首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

3.
The myosin heavy chain composition of muscle fibers that comprise the red strip of the pectoralis major was determined at different stages of development and following adult denervation. Using a library of characterized monoclonal antibodies we found that slow fibers of the red strip do not react with antibodies to any of the fast myosin heavy chains of the superficial pectoralis. Immunocytochemical analysis of the fast fibers of the adult red strip revealed that they contain the embryonic fast myosin heavy chain rather than the adult pectoral isoform found throughout the adult white pectoralis. This was confirmed using immunoblot analysis of myosin heavy chain peptide maps. We show that during development of the red strip both neonatal and adult myosin heavy chains appear transiently, but then disappear during maturation. Furthermore, while the fibers of the superficial pectoralis reexpress the neonatal isoform as a result of denervation, the fibers of the red strip reexpress the adult isoform. Our data demonstrate a new developmental program of fast myosin heavy chain expression in the chicken and suggest that the heterogeneity of myosin heavy chain expression in adult fast fibers results from repression of specific isoforms by innervation.  相似文献   

4.
We have selected tropomyosin subunits and myosin light chains as representative markers of the myofibrillar proteins of the thin and thick filaments and have studied changes in the type of proteins present during development in chicken and rabbit striated muscles. The β subunit of tropomyosin is the major species found in all embryonic skeletal muscles studied. During development the proportion of the α subunit of tropomyosin gradually increases so that in adult skeletal muscles the α subunit is either the only or the major species present. In contrast, cardiac muscles of both chicken and rabbit contain only the α subunit which remains invariant with development. Two subspecies of the α subunit of tropomyosin which differ in charge only were found in adult and embryonic chicken skeletal muscles. Only one of these subspecies seems to be common to chicken cardiac tropomyosin. With respect to myosin light chains, embryonic skeletal fast muscle myosin of both species resembles the adult fast muscle myosin except that the LC3 light chain characteristic of the adult skeletal fast muscle is present in smaller amounts. The significance of these isozymic changes in the two myofibrillar proteins is discussed in terms of a model of differential gene expression during development of chicken and rabbit skeletal muscles.  相似文献   

5.
The heavy and light subunits of myosin from white and red muscles of Atlantic salmon parr, smolt and adult individuals were analyzed by SDS-PAGE and two-dimensional electrophoresis. Tropomyosin was identified by comigration with rat tropomyosins in two-dimensional gels in the presence and absence of urea. These myofibrillar proteins were compared to those of Arctic charr.
  • 1.1. The myosin heavy chain from Atlantic salmon red muscles was associated with two types of light chain, 1S and 2S, that comigrated with the light chains 1S and 2S of Arctic charr.
  • 2.2. As in the Arctic charr, four myosin light chain spots were detected in white muscles: two fast myosin light chains type 1, one of which comigrated with its analogous in the Arctic charr; one fast myosin light chain type 2, differing slightly in isoelectric point from that of Arctic charr; and one fast myosin light chain type 3 with higher electrophoretic mobility than that of Arctic charr.
  • 3.3. Three tropomyosin spots were detected. White muscles contained only one type of β-tropomyosin and red muscles two types of α-tropomyosin. These three tropomyosin spots comigrated with those of Arctic charr.
  • 4.4. Two myosin heavy chain bands were observed in red muscles of salmon parrs but only one in the rest of the red muscles analyzed.
  • 5.5. Only one myosin heavy chain band was detected in white muscles by SDS-glycerol-polyacrylamide gel electrophoresis. Alfa-chymotryptic peptide mapping of these white myosin heavy chain bands revealed differences attributed to the presence of a new type of myosin heavy chain first detected several months after smoltification.
  相似文献   

6.
1. Structural and enzymic properties of myosins from atrial and ventricular cardiac muscle of the chicken were investigated and compared with myosins from the fast skeletal pectoralis and the slow skeletal anterior latissimus dorsi muscle. 2. The Ca2+-ATPase activity, both in function of pH and [K+], of atrial myosin closely resembled that of the fast pectoralis myosin, whereas the enzymic properties of ventricular myosin were similar to those of slow skeletal myosin. 3. By sodium dodecyl sulphate polyacrylamide gel electrophoresis on gradient gel and two-dimensional electrophoresis, involving isoelectric focusing in the first dimension and SDS gel electrophoresis in the second dimension, no difference could be demonstrated in the light-chain pattern of atrial and ventricular myosin. Complete identity was also found between anterior latissimus dorsi and cardiac light chains. 4. Electrophoretic analysis of soluble peptides released by tryptic digestion of myosin and electron microscopic study of light meromyosin paracrystals showed significant differences between the heavy chains of atrial and ventricular myosins, as well as between the heavy chains of cardiac and skeletal myosins. 5. The results confirm previous immunochemical findings and provide direct biochemical evidence for the existence of a new, unique type of myosin in the chicken atrial tissue.  相似文献   

