首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sex in the nematode Caenorhabditis elegans is normally determined by the X chromosome to autosome (X:A) ratio, with XX hermaphrodites and XO males. Previous work has shown that a set of at least four autosomal genes (her-1, tra-2, tra-3, and tra-1) is signaled by the X:A ratio and appears to act in a regulatory pathway to determine sex. Twenty-one new recessive alleles of the gene fem-1(IV) (formerly isx-1) have been isolated. Seven of these may be null alleles; one of these is an amber mutation. The other 14 alleles are temperature sensitive. The putative null mutations cause both XO and XX animals to develop as females when the mother as well as the zygote is fem-1(?). Therefore, fem-1(+) is required (a) for the development of the male body and (b) for spermatogenesis in males and hermaphrodites. In addition, fem-1 shows a maternal effect: wild-type fem-1 product partially rescues the development of fem-1(?) progeny. By analyzing double mutants it has been shown that fem-1(+) is part of the sex-determination pathway and has two distinct functions: (1) in the soma it prevents the action of tra-1, thereby allowing male development to occur, and (2) in the germline it is necessary for spermatogenesis in both sexes.  相似文献   

2.
Sex determination in Drosophila melanogaster is under the control of the X chromosome:autosome ratio and at least four major regulatory genes: transformer (tra), transformer-2 (tra-2), doublesex (dsx) and intersex (ix). Attention is focused here on the roles of these four loci in sex determination. By examining the sexual phenotype of clones of homozygous mutant cells produced by mitotic recombination in flies heterozygous for a given recessive sex-determination mutant, we have shown that the tra, tra-2 and dsx loci determine sex in a cell-autonomous manner. The effect of removing the wild-type allele of each locus (by mitotic recombination) at a number of times during development has been used to determine when the wild-type alleles of the tra, tra-2 and dsx loci have been transcribed sufficiently to support normal sexual development. The wild-type alleles of all three loci are needed into the early pupal period for normal sex determination in the cells that produce the sexually dimorphic (in pigmentation) cuticle of the fifth and sixth dorsal abdominal segments. tra+ and tra-2+ cease being needed shortly before the termination of cell division in the abdomen, whereas dsx+ is required at least until the end of division. By contrast, in the foreleg, the wild-type alleles of tra+ and tra-2+ have functioned sufficiently for normal sexual differentiation to occur by about 24 to 48 hours before pupariation, but dsx+ is required in the foreleg at least until pupariation.——A comparison of the phenotypes produced in mutant/deficiency and homozygous mutant-bearing flies shows that dsx, tra-2 and tra mutants result in a loss of wild-type function and probably represent null alleles at these genes.—All possible homozygous doublemutant combinations of ix, tra-2 and dsx have been constructed and reveal a clear pattern of epistasis: dsx > tra, tra-2 > ix. We conclude that these genes function in a single pathway that determines sex. The data suggest that these mutants are major regulatory loci that control the batteries of genes necessary for the development of many, and perhaps all, secondary sexual characteristics.—The striking similarities between the properties of these loci and those of the homeotic loci that determine segmental and subsegmental specialization during development suggest that the basic mechanisms of regulation are the same in the two situations. The phenotypes and interactions of these sex-determination mutants provide the basis for the model of how the wild-type alleles of these loci act together to effect normal sex determination. Implications of these observations for the function of other homeotic loci are discussed.  相似文献   

3.
Tribolium castaneum Transformer (TcTra) is essential for female sex determination and maintenance through the regulation of sex-specific splicing of doublesex (dsx) pre-mRNA. In females, TcTra also regulates the sex-specific splicing of its own pre-mRNA to ensure continuous production of functional Tra protein. Transformer protein is absent in males and hence dsx pre-mRNA is spliced in a default mode. The mechanisms by which males inhibit the production of functional Tra protein are not known. Here, we report on functional characterization of transformer-2 (tra-2) gene (an ortholog of Drosophila transformer-2) in T. castaneum. RNA interference-mediated knockdown in the expression of gene coding for tra-2 in female pupae or adults resulted in the production of male-specific isoform of dsx and both female and male isoforms of tra suggesting that Tra-2 is essential for the female-specific splicing of tra and dsx pre-mRNAs. Interestingly, knockdown of tra-2 in males did not affect the splicing of dsx but resulted in the production of both female and male isoforms of tra suggesting that Tra-2 suppresses female-specific splicing of tra pre-mRNA in males. This dual regulation of sex-specific splicing of tra pre-mRNA ensures a tight regulation of sex determination and maintenance. These data suggest a critical role for Tra-2 in suppression of female sex determination cascade in males. In addition, RNAi studies showed that Tra-2 is also required for successful embryonic and larval development in both sexes.  相似文献   

