首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Currently, Brzeziecki et al. 2016 (Journal of Vegetation Science 27: 460–467.) are using data from permanent study plots established in 1936 in Bia?owie?a National Park (NE Poland) to develop theoretical equilibrium tree size distributions and to then compare modelled and actual distributions with a view to assessing the population dynamics of the species involved. As part of their discussion, the authors address the question of possible consequences for the overall diversity of forest ecosystems under strict protection if long‐term trends relating to tree population densities and size structures are maintained. In the overall context of the above, the goal of the present paper is to respond to Jaroszewicz et al. (Journal of Vegetation Science 28: 218–222.) who suggest that the paper of Brzeziecki et al. (2016) is not representative for the whole Bia?owie?a National Park, and that – in this connection – strict protection should not be seen as a cause for concern. In this paper, we show that the data analysed by Brzeziecki et al. (2016) adequately characterize conditions in the wider Park. We also point out that the thorough scientific understanding of the long‐term dynamics of woodland communities under strict protection should indeed be taken into account as efforts are made to arrive at an effective conservation strategy capable of ensuring that the uniquely valuable features of the Bia?owie?a Forest are retained.  相似文献   

2.
Abstract. Density‐dependence in tree population dynamics has seldom been examined in dry tropical forests. Using long‐term data from a large permanent plot, this study examined 16 common species in a dry tropical forest in southern India for density‐dependence. Employing quadrat‐based analyses, correlations of mortality, recruitment and population change with tree densities were examined. Mortality in 1–10 cm diameter trees was largely negatively correlated with conspecific density, whereas mortality in > 10 cm diameter trees was positively correlated. Mortality was, however, largely unaffected by the basal area and abundance of heterospecific trees. Recruitment was poor in most species, but in Lagerstroemia microcarpa (Lythraceae), Tectona grandis (Verbenaceae) and Cassia fistula (Fabaceae), species that recruited well, strong negative correlations of recruitment with conspecific basal area and abundance were found. In a few other species that could be tested, recruitment was again negatively correlated with conspecific density. In Lagerstroemia, recruitment was positively correlated with the basal area and abundance of heterospecific trees, but these correlations were non‐significant in other species. Similarly, although the rates of population change were negatively correlated with conspecific density they were positive when dry‐season ground fires occurred in the plot. Thus, the observed positive density‐dependence in large‐tree mortality and the negative density‐dependence in recruitment in many species were such that could potentially regulate tree populations. However, repeated fires influenced density‐dependence in the rates of population change in a way that could promote a few common species in the tree community.  相似文献   

3.
Question: Are canopy gap dynamics responsible for driving the structural and compositional changes that have occurred over a 26‐year period in a mature Quercus forest remnant? Location: Dobbs Natural Area, an unlogged 3.6‐ha forest preserve in west‐central Indiana, USA. Methods: We analyzed mapped permanent plot data for a site that illustrates a trend common in Quercus‐dominated forests in eastern North America, where recruitment of new stems is dominated by mesophytic, shade‐tolerant species such as Acer saccharum, rather than Quercus. We developed a GIS database from stand census measurements taken in 1974 and 2000, employing it to conduct tree‐by‐tree comparisons that allow direct determination of ingrowth, mortality and survivorship, and to relate the spatial patterns of subcanopy dynamics to canopy gap occurrence. Results: The re‐census shows modest changes in canopy composition, but much greater turnover in the subcanopy. Nearly half of all individuals originally present died; much of this mortality resulted from a major decline in subcanopy Ulmus americana. While overall density remained fairly constant, the subcanopy experienced substantial ingrowth of shade‐tolerant Acer saccharum, Fagus grandifolia, and Tilia americana. Canopy gaps, although forming at rates in the upper range of regional averages, did not significantly benefit subcanopy populations of Quercus spp. or most other taxa with limited shade tolerance. Conclusions: Canopy gaps play a minor role in driving the recent demographic trends of this stand. The spatial and temporal scales of light availability in gaps do not support regeneration of most shade‐intolerant species. Compositional change parallels a historical shift in light regimes.  相似文献   