7.
An antibody to chicken ventricular myosin was found to cross-react by enzyme immunoassay with myosin heavy chains from embryonic chicken pectorials, but not with adult skeletal myosins. This antibody, which was previously shown to label cultured muscle cells from embryonic pectoralis (Cantini et al., J cell biol 85 (1981) 903), was used to investigate by indirect immunofluorescence the reactivity of chicken skeletal muscle cells differentiating in vivo during embryonic development and muscle regeneration. Muscle fibers in 11-day old chick embryonic pectoralis and anterior latissimus dorsi muscles showed a differential reactivity with this antibody. Labelled fibers progressively decreasgd in number during subsequent stages and disappeared completely around hatching. Only rare small muscle fibers, some of which had the shape and location typical of satellite elements, were labelled in adult chicken muscle. A cold injury was produced with dry ice in the fast pectoralis and the slow anterior latissimys dorsi muscles of young chickens. Two days after injury a number of labelled cells was first seen in the intermediate region between the outer necrotic area and the underlying uninjured muscle. These muscle cells rapidly increased in number and size, thin myotubes were seen after 3 days and by 4–5 days a superficial layer of brightly stained newly formed muscle fibers was observed at the site of the injury. Between one and two weeks after the lesion the intensity of staining of regenerated fibers progressively decreased as their size further increased. These findings indicate that an embryonic type of myosin heavy chain is transitorily expressed during muscle regeneration.  相似文献   

8.
Distribution of myosin isoenzymes among skeletal muscle fiber types.   总被引:17,自引:4,他引:13  
Using an immunocytochemical approach, we have demonstrated a preferential distribution of myosin isoenzymes with respect to the pattern of fiber types in skeletal muscles of the rat. In an earlier study, we had shown that fluorescein-labeled antibody against "white" myosin from the chicken pectoralis stained all the white, intermediate and about half the red fibers of the rat diaphragm, a fast-twitch muscle (Gauthier and Lowey, 1977). We have now extended this study to include antibodies prepared against the "head" (S1) and "rod" portions of myosin, as well as the alkali- and 5,5'dithiobis (2-nitrobenzoic acid) (DTNB)-light chains. Antibodies capable of distinguishing between alkali 1 and alkali 2 type myosin were also used to localize these isoenzymes in the same fast muscle. We observed, by both direct and indirect immunofluorescence, that the same fibers which had reacted previously with antibodies against white myosin reacted with antibodies to the proteolytic subfragments and to the low molecular-weight subunits of myosin. These results confirm our earlier conclusion that the myosins of the reactive fibers in rat skeletal muscle are sufficiently similar to share antigenic determinants. The homology, furthermore, is not confined to a limited region of the myosin molecule, but includes the head and rod portions and all classes of light chains. Despite the similarities, some differences exist in the protein compositions of these fibers: antibodies to S1 did not stain the reactive (fast) red fiber as strongly as they did the white and intermediate fibers. Non-uniform staining was also observed with antibodies specific for A2 myosin; the fast red fiber again showed weaker fluorescence than did the other reactive fibers. These results could indicate a variable distribution of myosin isoenzymes according to their alkali-light chain composition among fiber types. Alternatively, there may exist yet another myosin isoenzyme which is localized in the fast red fiber. Those red fibers which did not react with any of the antibodies to pectoralis myosin, did react strongly with an antibody against myosin isolated from the anterior latissimus dorsi (ALD), a slow red muscle of the chicken. The myosin in these fibers (slow red fibers) is, therefore, distinct from the other myosin isoenzymes. In the rat soleus, a slow-twitch muscle, the majority of the fibers reacted only with antibody against ALD myosin. A minority, however, reacted with antiboddies to pectoralis as well as ALD myosin, which indicates that both fast and slow myosin can coexist within the same fiber of a normal adult muscle. These immunocytochemical studies have emphasized that a wide range of isoenzymes may contribute to the characteristic physiological properties of individual fiber types in a mixed muscle.  相似文献   