4.
5.
6.
W. Mattox  M. E. McGuffin    B. S. Baker 《Genetics》1996,143(1):303-314
The Drosophila sex determination gene transformer-2 (tra-2) is a splicing regulator that affects the sex-specific processing of several distinct pre-mRNAs. While the tra-2 gene itself is known to produce alternative mRNAs that together encode three different TRA-2 protein isoforms, the respective roles of these isoforms in affecting individual pre-mRNA targets has remained unclear. We have generated transgenic fly strains with mutations affecting specific TRA-2 isoforms to investigate their individual roles in regulating the alternative processing of doublesex, exuperantia and tra-2 pre-mRNA. Our results indicate that in somatic tissues two different isoforms function redundantly to direct female differentiation and female-specific doublesex pre-mRNA splicing. In the male germline, where tra-2 has an essential role in spermatogenesis, a single isoform was found to uniquely perform all necessary functions. This isoform appears to regulate its own synthesis during spermatogenesis through a negative feedback mechanism involving intron retention.  相似文献   

7.
Ten mutations are described that transform genotypic hermaphrodites of the nematode Caenorhabditis elegans into phenotypic males. These fall into three autosomal complementation groups, termed tra-1, tra-2 , and tra-3. Two alleles of tra-1 produce almost complete transformation, to a fertile male phenotype; such transformed animals are useful for analyzing sex-linked genes. All alleles of tra-1 and tra-2 are recessive; the one known allele of tra-3 is both recessive and maternal in effect. Where tested, both XX and XXX hermaphrodites are transformed into males, but XO males (true males) are unaffected by these mutations. It is suggested that these genes are actually involved in hermaphrodite development and have no role in male development.  相似文献   

8.
T. Schedl  J. Kimble 《Genetics》1988,119(1):43-61
This paper describes the isolation and characterization of 16 mutations in the germ-line sex determination gene fog-2 (fog for feminization of the germ line). In the nematode Caenorhabditis elegans there are normally two sexes, self-fertilizing hermaphrodites (XX) and males (XO). Wild-type XX animals are hermaphrodite in the germ line (spermatogenesis followed by oogenesis), and female in the soma. fog-2 loss-of-function mutations transform XX animals into females while XO animals are unaffected. Thus, wild-type fog-2 is necessary for spermatogenesis in hermaphrodites but not males. The fem genes and fog-1 are each essential for specification of spermatogenesis in both XX and XO animals. fog-2 acts as a positive regulator of the fem genes and fog-1. The tra-2 and tra-3 genes act as negative regulators of the fem genes and fog-1 to allow oogenesis. Two models are discussed for how fog-2 might positively regulate the fem genes and fog-1 to permit spermatogenesis; fog-2 may act as a negative regulator of tra-2 and tra-3, or fog-2 may act positively on the fem genes and fog-1 rendering them insensitive to the negative action of tra-2 and tra-3.  相似文献   

9.
Tabitha Doniach 《Genetics》1986,114(1):53-76
In the nematode C. elegans, there are two sexes, the self-fertilizing hermaphrodite (XX) and the male (XO). The hermaphrodite is essentially a female that makes sperm for a brief period before oogenesis. Sex determination in C. elegans is controlled by a pathway of autosomal regulatory genes, the state of which is determined by the X:A ratio. One of these genes, tra-2, is required for hermaphrodite development, but not for male development, because null mutations in tra-2 masculinize XX animals but have no effect on XO males. Dominant, gain-of-function tra-2 mutations have now been isolated that completely feminize the germline of XX animals so that they make only oocytes and no sperm and, thus, are female. Most of the tra-2(dom) mutations do not correspondingly feminize XO animals, so they do not appear to interfere with control by her-1, a gene thought to negatively regulate tra-2 in XO animals. Thus, these mutations appear to cause gain of tra-2 function in the XX animal only. Dosage studies indicate that 5 of 7 tra-2(dom) alleles are hypomorphic, so they do not simply elevate XX tra-2 activity overall. These properties suggest that in the wild type, tra-2 activity is under two types of control: (1) in males, it is inactivated by her-1 to allow male development to occur, and (2) in hermaphrodites, tra-2 is active but transiently inactivated by another, unknown, regulator to allow hermaphrodite spermatogenesis; this mode of regulation is hindered by the tra-2(dom) mutations, thereby resulting in XX females.  相似文献   