4.
Questions: Have forest dynamics changed significantly in intact Amazon rainforests since the early 1980s? If so, what environmental drivers might potentially be responsible? Location: Central Amazonia, north of Manaus, Brazil. Methods: Within 20 1‐ha plots scattered over ~300 km2, all trees (≥10 cm diameter at breast height) were marked, identified, and measured five times between 1981 and 2003. We estimated stand‐level dynamics (mortality, recruitment, and growth) for each census interval and evaluated weather parameters over the study period. Results: We observed a widespread, significant increase in tree mortality across our plots. Tree recruitment also rose significantly over time but lagged behind mortality. Tree growth generally accelerated but varied considerably among census intervals, and was lowest when mortality was highest. Tree basal area rose 4% overall, but stem number exhibited no clear trend. In terms of climate variation, annual maximum and minimum temperatures increased significantly during our study. Rainfall anomalies were strongly and positively associated with ENSO events. Conclusions: The increasing forest dynamics, growth, and basal area observed are broadly consistent with the CO2 fertilization hypothesis. However, pronounced shorter‐term variability in stand dynamics might be associated with climatic vicissitudes. Tree mortality peaked, and tree recruitment and growth declined during atypically wet periods. Tree growth was fastest during dry periods, when reduced cloudiness might have increased available solar radiation. Inferences about causality are tenuous because tree data were collected only at multi‐year intervals. Mean temperatures and rainfall seasonality have both increased over time in central Amazonia, and these could potentially have long‐term effects on forest dynamics and carbon storage.  相似文献   

5.
Question: Are species‐specific regeneration strategies and competition the dominant processes facilitating species coexistence in a Quercus liaotungensis dominated temperate deciduous forest? Location: Dongling Mountains, North China, 1300 m a.s.l. Methods: Ripley's K‐function was used to characterize the spatial patterns and spatial associations of two dominant tree species, Quercus liaotungensis and Betula dahurica, and a common subcanopy species, Acer mono, at different growth stages (adult, sapling, seedling). Results: Seedlings, saplings and adults of all three species exhibited clumped distributions at most spatial scales. Quercus seedlings and saplings were positively associated with conspecific adult trees and spatially independent of dead trees suggesting that seed dispersal and vegetative regeneration influenced the spatial patterning of Quercus trees. Betula seedlings and saplings were positively associated with both live and dead trees of conspecific adults at small scales (<5 m) but negatively associated with live and dead trees of other species indicating sprouting as an important mechanism of reproduction. Saplings of Acer had a strong spatial dependence on the distribution of conspecific adult trees indicating its limited seed dispersal range. Negative associations between adult trees of Betula and Quercus demonstrated interspecific competition at local scales (<5 m). Conclusions: Different regeneration strategies among the three species play an important role in regulating their spatial distribution patterns, while competition between individuals of Betula and Quercus at the adult stage also contributes to spatial patterning of these communities. The recruitment limitations of Betula and Quercus may affect the persistence of these species and the long‐term dynamics of the forest.  相似文献   

