treatments in a factorial experimental design with two independent variables: ant activity and light intensity. Plants were divided equally between sunny and shady habitats, and ants were excluded from half of the plants in each habitat type. The presence of ants significantly reduced herbivory rates in S. chapmanii. In shaded habitats, the presence of ants had no effect on plant reproductive fitness, however, in sunny habitats plants with ants produced significantly more seeds over the duration of the 1‐yr study. Ants represent an important biotic defense against herbivores in S. chapmanii; however, their effects on plant fitness are dependent on light conditions. Pine rockland habitats in south Florida have been widely destroyed or mismanaged. In fragments that remain, suppression of fire has led to increased canopy closure and shading of the understory. These changes will likely negatively impact plants that rely on ants for defense. We highlight the importance of conservation efforts to preserve the pine rocklands and the fire regimes on which they rely.  相似文献   

11.
Anton Pauw  William J. Bond 《Oikos》2011,120(10):1531-1538
There are at least two immediate reasons why it is important to determine the role of biotic interactions, such as pollination, in limiting species distribution ranges. Firstly, if range limits are imposed by biotic factors, current and future distribution ranges might not be constrained by climate. Secondly, if biotic interactions limit the distribution ranges of species, anthropogenic impacts on these interactions are likely to have a major effect on biodiversity. Here we test the role of pollination in limiting plant distributions by studying plant community assembly in a guild of 15 oil‐secreting orchids (Coryciinae) along a pollination gradient. In all members of the guild, seed production depends on pollination by the oil‐collecting bee Rediviva peringueyi (Melittidae). While the mode of aboveground reproduction is uniform across the guild, the orchid species differ widely in their capacity for belowground clonal reproduction through the formation of bulbils, and hence span a range of predicted dependence on pollination (and subsequent seed set) for population persistence. Pollination rate by R. peringueyi varied across the landscape from 0 to 98% of flowers pollinated. With decreasing pollination, species richness of the orchid guild declined, and species were lost by the successive deletion of the least clonal species. Thus, pollination is shown to act as a biotic filter, excluding non‐clonal species from pollinator‐poor communities. The findings are consistent with the idea that pollination mutualisms matter ecologically by limiting the distribution of non‐clonal plants. Conversely, the results suggest that clonality allows some plant species to escape from the range of their pollinators.  相似文献   

12.
Many species are expanding their distributions to higher latitudes due to global warming. Understanding the mechanisms underlying these distribution shifts is critical for better understanding the impacts of climate changes. The climate envelope approach is widely used to model and predict species distribution shifts with changing climates. Biotic interactions between species, however, may also influence species distributions, and a better understanding of biotic interactions could improve predictions based solely on climate envelope models. Along the northern Gulf of Mexico coast, USA, subtropical black mangrove (Avicennia germinans) at the northern limit of its distribution grows sympatrically with temperate salt marsh plants in Florida, Louisiana, and Texas. In recent decades, freeze‐free winters have led to an expansion of black mangrove into salt marshes. We examined how biotic interactions between black mangrove and salt marsh vegetation along the Texas coast varied across (i) a latitudinal gradient (associated with a winter‐temperature gradient); (ii) the elevational gradient within each marsh (which creates different marsh habitats); and (iii) different life history stages of black mangroves (seedlings vs. juvenile trees). Each of these variables affected the strength or nature of biotic interactions between black mangrove and salt marsh vegetation: (i) Salt marsh vegetation facilitated black mangrove seedlings at their high‐latitude distribution limit, but inhibited black mangrove seedlings at lower latitudes; (ii) mangroves performed well at intermediate elevations, but grew and survived poorly in high‐ and low‐marsh habitats; and (iii) the effect of salt marsh vegetation on black mangroves switched from negative to neutral as black mangroves grew from seedlings into juvenile trees. These results indicate that the expansion of black mangroves is mediated by complex biotic interactions. A better understanding of the impacts of climate change on ecological communities requires incorporating context‐dependent biotic interactions into species range models.  相似文献   

13.

Aim

To measure the effects of including biotic interactions on climate‐based species distribution models (SDMs) used to predict distribution shifts under climate change. We evaluated the performance of distribution models for an endangered marsupial, the northern bettong (Bettongia tropica), comparing models that used only climate variables with models that also took into account biotic interactions.