10.
11.
T. Schedl  P. L. Graham  M. K. Barton    J. Kimble 《Genetics》1989,123(4):755-769
In wild-type Caenorhabditis elegans there are two sexes, self-fertilizing hermaphrodites (XX) and males (XO). To investigate the role of tra-1 in controlling sex determination in germline tissue, we have examined germline phenotypes of nine tra-1 loss-of-function (lf) mutations. Previous work has shown that tra-1 is needed for female somatic development as the nongonadal soma of tra-1(lf) XX mutants is masculinized. In contrast, the germline of tra-1(lf) XX and XO animals is often feminized; a brief period of spermatogenesis is followed by oogenesis, rather than the continuous spermatogenesis observed in wild-type males. In addition, abnormal gonadal (germ line and somatic gonad) phenotypes are observed which may reflect defects in development or function of somatic gonad regulatory cells. Analysis of germline feminization and abnormal gonadal phenotypes of the various mutations alone or in trans to a deficiency reveals that they cannot be ordered in an allelic series and they do not converge to a single phenotypic endpoint. These observations lead to the suggestion that tra-1 may produce multiple products and/or is autoregulated. One interpretation of the germline feminization is that tra-1(+) is necessary for continued specification of spermatogenesis in males. We also report the isolation and characterization of tra-1 gain-of-function (gf) mutations with novel phenotypes. These include temperature sensitive, recessive germline feminization, and partial somatic loss-of-function phenotypes.  相似文献   

12.
13.
The autosomal mutations transformer (tra) and transformer-2 (tra-2) of Drosophila convert chromosomal females (X/X) into phenotypical males. Our analysis aims at an understanding of the role which the transformer genes play in the development of the sexually dimorphic genital disc. In each Drosophila embryo, this disc starts development with a male and a female genital primordium, and an anal primordium. Our experiments involved the production of cell clones that were made homozygous for tra or tra-2 at different times of development. Homozygous clones were obtained by inducing mitotic recombination in three types of females heterozygous for tra or tra-2. The cells of the homozygous tra/tra or tra-2/tra-2 clones responded by changing from the female into the male pathway. Male genital structures developed if the clones were induced not later than 81 hr into development. In the analia, male clones appeared up to 120 hr. Our results show that the action of the wild-type alleles of tra+ and tra-2+ is required until late in larval development to repress the male genital primordium and to support development of the female primordium, as well as to maintain the anal primordium in the female pathway. Our data also suggest that the embryonic genital disc consists of two compartments, one containing the precursors for penis and analia, the other those of the male and female genitalia.  相似文献   

14.
Gender associated differences in vascular reactivity regulation might contribute to the low incidence of cardiovascular disease in women. Cardiovascular protection is suggested to depend on female sex hormones’ effects on endothelial function and vascular tone regulation. We tested the hypothesis that potassium (K+) channels and Na+K+-ATPase may be involved in the gender-based vascular reactivity differences. Aortic rings from female and male rats were used to examine the involvement of K+ channels and Na+K+-ATPase in vascular reactivity. Acetylcholine (ACh)-induced relaxation was analyzed in the presence of L-NAME (100 µM) and the following K+ channels blockers: tetraethylammonium (TEA, 2 mM), 4-aminopyridine (4-AP, 5 mM), iberiotoxin (IbTX, 30 nM), apamin (0.5 µM) and charybdotoxin (ChTX, 0.1 µM). The ACh-induced relaxation sensitivity was greater in the female group. After incubation with 4-AP the ACh-dependent relaxation was reduced in both groups. However, the dAUC was greater in males, suggesting that the voltage-dependent K+ channel (Kv) participates more in males. Inhibition of the three types of Ca2+-activated K+ channels induced a greater reduction in Rmax in females than in males. The functional activity of the Na+K+-ATPase was evaluated by KCl-induced relaxation after L-NAME and OUAincubation. OUA reduced K+-induced relaxation in female and male groups, however, it was greater in males, suggesting a greater Na+K+-ATPase functional activity. L-NAME reduced K+-induced relaxation only in the female group, suggesting that nitric oxide (NO) participates more in their functional Na+K+-ATPase activity. These results suggest that the K+ channels involved in the gender-based vascular relaxation differences are the large conductance Ca2+-activated K+ channels (BKCa) in females and Kv in males and in the K+-induced relaxation and the Na+K+-ATPase vascular functional activity is greater in males.  相似文献   