6.
Questions: Did fire regimes in old‐growth Pinus ponderosa forest change with Euro‐American settlement compared to the pre‐settlement period? Do tree age structures exhibit a pattern of continuous regeneration or is regeneration episodic and related to fire disturbance or fire‐free periods? Are the forests compositionally stable? Do trees have a clumped spatial pattern and are clumps even‐ or mixed‐age? How might information from this old‐growth forest inform current restoration and management practices? Location: A 235‐ha old‐growth forest in the Ishi Wilderness, southern Cascade Mountains, California. Methods: Age, size, and spatial pattern of trees were quantified in seven stands. Fire history was reconstructed using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing fire history with age, size, and spatial structure of trees and identifying and measuring trees killed by two recent fires. Results: Species composition in plots was similar but density and basal area of tree populations varied. Age structure for P. ponderosa and Quercus kelloggii showed periods of episodic recruitment that varied among plots. Fire disturbance was frequent before 1905, with a median period between fires of 12 years. Fire frequency declined after 1905 but two recent fires (1990, 1994) killed 36% and 41% of mostly smaller diameter P. ponderosa and Q. kelloggii. Clusters of similar age trees occurred at scales of 28‐1018 m2 but patches were not even‐aged. Interactions between tree regeneration and fire promoted development of uneven age groups of trees. Conclusions: Fire disturbance strongly influenced density, basal area, and spatial structure of tree populations. Fire exclusion over the last 100 years has caused compositional and structural changes. Two recent fires, however, thinned stands and created gaps favorable for Q. kelloggii and P. ponderosa regeneration. The effects of infrequent 20th century fire indicate that a low fire frequency can restore and sustain structural characteristics resembling those of the pre‐fire suppression period forest.  相似文献   

7.
Tropical late‐successional tree species are at high risk of local extinction due to habitat loss and fragmentation. Population‐growth rates in fragmented populations are predicted to decline as a result of reduced fecundity, survival and growth. We examined the demographic effects of habitat fragmentation by comparing the population dynamics of the late‐successional tree Poulsenia armata (Moraceae) in southern Mexico between a continuous forest and several forest fragments using integral projection models (IPMs) during 2010–2012. Forest fragmentation did not lead to differences in population density and even resulted in a higher population‐growth rate (λ) in fragments compared to continuous forests. Habitat fragmentation had drastic effects on the dynamics of P. armata, causing the population structure to shift toward smaller sizes. Fragmented populations experienced a significant decrease in juvenile survival and growth compared to unaltered populations. Adult survival and growth made the greatest relative contributions to λ in both habitat types during 2011–2012. However, the relative importance of juvenile survival and growth to λ was highest in the fragmented forest in 2010–2011. Our Life Table Response Experiment analysis revealed that positive contributions of adult fecundity explained most of the variation of λ between both habitats and annual periods. Finally, P. armata has a relatively slow speed of recovery after disturbances, compromising persistence of fragmented populations. Developing a mechanistic understanding of how forest fragmentation affects plant population dynamics, as done here, will prove essential for the preservation of natural areas.  相似文献   

8.
Given that changes in population size are slow, information on future prospects of long-lived tree species is necessarily obtained from demographic models. We studied six threatened tree species in four Vietnamese protected areas: the broad-leaved Annamocarya sinensis, Manglietia fordiana and Parashorea chinensis, and the coniferous Calocedrus macrolepis, Dacrydium elatum and Pinus kwangtungensis. With data from a 2-year field study on recruitment, growth and survival, we constructed matrix models for each species. All species showed continuous regeneration, as indicated by annual seedling recruitment and inverse J-shaped population structures. To evaluate the future prospects of our study species, we calculated three parameters: (1) asymptotic growth rates (λ) from matrix models indicated significant population declines of 2–3%/year for two species; (2) population trajectories for 50–100 years showed slight population declines (0–3%/year) for five species; and (3) the reproductive period required for an adult tree to replace itself was excessive for three of the six species, suggesting that these species presently have insufficient recruitment. Overall agreement of the three parameters was low, showing that reliance on just one parameter is risky. Combining the three parameters we concluded that prospects are good for Dacrydium and Parashorea, worrisome for Annamocarya, Manglietia and Pinus, and intermediate for Calocedrus. We argue that conservation should involve strict protection of (pre-)adult trees, as their survival is crucial for population maintenance in all species (high elasticity). For species with poor demographic prospects, active intervention is required to improve seedling and tree growth, enrich populations with seedlings from controlled germination, and restore habitat. Finally, our study suggests that these conservation measures apply to long-lived trees in general, given that their demography is highly similar. Such measures should be taken before populations decline below critical levels, as long-lived species will respond slowly to management. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The aim of this work was to study the possible effects of forest and forest edge habitats on the population fluctuation of the Anopheles species in northwestern Argentina, taking into consideration the relationship between this fluctuation and climatic variables. This study is one of the first that involves the Anopheles fauna in the country and its dynamics in two different habitats. Sampling was carried out from October, 2002 to October, 2003, in the forest and on the forest edge. Both habitats were compared for species diversity and abundance, and multiple regression analyses were performed to analyze the effects of environmental variables on the population dynamics. Five hundred and sixteen adult specimens of Anopheles species were collected, the most numerous group being Arribalzaga (52.1%), followed by Anopheles (Nyssorhynchus) strodei (20.5%) and Anopheles (Nyssorhynchus) evansae (6.4%). Mosquito abundance was greatest in the forest, the most productive habitat. Samples were collected throughout the sampling period, with a smaller peak in summer. Small numbers of Anopheles (Anopheles) pseudopunctipennis were found throughout the year. Relative humidity, with a 15‐day delay, was the factor that most strongly contributed to the temporal sample fluctuation. We conclude that the best season for anopheline development in the study area is from spring to fall, although the period with the greatest transmission risk is the fall, with the greatest An. pseudopunctipennis abundance.  相似文献   