9.
Immunochemical studies of chicken pectoralis major, a fast muscle, have demonstrated large amounts of myosin heavy chains (MHCs) of the slow-skeletal-muscle type during early stages of embryonic development. A large majority of the myotubes present in early embryonic muscle stained for this class of MHC. As development progressed, its synthesis was suppressed in most of the muscle, except in the deeper presumptive red-strip region. The level of this MHC in the embryonic muscle appeared to be reduced by its suppression in a proportion of the existing cells, by the addition of many presumptive fast cells that never expressed this MHC, and by atrophy or degeneration of a small proportion of the slow MHC-positive cells. Further suppression of this MHC in a proportion of the histochemically typed slow cells present in the red-strip region did not occur until quite late in the post-hatch period.  相似文献   

10.
Isozymes of myosin have been localized with respect to individual fibers in differentiating skeletal muscles of the rat and chicken using immunocytochemistry. The myosin light chain pattern has been analyzed in the same muscles by two-dimensional PAGE. In the muscles of both species, the response to antibodies against fast and slow adult myosin is consistent with the speed of contraction of the muscle. During early development, when speed of contraction is slow in future fast and slow muscles, all the fibers react strongly with anti-slow as well as with anti-fast myosin. As adult contractile properties are acquired, the fibers react with antibodies specific for either fast or slow myosin, but few fibers react with both antibodies. The myosin light chain pattern slow shows a change with development: the initial light chains (LC) are principally of the fast type, LC1(f), and LC2(f), independent of whether the embryonic muscle is destined to become a fast or a slow muscle in the adult. The LC3(f), light chain does not appear in significant amounts until after birth, in agreement with earlier reports. The predominance of fast light chains during early stages of development is especially evident in the rat soleus and chicken ALD, both slow muscles, in which LC1(f), is gradually replaced by the slow light chain, LC1(s), as development proceeds. Other features of the light chain pattern include an "embryonic" light chain in fetal and neonatal muscles of the rat, as originally demonstrated by R.G. Whalen, G.S. Butler- Browne, and F. Gros. (1978. J. Mol. Biol. 126:415-431.); and the presence of approximately 10 percent slow light chains in embryonic pectoralis, a fast white muscle in the adult chicken. The response of differentiating muscle fibers to anti-slow myosin antibody cannot, however, be ascribed solely to the presence of slow light chains, since antibody specific for the slow heavy chain continues to react with all the fibers. We conclude that during early development, the myosin consists of a population of molecules in which the heavy chain can be associated with a fast, slow, or embryonic light chain. Biochemical analysis has shown that this embryonic heavy chain (or chains) is distinct from adult fast or slow myosin (R.G. Whalen, K. Schwartz, P. Bouveret, S.M. Sell, and F. Gros. 1979. Proc. Natl. Acad. Sci. U.S.A. 76:5197-5201. J.I. Rushbrook, and A. Stracher. 1979. Proc Natl. Acad. Sci. U.S.A. 76:4331-4334. P.A. Benfield, S. Lowey, and D.D. LeBlanc. 1981. Biophys. J. 33(2, Pt. 2):243a[Abstr.]). Embryonic myosin, therefore, constitutes a unique class of molecules, whose synthesis ceases before the muscle differentiates into an adult pattern of fiber types.  相似文献   

11.
Changes in myosin isozymes during development of chicken breast muscle   总被引:1,自引:0,他引:1  
The patterns of myosin isozymes in embryonic and adult chicken pectoralis muscle were examined by electrophoresis in a non-denaturing gel system (pyrophosphate acrylamide gel electrophoresis), and both light chains and heavy chains of embryonic and adult myosin isozymes were compared. In pyrophosphate acrylamide gel electrophoresis, the predominant isozyme component in embryonic pectoralis myosin could be clearly distinguished from adult myosin isozymes. SDS-polyacrylamide gel electrophoresis indicated that the light chain composition of embryonic myosin was also different from that of adult myosin. The pattern of peptide fragments produced by myosin digestion with a-chymotrypsin differed significantly between embryonic and adult skeletal myosin. These results suggest that myosin in the embryonic pectoralis muscle is different in both light and heavy chain composition from myosin in the same adult tissue.  相似文献   