15.
H Amrein  M Gorman  R N?thiger 《Cell》1988,55(6):1025-1035
  相似文献   

16.
The temperature-sensitive sex transformer tra-2 (b202) II of the nematode Caenorhabditis elegans causes the transformation of genotypically hermaphrodite worms into phenotypic males and sterile intersexes at restrictive temperature. In this note, we show that the entire gonad structure is transformed and that oocyte development is autonomous of the form of the gonad and of the presence of a cellular sheath. Four oocyte-specific proteins are present in male intersexes that produce oocytes but are lacking in transformed males and hermaphrodite intersexes that do not produce oocytes.  相似文献   

17.
Thomas W. Cline 《Genetics》1984,107(2):231-277
Sxl appears to head a regulatory gene hierarchy that controls Drosophila sexual dimorphism in response to the X chromosome/autosome balance. Only XXAA cells normally have Sxl+ activity. It maintains both the female morphogenetic sequence and a level of X-linked dosage-compensated gene expression compatible with diplo-X cell survival. In the absence of this activity, male sexual development and dosage-compensated gene hyperactivation ensure. Loss-of-function Sxl mutations generally have female-specific lethal effects caused by upsets in dosage compensation. New female-viable Sxl mutant alleles and combinations which lack Sxl's female sex determination function, yet still provide sufficient dosage compensation function for diplo-X survival, are described here. Consequently, such mutants cause genotypic females to develop as phenotypic males. Some of these sex-transforming Sxl mutants do not require the maternally produced da+ activity that is normally essential for the functioning of zygotic Sxl alleles. In this paper, products of these unusual alleles are shown to act in trans to induce the expression of zygotic Sxl+ alleles that would otherwise be unable to function due to a lack of maternal da+ activity. This result indicates a third function for Sxl+ product: a positive autoregulatory role. Controls for the autoregulation experiments demonstrated the sex-trans-forming epigenetic effect of the da mutation for the first time in diploids. In these experiments the female-specific zygotic lethal effects that normally would have accompanied loss of maternal da+ activity were suppressed by mutations known to block dosage-compensation gene hyperactivation—the autosomal, male-specific lethals. Three types of abnormal sexual phenotypes were produced in the experiments described here, each with important implications for the mechanism of sex determination: (1) a true intersex phenotype produced by one particular Sxl allele shows that Sxl+ must be involved in the cellular response to the X/A balance rather than in its establishment; (2) a maternally induced, female-sterile phenotype indicates that either the process of autoregulation or the mutants used to demonstrate it are tissue specific and (3) a mosaic intersexual phenotype whose character implies that the Sxl+ activity level is set early in development, both by the da +-mediated X/A balance signal and by autoregulation, and is maintained subsequently in a cell autonomous fashion, independent of the initiating X/A balance signal. Thus, this study supports the view that sex determination is truly determinative in the standard developmental sense, and that Sxl is the carrier of the sexually determined state.  相似文献   

18.
A temperature-sensitive mutation, isx-1(hc17), is reported in the nematode Caenorhabditis elegans which alters the sexual phenotypes of both genotypic sexes. At the restrictive temperature, XX animals are functionally female rather than hermaphroditic due to the absence of spermatogenesis, and XO animals develop as intersexes. These intersexes have normal male head and tail structures and exhibit some mating behavior, but possess hermaphrodite-like gonads which produce no sperm and usually contain a few oocytes. An abortive vulva is usually present and evidence is presented which suggests that the formation of the vulva by the hypodermis is induced by the underlying gonad. The direct effects of the mutation are confined to the descendants of four primordial gonad cells. Gametogenesis and gonad sheath development do not seem to be tightly coupled and are shown to differ in their responses to X-chromosome dosage. The interaction of the intersex mutation with mutant alleles of two transformer genes tra-1 and tra-2 is discussed and a model for the action of these genes in gonad development and sex determination is proposed.  相似文献   

19.
In Drosophila, mutations at the transformer-2, the double-sex, or the intersex loci interfere with the normal sexual development of somatic cells. In order to study the effect of mutations at these loci on germ cell development, mutant germ cells were introduced into normal female or normal male gonads either by pole cell transplantation or by induced mitotic recombination, and their ability to give rise to functional gametes was tested. In contrast to the effects seen in mutant somatic cells, the mutant germ cells (dsxdsx, dsxD+, dsxddsx, tra-2tra-2, ixix) developed normally according to their chromosomal sex, and no sexual transformations of germ cells were observed. In combination with the results of J. L. Marsh and E. Wieschaus (1978, Nature (London)272, 249–251) concerning the transformer locus, it seems that the four autosomal loci known to be involved in sex determination of somatic cells have no important role in the sexual development of the germline. The results are discussed with respect to sex determination in the germline of Drosophila and are compared to observations made on similar mutations in other animal species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号