10.
Questions: The Cross Timbers are a mosaic of savannas, grasslands and upland forests, occupying a significant portion of south‐central North America. Our questions here were (1) how does a severe tornado affect the two most dominant tree species of the area Quercus marilandica and Q. stellata with respect to damage and mortality; (2) how do such patterns vary as a function of tree size? What are the implications of disturbance for codominance in species‐poor systems? Location: The Cross Timbers in Oklahoma, USA. Methods: We established a 14.48‐ha permanent plot following a severe tornado in 2003. We identified, numbered and tagged each tree and recorded its diameter at breast height (DBH), spatial coordinates, status (dead or alive), and damage type. We examined (1) relative abundance before and after the tornado; (2) differences in damage and mortality, and (3) the influence of tree diameter on the probability of damage and mortality for each species. Results: Differences in species identity and tree characteristics were significantly related to tree mortality following the tornado, after accounting for spatial locations. The odds of mortality were 12.0 times greater for Q. marilandica than for Q. stellata. Such greater vulnerability of Q. marilandica versus Q. stellata was also reflected in changes in density and basal area. Tree diameter clearly influenced the damage and mortality pattern in Q. stellata; larger trees sustained more damage and mortality. However, Q. marilandica did not exhibit size‐dependent mortality. Conclusion: The tornado affected the two dominant species differently. The intra‐ and inter‐specific differences in windstorm susceptibility may allow coexistence of the two species and are potentially important in the dynamics of the Cross Timbers. Species more damaged might finally benefit from the wind disturbance due to their resprouting ability.  相似文献   

11.
12.
Abstract. Question: Which are the structural attributes and the history of old‐growth Fagus forest in Mediterranean montane environments? What are the processes underlying their structural organization? Are these forests stable in time and how does spatial scale affect our assessment of stability? How do these forests compare to other temperate deciduous old‐growth forests? Location: 1600–1850 m a.s.l., Fagus forest near the tree line, central Apennines, Italy. Methods: An old‐growth Fagus forest was studied following historical, structural and dendroecological approaches. History of forest cover changes was analysed using aerial photographs taken in 1945, 1954, 1985 and 1994. The structural analysis was carried out in the primary old‐growth portion of the forest using 18 circular and two rectangular plots. Dendroecological analyses were conducted on 32 dominant or co‐dominant trees. Results: These primary old‐growth Fagus remnants consist of four patches that escaped logging after World War II. Both living and dead tree components are within the range of structural attributes recognized for old‐growth in temperate biomes. Dendroecological analyses revealed the roles of disturbance, competition and climate in structuring the forest. We also identified a persistent Fagus community in which gap‐phase regeneration has led to a mono‐specific multi‐aged stand at spatial scales of a few hectares, characterized by a rotated‐sigmoid diameter distribution. Conclusion: Even at the relatively small spatial scale of this study, high‐elevation Apennine Fagus forests can maintain structural characteristics consistent with those of old‐growth temperate forests. These results are important for managing old‐growth forests in the Mediterranean montane biome.  相似文献   

