首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
AIMS: Growth modes predicting the effect of pH (3.5-5.0), NaCl (2-10%), i.e. aw (0.937-0.970) and temperature (20-40 degrees C) on the colony growth rate of Monascus ruber, a fungus isolated from thermally-processed olives of the Conservolea variety, were developed on a solid culture medium. METHODS AND RESULTS: Fungal growth was measured as colony diameter on a daily basis. The primary predictive model of Baranyi was used to fit the growth data and estimate the maximum specific growth rates. Combined secondary predictive models were developed and comparatively evaluated based on polynomial, Davey, gamma concept and Rosso equations. The data-set was fitted successfully in all models. However, models with biological interpretable parameters (gamma concept and Rosso equation) were highly rated compared with the polynomial equation and Davey model and gave realistic cardinal pHs, temperatures and aw. CONCLUSIONS: The combined effect of temperature, pH and aw on growth responses of M. ruber could be satisfactorily predicted under the current experimental conditions, and the models examined could serve as tools for this purpose. SIGNIFICANCE AND IMPACT OF THE STUDY: The results can be successfully employed by the industry to predict the extent of fungal growth on table olives.  相似文献   

5.
Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the climate effects on different physiological pathways and in turn on stem growth variation. We parameterized the model for canopy trees of Toona ciliata (Meliaceae) from a Thai monsoon forest and compared predicted and measured variation from a tree‐ring study over a 30‐year period. We used historical climatic variation of minimum and maximum day temperature, precipitation and carbon dioxide (CO2) in different combinations to estimate the contribution of each climate factor in explaining the inter‐annual variation in stem growth. Running the model with only variation in maximum temperature and rainfall yielded stem growth patterns that explained almost 70% of the observed inter‐annual variation in stem growth. Our results show that maximum temperature had a strong negative effect on the stem growth by increasing respiration, reducing stomatal conductance and thus mitigating a higher transpiration demand, and – to a lesser extent – by directly reducing photosynthesis. Although stem growth was rather weakly sensitive to rain, stem growth variation responded strongly and positively to rainfall variation owing to the strong inter‐annual fluctuations in rainfall. Minimum temperature and atmospheric CO2 concentration did not significantly contribute to explaining the inter‐annual variation in stem growth. Our innovative approach – combining a simulation model with historical data on tree‐ring growth and climate – allowed disentangling the effects of strongly correlated climate variables on growth through different physiological pathways. Similar studies on different species and in different forest types are needed to further improve our understanding of the sensitivity of tropical tree growth to climatic variability and change.  相似文献   

6.
7.
8.
9.
The aim of this paper was to study the effects of temperature and irradiance on the photodegradation state of killed phytoplankton cells. For this purpose, killed cells of the diatom Chaetoceros neogracilis RCC2022 were irradiated (photosynthetically active radiation) at 36 and 446 J · s?1 · m?2 (for the same cumulative dose of irradiation energy) and at two temperatures (7°C and 17°C). Analyses of specific lipid tracers (fatty acids and sterols) revealed that low temperatures and irradiances increased photooxidative damages of monounsaturated lipids (i.e., palmitoleic acid, cholesterol and campesterol). The high efficiency of type II photosensitized degradation processes was attributed to: (i) the relative preservation of the sensitizer (chlorophyll) at low irradiances allowing a longer production of singlet oxygen and (ii) the slow diffusion rate of singlet oxygen through membranes at low temperatures inducing more damages. Conversely, high temperatures and irradiances induced (i) a rapid degradation of the photosensitizer and a loss of singlet oxygen by diffusion outside the membranes (limiting type II photosensitized oxidation), and (ii) intense autoxidation processes degrading unsaturated cell lipids and oxidation products used as photodegradation tracers. Our results may explain the paradoxical relationship observed in situ between latitude and photodegradation state of phytoplankton cells.  相似文献   

10.
Toxin‐producing blooms of dinoflagellates in the genus Alexandrium have plagued the inhabitants of the Salish Sea for centuries. Yet the environmental conditions that promote accelerated growth of this organism, a producer of paralytic shellfish toxins, is lacking. This study quantitatively determined the growth response of two Alexandrium isolates to a range of temperatures and salinities, factors that will strongly respond to future climate change scenarios. An empirical equation, derived from observed growth rates describing the temperature and salinity dependence of growth, was used to hindcast bloom risk. Hindcasting was achieved by comparing predicted growth rates, calculated from in situ temperature and salinity data from Quartermaster Harbor, with corresponding Alexandrium cell counts and shellfish toxin data. The greatest bloom risk, defined at μ >0.25 d?1, generally occurred from April through November annually; however, growth rates rarely fell below 0.10 d?1. Except for a few occasions, Alexandrium cells were only observed during the periods of highest bloom risk and paralytic shellfish toxins above the regulatory limit always fell within the periods of predicted bloom occurrence. While acknowledging that Alexandrium growth rates are affected by other abiotic and biotic factors, such as grazing pressure and nutrient availability, the use of this empirical growth function to predict higher risk time frames for blooms and toxic shellfish within the Salish Sea provides the groundwork for a more comprehensive biological model of Alexandrium bloom dynamics in the region and will enhance our ability to forecast blooms in the Salish Sea under future climate change scenarios.  相似文献   