Location

North‐east Queensland, Australia.

Methods

We developed separate climate‐based distribution models for the northern bettong, its two main resources and a competitor species. We then constructed models for the northern bettong by including climate suitability estimates for the resources and competitor as additional predictor variables to make climate + resource and climate + resource + competition models. We projected these models onto seven future climate scenarios and compared predictions of northern bettong distribution made by these differently structured models, using a ‘global’ metric, the I similarity statistic, to measure overlap in distribution and a ‘local’ metric to identify where predictions differed significantly.

Results

Inclusion of food resource biotic interactions improved model performance. Over moderate climate changes, up to 3.0 °C of warming, the climate‐only model for the northern bettong gave similar predictions of distribution to the more complex models including interactions, with differences only at the margins of predicted distributions. For climate changes beyond 3.0 °C, model predictions diverged significantly. The interactive model predicted less contraction of distribution than the simpler climate‐only model.

Main conclusions

Distribution models that account for interactions with other species, in particular direct resources, improve model predictions in the present‐day climate. For larger climate changes, shifts in distribution of interacting species cause predictions of interactive models to diverge from climate‐only models. Incorporating interactions with other species in SDMs may be needed for long‐term prediction of changes in distribution of species under climate change, particularly for specialized species strongly dependent on a small number of biotic interactions.  相似文献   

14.
Aim With climate change, reliable predictions of future species geographic distributions are becoming increasingly important for the design of appropriate conservation measures. Species distribution models (SDMs) are widely used to predict geographic range shifts in response to climate change. However, because species communities are likely to change with the climate, accounting for biotic interactions is imperative. A shortcoming of introducing biotic interactions in SDMs is the assumption that biotic interactions remain the same under changing climatic factors, which is disputable. We explore the performance of SDMs while including biotic interactions. Location Fennoscandia, Europe. Methods We investigate the appropriateness of the inclusion of biotic factors (predator pressure and prey availability) in assessing the future distribution of the arctic fox (Alopex lagopus) in Fennoscandia by means of SDM, using the algorithm MaxEnt. Results Our results show that the inclusion of biotic interactions enhanced the accuracy of SDMs to predict the current arctic fox distribution, and we argue that the accuracy of future predictions might also be enhanced. While the range of the arctic fox is predicted to have decreased by 43% in 2080 because of temperature‐related variables, projected increases in predator pressure and reduced prey availability are predicted to constrain the potential future geographic range of the arctic fox in Fennoscandia 13% more. Main conclusions The results indicate that, provided one has a good knowledge of past changes and a clear understanding of interactions in the community involved, the inclusion of biotic interactions in modelling future geographic ranges of species increases the predictive power of such models. This likely has far‐reaching impacts upon the design and implementation of possible conservation and management plans. Control of competing predators and supplementary feeding are suggested as necessary management actions to preserve the Fennoscandian arctic fox population in the face of climate change.  相似文献   

15.
The study of plant–plant interactions along grazing and abiotic stress gradients is a major research topic in plant ecology, but the joint effects of both stressors on the outcome of plant–plant interactions remains poorly understood. We used two different factorial experiments conducted in a semi‐arid Mediterranean steppe to assess: 1) the role of the perennial grass Stipa tenacissima, a low‐palatability species, providing protection from rabbit herbivory to the shrub Retama sphaerocarpa (experiment 1), and 2) the effects of environmental amelioration provided by Stipa on the recovery of Retama after rabbit damage under two contrasted levels of water availability (experiment 2). In the experiment 1, water stress worked as an indirect modulator of herbivore protection by Stipa. This species protected Retama seedlings from rabbit herbivory during the wetter conditions of spring and winter, but this effect dissapeared when rabbit pressure on Retama increased during summer drought due to the decrease in alternative food resources. In the experiment 2, Stipa exerted a negative effect on the survival of Retama seedlings during the three years of the experiment, regardless of inter‐annual differences in rainfall or the watering level applied. This negative effect was mainly due to excessive shading. However, Stipa increased Retama recovery after initial rabbit impact, overriding in part this negative shade effect. Conversely, Stipa impact on the Fv/Fm of Retama seedlings depended on the intra‐annual water dynamics and its experimental manipulation, overall contradicting predictions from the stress–gradient hypothesis. The complex interactions found between herbivory, microclimatic amelioration from Stipa, and water availability as drivers of Retama performance illustrate the importance of considering the temporal dynamics of both biotic and abiotic stressors to fully understand the outcome of plant–plant interactions.  相似文献   