12.
It has been demonstrated that embryonic chicken gizzard smooth muscle contains a unique embryonic myosin light chain of 23,000 mol wt, called L23 (Katoh, N., and S. Kubo, 1978, Biochem. Biophys. Acta, 535:401-411; Takano-Ohmuro, H., T. Obinata, T. Mikawa, and T. Masaki, 1983, J. Biochem. (Tokyo), 93:903-908). When we examined myosins in developing chicken ventricular and pectoralis muscles by two-dimensional gel electrophoresis, the myosin light chain (Le) that completely comigrates with L23 was detected in both striated muscles at early developmental stages. Two monoclonal antibodies, MT-53f and MT-185d, were applied to characterize the embryonic light chain Le of striated muscles. Both monoclonal antibodies were raised to fast skeletal muscle myosin light chains; the former antibody is specific to fast muscle myosin light chains 1 and 3, whereas the latter recognizes not only fast muscle myosin light chains but also the embryonic smooth muscle light chain L23. The immunoblots combined with both one- and two-dimensional gel electrophoresis showed that Le reacts with MT-185d but not with MT-53f. These results strongly indicate that Le is identical to L23 and that embryonic chicken skeletal, cardiac, and smooth muscles express a common embryo-specific myosin light chain.  相似文献   

13.
We investigated the expression of myosin light chains and tropomyosin subunits during chick embryonic development of the anterior (ALD) and posterior (PLD) parts of the latissimus dorsi muscles. As early as day 8 in ovo, both muscles accumulate a common set of myosin light chains (LC) in similar ratios (LC1F: 55 per cent; LC2S: 25 per cent; LC2F: 12 per cent; LC1S: 8 per cent) and a common set of tropomyosin (TM) subunits (beta 2, beta 1, alpha 2F). Later during development, the slow components of the LC regularly disappear in the PLD and the fast components of the LC and the alpha 2FTM disappear in the ALD, so that the adult pattern is almost established at the time of hatching. Thus, early in development, the two muscles accumulate a common set of fast and slow myosin light chains and fast tropomyosin and some isoforms are repressed at a later stage during development. These data might suggest that during development, the regulatory mechanisms of muscle specific isoform expression differ from one contractile protein to another.  相似文献   

14.
SOME PROPERTIES OF EMBRYONIC MYOSIN   总被引:10,自引:3,他引:7  
Myosins from the following sources were purified by diethylaminoethyl-Sephadex chromatography: moytubes grown in vitro for 7–8 days, prepared from pectoralis muscles of 10-day old embryos, and breast and leg muscles from 16-day old embryos. The adenosine triphosphatase activities of these myosins were close to that of adult m. pectoralis myosin. The light chains of the embryonic myosins had the same mobilities in sodium dodecyl sulfate electrophoresis as those in adult pectoralis muscle myosin and were clearly distinguishable from those in myosin from tonic muscle m. latissimus dorsi anterior. The fastest light chain in embryonic muscle myosin—apparent mol wt 16,000—was present in smaller amounts than in adult myosin. The negative staining pattern of paracrystals of embryonic light meromyosin (LMM) was indistinguishable from that of adult fast muscle LMM. The significance of these results for differentiation of various muscle types has been discussed.  相似文献   

15.
Immunochemical studies have identified a distinct myosin heavy chain (MHC) in the chicken embryonic skeletal muscle that was undetectable in this muscle in the posthatch period by both immunocytochemical and the immunoblotting procedures. This embryonic isoform, identified by antibody 96J, which also recognises the cardiac and SM1 myosin heavy chains, differs from the embryonic myosin heavy chain belonging to the fast class described previously. Although the fast embryonic isoform is a major species present in the leg and pectoral embryonic muscles, slow embryonic isoform was present in significant amounts during early embryonic development. Immunocytochemical studies using another monoclonal antibody designated 9812, which is specific for SM1 MHC, showed this isoform to be restricted to only presumptive slow muscle cells. From these studies and those reported on the changes in SM2 MHC, it is proposed that as is the case for the fast class, there also exists a slow class of myosin heavy chains composed of slow embryonic, SM1 and SM2 isoforms. The differentiation of a muscle cell involves transitions in a series of myosin isozymes in both presumptive fast and slow skeletal muscle cells.  相似文献   

16.
Summary The fiber type composition of two fast muscles of the chicken, namely, adductor superficialis (AS) and pectoralis major (PM) was examined by the histochemical myosin ATPase staining and immunochemical techniques using monoclonal antibodies (McAbs). Two new McAbs produced against the myosin of the anterior latissimus dorsi (ALD) muscle of the chicken and named ALD-122 and ALD-83 were characterized to be specific for myosin heavy chain (MHC) and for myosin light chain-1 respectively. They were used in conjunction with previously reported McAbs specific for slow MHC (ALD-47), fast MHC (MF-14) and fast light chain-2 (MF-5). By the histochemical ATPase test most muscle fibers of AS and PM muscles reacted as IIA and IIB respectively. By immunofluorescent staining with the anti-MHC McAbs, ALD-122, and MF-14, the fibers of AS, muscle showed remarkable heterogeneity whereas PM muscle fibers reacted, uniformly. Differences in the myosin light chain composition of AS and PM muscles were also found by SDS-gel electrophoresis and immunoblot analysis with the anti-light chain McAb, ALD-83. The study clearly indicated that the histochemically homogenous (type IIA) AS muscle is composed of several subpopulations of fibers which differ in their myosin composition and that this heterogeneity of the muscle is not simply due to presence of variable amounts of slow myosin in its fibers.  相似文献   