11.
12.
Aims:  To investigate the effect of pH, water activity ( a w) and temperature on the growth of Weissella cibaria DBPZ1006, a lactic acid bacterium isolated from sourdoughs.
Methods and Results:  The kinetics of growth of W. cibaria DBPZ1006 was investigated during batch fermentations as a function of pH (4·0–8·0), a w (0·935–0·994) and temperature (10–45°C) in a rich medium. The growth curve parameters (lag time, growth rate and asymptote) were estimated using the dynamic model of Baranyi and Roberts (1994. A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23, 277–294). The effect of pH, a w and temperature on maximum specific growth rate (μmax) were estimated by fitting a cardinal model. μmax under optimal conditions (pH = 6·6, a w = 0·994, T  = 36·3°C) was estimated to be 0·93 h−1. Minimum and maximum estimated pH and temperature for growth were 3·6 and 8·15, and 9·0°C and 47·8°C, respectively, while minimum a w was 0·918 (equivalent to 12·2% w/v NaCl).
Conclusions:  Weissella cibaria DBPZ1006 is a fast-growing heterofermentative strain, which could be used in a mixed starter culture for making bread.
Significance and Impact of the Study:  This is the first study reporting the modelling of the growth of W. cibaria , a species that is increasingly being used as a starter in sourdough and vegetable fermentations.  相似文献   

13.
Aims: To predict the risk factors for building infestation by Serpula lacrymans, which is one of the most destructive fungi causing timber decay in buildings. Methods and Results: The growth rate was assessed on malt extract agar media at temperatures between 1·5 and 45°C, at water activity (aw) over the range of 0·800–0·993 and at pH ranges from 1·5 to 11·0. The radial growth rate (μ) and the lag phase (λ) were estimated from the radial growth kinetics via the plots radius vs time. These parameters were then modelled as a function of the environmental factors tested. Models derived from the cardinal model (CM) were used to fit the experimental data and allowed an estimation of the optimal and limit values for fungal growth. Optimal growth rate occurred at 20°C, at high aw level (0·993) and at a pH range between 4·0 and 6·0. The strain effect on the temperature parameters was further evaluated using 14 strains of S. lacrymans. The robustness of the temperature model was validated on data sets measured in two different wood‐based media (Quercus robur L. and Picea abies). Conclusions: The two‐step procedure of exponential model with latency followed by the CM with inflection gives reliable predictions for the growth conditions of a filamentous fungus in our study. The procedure was validated for the study of abiotic factors on the growth rate of S. lacrymans. Significance and Impact of the Study: This work describes the usefulness of evaluating the effect of physico‐chemical factors on fungal growth in predictive building mycology. Consequently, the developed mathematical models for predicting fungal growth on a macroscopic scale can be used as a tool for risk assessment of timber decay in buildings.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Theoretical models predict that nonlinear environmental effects on the phenotype also affect developmental canalization, which in turn can influence the tempo and course of organismal evolution. Here, we used an oceanic population of threespine stickleback (Gasterosteus aculeatus) to investigate temperature‐induced phenotypic plasticity of body size and shape using a paternal half‐sibling, split‐clutch experimental design and rearing offspring under three different temperature regimes (13, 17 and 21 °C). Body size and shape of 466 stickleback individuals were assessed by a set of 53 landmarks and analysed using geometric morphometric methods. At approximately 100 days, individuals differed significantly in both size and shape across the temperature groups. However, the temperature‐induced differences between 13 and 17 °C (mainly comprising relative head and eye size) deviated considerably from those between 17 and 21 °C (involving the relative size of the ectocoracoid, the operculum and the ventral process of the pelvic girdle). Body size was largest at 17 °C. For both size and shape, phenotypic variance was significantly smaller at 17 °C than at 13 and 21 °C, indicating that development is most stable at the intermediate temperature matching the conditions encountered in the wild. Higher additive genetic variance at 13 and 21 °C indicates that the plastic response to temperature had a heritable basis. Understanding nonlinear effects of temperature on development and the underlying genetics are important for modelling evolution and for predicting outcomes of global warming, which can lead not only to shifts in average morphology but also to destabilization of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号