16.
Plants employ a diverse set of defense mechanisms to mediate interactions with insects and fungi. These relationships can leave lasting impacts on host plant genome structure such as rapid expansion of gene families through tandem duplication. These genomic signatures provide important clues about the complexities of plant/biotic stress interactions and evolution. We used a pseudo‐backcross hybrid family to identify quantitative trait loci (QTL) controlling associations between Populus trees and several common Populus diseases and insects. Using whole‐genome sequences from each parent, we identified candidate genes that may mediate these interactions. Candidates were partially validated using mass spectrometry to identify corresponding QTL for defensive compounds. We detected significant QTL for two interacting fungal pathogens and three insects. The QTL intervals contained candidate genes potentially involved in physical and chemical mechanisms of host–plant resistance and susceptibility. In particular, we identified adjoining QTLs for a phenolic glycoside and Phyllocolpa sawfly abundance. There was also significant enrichment of recent tandem duplications in the genomic intervals of the native parent, but not the exotic parent. Tandem gene duplication may be an important mechanism for rapid response to biotic stressors, enabling trees with long juvenile periods to reach maturity despite many coevolving biotic stressors.  相似文献   

17.
Biological invasions are acknowledged among the main drivers of global changes in biodiversity. Despite compelling evidence of species interactions being strongly regulated by environmental conditions, there is a dearth of studies investigating how the effects of non‐native species vary among areas exposed to different anthropogenic pressures. Focusing on marine macroalgae, we performed a meta‐analysis to test whether and how the direction and magnitude of their effects on resident communities and species varies in relation to cumulative anthropogenic impact levels. The relationship between human impact levels and non‐native species impact intensity emerged only for a reduced subset of the response variables examined. Yet, there was a trend for the effects of non‐native species on community biomass and abundance and on species abundance to become less negative at heavily impacted sites. By contrast, the magnitude of negative effects of seaweed on community evenness tended to increase with human impact levels. The hypothesis of decreasing severity of invader’ impacts along a gradient of habitat degradation was also tested experimentally at a regional scale by comparing the effects of the removal of non‐native alga, Caulerpa cylindracea, on resident assemblages among rocky reefs exposed to different anthropogenic pressures. Assemblages at urban and pristine site did not differ when invaded, but did so when C. cylindracea was removed. Our results suggest that, despite the generally weak relationship between human impacts levels and non‐native species impacts, more negative impacts can be expected in less stressful environments (i.e. less degraded or pristine sites), where competitive interactions are presumably the driving force structuring resident communities. Implementing strategies for controlling the establishment of non‐native seaweeds should be, thus, considered a priority for preserving biodiversity in relatively pristine areas. On the other hand, control of invaders at degraded sites could be warranted to lessen their role as propagule sources. Synthesis Local anthropogenic stressors that severely alter biotic and abiotic conditions may underpin context‐dependency in the impacts of biological invasions. We used a meta‐analysis and an experimental test to examine the relationship between cumulative human impacts and ecological impact of non‐native seaweeds on resident assemblages. Our results suggest that more negative impacts of non‐native seaweeds on the abundance and biomass of resident assemblages can be expected in less degraded or pristine sites. Possibly, stronger impacts prevail at pristine sites, where assemblages are mainly structured by biotic interactions. Hence, management efforts should be mostly directed to prevent the establishment and spread of non‐native seaweeds in pristine areas. On the other hand, weak, but positive effects of seaweeds at the most degraded sites add to the ongoing debate on the role of non‐native species in rehabilitation plans.  相似文献   