13.
Bark beetle population dynamics is thought to be primarily driven by bottom‐up forces affecting insect performance and host tree resistance. Although there are theoretical predictions and empirical evidences that predation and parasitism may play an important role in driving bark beetle population fluctuations, long‐term studies testing the role of both biotic and abiotic controls on population dynamics are still rare. The aim of the study was to quantify the relative importance of predation, negative density feedback and abiotic factors in driving Ips typographus population dynamics. We analyzed a unique time series of population density of I. typographus and its main predator Thanasimus formicarius over almost two decades in four regions across Sweden. We used a discrete population model and a multi‐model inference approach to evaluate the importance of both bottom up and top down factors. We found that availability of breeding substrates in the form of storm‐felled trees was the main outbreak trigger, while strong intra‐specific competition for host trees was the main endogenous regulating factor. Although temperature‐related metrics are known to have strong individual effect on I. typographus development and number of generations, they did not emerge as important drivers of population dynamics. A positive effect of low summer rainfall was evident only in the region located in the southernmost and warmest part of the spruce distribution range in Sweden. Predator density did not emerge as an important prey regulating factor. As the reported damage from storms seems to have increased across whole Europe, spruce forests are expected to be increasingly susceptible to large outbreaks of I. typographus with important economic and ecological consequences for boreal ecosystems. However, the observed negative density feedback seems to be a natural regulating mechanism that impedes a strong long‐term propagation of the outbreaks.  相似文献   

14.
To clarify the role of dense understory vegetation in the stand structure, and in carbon (C) and nitrogen (N) dynamics of forest ecosystems with various conditions of overstory trees, we: (i) quantified the above‐ and below‐ground biomasses of understory dwarf bamboo (Sasa senanensis) at the old canopy‐gap area and the closed‐canopy area and compared the stand‐level biomasses of S. senanensis with that of overstory trees; (ii) determined the N leaching, soil respiration rates, fine‐root dynamics, plant area index (PAI) of S. senanensis, and soil temperature and moisture at the tree‐cut patches (cut) and the intact closed‐canopy patches (control). The biomass of S. senanensis in the canopy‐gap area was twice that at the closed‐canopy area. It equated to 12% of total biomass above ground but 41% below ground in the stand. The concentrations of NO3? and NH4+ in the soil solution and soil respiration rates did not significantly change between cut and control plots, indicating that gap creation did not affect the C or N dynamics in the soil. Root‐length density and PAI of S. senanensis were significantly greater at the cut plots, suggesting the promotion of S. senanensis growth following tree cutting. The levels of soil temperature and soil moisture were not changed following tree cutting. These results show that S. senanensis is a key component species in this cool‐temperate forest ecosystem and plays significant roles in mitigating the loss of N and C from the soil following tree cutting by increasing its leaf and root biomass and stabilizing the soil environment.  相似文献   

15.
Abstract. A study of the forest lines, tree lines and the structures of the sub‐alpine forest was performed in Vallone Vallanta and in Alevé forest in the Varaita Valley (Cottian Alps, Piedmont, Italy). Forest‐ and tree lines were analysed over 1728 ha while forest structures were studied on six 3000‐m2 plots located at the tree line (2), at the forest line (2) and inside the sub‐alpine forest (2). Dendro‐ecological analysis of living plants and stumps showed that Larix decidua was more abundant in the past than today and that Pinus cembra has expanded, both upwards and within sub‐alpine forests. Age structure analysis revealed that the current sub‐alpine forest stands were established 200–220 yr ago, probably following a clearcut. At the forest lines the tree density decreases, and some trees are more than 500 yr old, whereas at the tree lines most of the trees (almost exclusively Pinus cembra) are younger than 100 yr. Growth dynamics were investigated both by observing Basal Area Increment (BAI) in the old and dominant trees, and by comparing the BAIs of classes of trees with a given cambial age range in different time periods. The results showed that the growth rates of mature Pinus cembra and Larix decidua had increased. These increments are more substantial for Pinus than for Larix. The growth rate of young trees (< 100 yr) of both species has decreased over recent decades. This could be due to competition caused by increased tree densities that have resulted from a decrease in grazing.  相似文献   