17.
Differentiation of quail myoblasts, isolated from thigh pectoralis and anterior latissimus dorsi muscle, was analyzed in primary cultures and in cultures obtained following repeated subculturing. Our study shows that quail myoblasts can survive many generations without losing their ability to form myotubes. However, during these subcultures the cells progressively express a new phenotype. This phenotype is characterized by a mixture of myosin light chains such that LC1F, LC2F, and LC2S are present in roughly equimolar amounts, each accounting for 25 to 30% of the total light chain synthesis while LC1S accounts for the remaining 10 to 15%, and by a mixture of fast and slow alpha tropomyosin in which alpha S accounts for 10 to 15% of the alpha subunits synthesis. Clonal analysis indicates that all cells in the population express this phenotype which is also characteristic of subcultures obtained from both future fast and slow muscles. Relationships between this phenotype and muscle development are discussed.  相似文献   

18.
Isoforms of C-protein in adult chickens which differ in fast (pectoralis major, PM) and slow (anterior latissimus dorsi, ALD) skeletal muscles can be distinguished immunochemically with monoclonal antibodies (McAbs) specific for the respective fast (MF-1) and slow (ALD-66) protein variants (Reinach et al., 1982 and 1983). The expression of these C-proteins during chick muscle development in vivo has been analyzed by immunoblot and immunofluorescence procedures. Neither MF-1 nor ALD-66 reacted with whole-cell lysates or myofibrils from PM of 12-day-old embryos. However, both McAbs bound to peptides of 145 kDa in PM from late embryonic and young posthatched chickens. All of the myofibers in these muscles reacted with both antibodies, but the binding of the anti-slow McAb (ALD-66) diminished progressively with age and was completely negative with PM by 2 weeks after hatching. In contrast, the ALD muscle from 17 days in ovo thru adulthood only reacted with ALD-66; no binding of MF-1 could be detected at these stages. Since both fast and slow myosin light chains (LC) coexist within embryonic pectoralis and ALD muscles (e.g., G. F. Gauthier, S. Lowey, P. A. Benfield, and A. W. Hobbs, 1982, J. Cell Biol.92, 471–484) yet segregate to specific fast and slow muscle fibers at different stages of development, the temporal transitions of C-protein and myosin LC were compared during myogenesis. “Slow-type” C-protein appeared after the disappearance of slow myosin light chains, whereas the accumulation of the “fast-type” light chains occurred before the expression of “fast-type” C-protein. The pattern of isoform transitions appears to be far more complex than previously suspected.  相似文献   

19.
Myosin types in cultured muscle cells   总被引:5,自引:2,他引:3       下载免费PDF全文
Fluorescent antibodies against fast skeletal, slow skeletal, and ventricular myosins were applied to muscle cultures from embryonic pectoralis and ventricular myocadium of the chicken. A number of spindle-shaped mononucleated cells, presumably myoblasts, and all myotubes present in skeletal muscle cultures were labeled by all three antimyosin antisera. In contrast, in cultures from ventricular myocardium all muscle cells were labeled by anti-ventricular myosin, whereas only part of them were stained by anti-slow skeletal myosin and rare cells reacted with anti-fast skeletal myosin. The findings indicate that myosin(s) present in cultured embryonic skeletal muscle cells contains antigenic determinants similar to those present in adult fast skeletal, slow skeletal, and ventricular myosins.  相似文献   

20.
mRNAs extracted from rabbit soleus, normal and 28-day, indirectly stimulated tibialis anterior muscles were translated in an in vitro system. Analysis for translation products by 2-dimensional electrophoresis showed fast myosin light chains in tibialis anterior, and slow myosin light chains in soleus muscle. The stoichiometry of the in vitro translated light chain varies from that seen in normal fast and slow twitch muscles. The stimulated muscle contained mRNA coding, both for fast and slow myosin light chains, although the pattern of slow myosin light chains appears not to be complete at this point of time of the transformation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号