18.
Traditionally, the niche of a species is described as a hypothetical 3D space, constituted by well‐known biotic interactions (e.g. predation, competition, trophic relationships, resource–consumer interactions, etc.) and various abiotic environmental factors. Species distribution models (SDMs), also called “niche models” and often used to predict wildlife distribution at landscape scale, are typically constructed using abiotic factors with biotic interactions generally been ignored. Here, we compared the goodness of fit of SDMs for red‐backed shrike Lanius collurio in farmlands of Western Poland, using both the classical approach (modeled only on environmental variables) and the approach which included also other potentially associated bird species. The potential associations among species were derived from the relevant ecological literature and by a correlation matrix of occurrences. Our findings highlight the importance of including heterospecific interactions in improving our understanding of niche occupation for bird species. We suggest that suite of measures currently used to quantify realized species niches could be improved by also considering the occurrence of certain associated species. Then, an hypothetical “species 1” can use the occurrence of a successfully established individual of “species 2” as indicator or “trace” of the location of available suitable habitat to breed. We hypothesize this kind of biotic interaction as the “heterospecific trace effect” (HTE): an interaction based on the availability and use of “public information” provided by individuals from different species. Finally, we discuss about the incomes of biotic interactions for enhancing the predictive capacities on species distribution models.  相似文献   

19.
In invasion processes, both abiotic and biotic factors are considered essential, but the latter are usually disregarded when modeling the potential spread of exotic species. In the framework of set theory, interactions between biotic (B), abiotic (A), and movement‐related (M) factors in the geographical space can be hypothesized with BAM diagrams and tested using ecological niche models (ENMs) to estimate A and B areas. The main aim of our survey was to evaluate the interactions between abiotic (climatic) and biotic (host availability) factors in geographical space for exotic symbionts (i.e., non‐free‐living species), using ENM techniques combined with a BAM framework and using exotic Entocytheridae (Ostracoda) found in Europe as model organisms. We carried out an extensive survey to evaluate the distribution of entocytherids hosted by crayfish in Europe by checking 94 European localities and 12 crayfish species. Both exotic entocytherid species found, Ankylocythere sinuosa and Uncinocythere occidentalis, were widely distributed in W Europe living on the exotic crayfish species Procambarus clarkii and Pacifastacus leniusculus, respectively. No entocytherids were observed in the remaining crayfish species. The suitable area for A. sinuosa was mainly restricted by its own limitations to minimum temperatures in W and N Europe and precipitation seasonality in circum‐Mediterranean areas. Uncinocythere occidentalis was mostly restricted by host availability in circum‐Mediterranean regions due to limitations of P. leniusculus to higher precipitation seasonality and maximum temperatures. The combination of ENMs with set theory allows studying the invasive biology of symbionts and provides clues about biogeographic barriers due to abiotic or biotic factors limiting the expansion of the symbiont in different regions of the invasive range. The relative importance of abiotic and biotic factors on geographical space can then be assessed and applied in conservation plans. This approach can also be implemented in other systems where the target species is closely interacting with other taxa.  相似文献   

20.
Aim To develop a simple method that (1) combines the notions of biotic elements (groups of taxa with ranges significantly more similar to each other than to the ranges of other taxa) and of areas of endemism (AoE, areas of non‐random distributional congruence among taxa), and (2) overcomes the constraints of a previously suggested null model‐based method that cannot deal with disjunctions and is strictly grid‐dependent. Location We used test data sets from southern Africa and Crete. Methods First, we used a null‐model approach to detect pairs of species that have a significant degree of co‐occurrence, in order to determine biotic elements. Subsequently, we used a parsimony analysis of endemicity to delineate candidate AoE, and multivariate analysis to define groups of biotic elements on the basis of species interactions (co‐occurrence, mutual exclusion, neutral) using only the species detected in the previous step. We applied this method to the well known data set for Sciobius in southern Africa, as well as to endemic invertebrates of Crete (Greece), in order to evaluate its performance. Results Our results are very similar to those of previous analyses, and produce meaningful delineation of AoE and biotic elements in both data sets. The method is flexible regarding null models and significance levels, and eliminates noise in the data. Main conclusions We offer a simple method that provides reasonable identification of both biotic elements and AoE, produces good‐fit statistics, reduces uninformative or junk output, and reduces computational time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号