16.
Question: Are trees sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Does sensitivity of forest communities to climatic variability depend on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East Tennessee, USA. Methods: Using a long‐term dataset (1967–2006), we analyzed temporal forest dynamics at the tree and species level, and community dynamics for forest stands that differed in initial species composition (i.e., chestnut oak, oak–hickory, pine, and yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the four‐decade study period, forest communities underwent successional change and substantially increased in biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand‐level responses to climatic variability were related to the responses of component species, except in pine stands. Pinus echinata, the dominant species in pine stands, decreased over time due to periodic outbreaks of pine bark beetle (Dendroctonus frontalis). These outbreaks at Walker Branch could not be directly related to climatic conditions. Conclusions: The results indicate that sensitivity of developing forests to climatic variability is stand type‐dependent, and hence is a function of species composition. However, in the long term, direct effects of climatic variability on forest dynamics may be small relative to autogenic successional processes or climate‐related insect outbreaks. Empirical studies testing for interactions between forest succession and climatic variability are needed.  相似文献   

17.
Aim We examine the range expansion/contraction dynamics during the last glacial cycle of the late‐successional tropical rain forest conifer Podocarpus elatus using a combination of modelling and molecular marker analyses. Specifically, we test whether distributional changes predicted by environmental niche modelling are in agreement with (1) the glacial maximum contractions inferred from the southern fossil record, and (2) population genetic‐based estimates of range disjunctions and demographic dynamics. In addition, we test whether northern and southern ranges are likely to have experienced similar expansion/contraction dynamics. Location Eastern Australian tropical and subtropical rain forests. Methods Environmental niche modelling was completed for three time periods during the last glacial cycle and was interpreted in light of the known palynology. We collected 109 samples from 32 populations across the entire range of P. elatus. Six microsatellite loci and Bayesian coalescence analysis were used to infer population expansion/contraction dynamics, and five sequenced loci (one plastid and four nuclear) were used to quantify genetic structure/diversity. Results Environmental niche modelling suggested that the northern and southern ranges of P. elatus experienced different expansion/contraction dynamics. In the northern range, the habitat suitable for P. elatus persisted in a small refugial area during the Last Glacial Maximum (LGM, 21 ka) and then expanded during the post‐glacial period. Conversely, in the south suitable habitat was widespread during the LGM but subsequently contracted. These differential dynamics were supported by Bayesian analyses of the population genetic data (northern dispersal) and are consistent with the greater genetic diversity in the south compared with the north. A contact zone between the two genetically divergent groups (corresponding to the Macleay Overlap Zone) was supported by environmental niche modelling and molecular analyses. Main conclusions The climatic fluctuations of the Quaternary have differentially impacted the northern and southern ranges of a broadly distributed rain forest tree in Australia. Recurrent contraction/expansion cycles contributed to the genetic distinction between northern and southern distributions of P. elatus. By combining molecular and environmental niche modelling evidence, this unique study undermines the general assumption that broadly distributed species respond in a uniform way to climate change.  相似文献   

18.
The effects of local population density, sex morph [protogynous (PG) or protandrous (PA)], and individual tree size on the demographic processes of seed production were investigated in a heterodichogamous maple, Acer mono Maxim. var. Marmoratum (Nichols.) Hara f. dissectum, in a temperate forest of Japan. As the distance from conspecific reproductive adults increased, the percentage of immature seed fall and empty seeds increased significantly, indicating higher pollination success along with local population density. Although the difference was not distinct, pollination success was affected by the local population density of the reciprocal sex morph rather than that of both sex morphs. The trees at higher local population density sites suffered higher seed mortality due to predation and decay, and tended to produce smaller seeds. Thus, the impacts of local population density operated both positively and negatively on reproduction. As a factor of individual traits, tree size scarcely affected any demographic processes. On the other hand, sex morph did affect pollination success. Trees of PG type had lower immature seed fall than those of PA type, suggesting that the former has higher efficiency of pollen acceptance than the latter. The results on seed demography presented here partly support previous suggestions that heterodichogamous plants exhibit reciprocal cross-pollination and gender specialization as reproductive traits.  相似文献   

19.
Aim Concepts about patterns and rates of post‐glacial tree population migration are changing as a result of the increasing amount of palaeobotanical information being provided by macroscopic plant remains. Here we combine macrofossil, pollen and stomata records from five sites in north‐eastern European Russia and summarize the results for the late‐glacial–early Holocene transition. The late‐glacial–early Holocene transition encompasses the first indications of trees (tree‐type Betula, Picea abies, Abies sibirica and Larix sibirica) and subsequent forest development. Considerable time‐lags between the first macrobotanical and/or stomata finds of spruce (Picea abies) and the establishment of a closed forest are reconsidered. Location Pechora basin, north‐eastern European Russia. Methods We used plant macrofossil, stomata, pollen and radiocarbon analyses to reconstruct late‐glacial and early Holocene tree establishment and forest development. The data were derived from lake sediment and peat archives. Results Palaeobotanical data reveal an early Holocene presence (11,500–10,000 cal. yr bp ) of arboreal taxa at all five sites. One site presently located in the northernmost taiga zone, shows the presence of spruce and reproducing tree birch during the late‐glacial. Given the current view of post‐glacial population dynamics and migration rates, it seems likely that the source area of these early tree populations in north‐eastern European Russia was not located in southern Europe but that these populations had local origins. Results thus support the emerging view that the first post‐glacial population expansions in non‐glaciated regions at high latitudes do not reflect migration from the south but were a result of an increase in the size and density of small persisting outlying tree populations. Main conclusions Results suggest that the area east of the margin of the Scandinavian ice sheet to the Ural Mountains had isolated patches of trees during the late‐glacial and early Holocene and that these small populations acted as initial nuclei for population expansion and forest development in the early Holocene.  相似文献   

20.
Question: Abrupt increments in tree radial growth chronology are associated with gap formations derived from disturbances. If a forest has been primarily controlled by fine‐scale disturbances such as single tree‐fall, do these release events spatio‐temporally synchronize at a fine scale such as 10 m and 5 years? Is it possible to quantify spatio‐temporal patterns of synchronicity from tree rings and long‐term inventories, and associate them with spatial forest patch dynamics? How and to what extent can we reconstruct the fine‐scale synchronized growth and spatio‐temporal forest patch dynamics from currently available information? Location: Cores were taken from Abies sachalinensis trees in a coniferous/deciduous mixed forest in the Shiretoko Peninsula, Hokkaido, northern Japan. Methods: We first eliminated short‐term fluctuations and highlighted growth trends over the mid‐term using a time‐series smoothing technique. This helped identify release events, we then conducted fine‐scale spatial analyses on released A. sachalinensis primarily with cluster analysis. Results: We specified the unit scale of synchronicity at 10 m, and classified released A. sachalinensis trees into spatially separated regions. Only once during the recent 50 years was extensive synchronicity over 40 m found. Most of the released A. sachalinensis were isolated, with non‐released A. sachalinensis present in nearby, implying imperfect synchronization. The ambiguous 20–30 m A. sachalinensis patches present in the current forest were the result of connected and overlapping patches smaller than 10 m associated with different disturbances and different responses of understorey trees. Conclusion: Tree‐ring series, long‐term census and fine‐scale spatio‐temporal analyses revealed that this forest community has been controlled by two types of disturbance: frequent small disturbances such as single tree‐fall and less frequent multiple tree‐falls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号