首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of rabbit, fowl, and Xenopus laevis sperm chromatin was explored by study of the reaction of their decondensed nuclei with DNase 1 and micrococcal nuclease. Those of rabbit and fowl were readily digested by DNase 1, and the polyacrylamide gel electrophoresis profiles of DNAs extracted from the digests were similar, each being polydisperse with a single discrete band of DNA smaller than 72 base pairs. There were differences, however, between the sperm chromatins in the course of their digestion by micrococcal nuclease. A limit digest at about 45% acid solubility was obtained with Xenopus sperm chromatin, while 90% of fowl sperm DNA was rendered acidsoluble by the enzyme. The gel profiles of the limit digests were polydisperse, but only those of rabbit and fowl sperm chromatins possessed a discrete band of DNA smaller than 72 base pairs. Bleomycin did not react with DNA of rabbit, fowl, or Xenopus spermatozoa. Since bleomycin reacts with somatic cell chromatin, and the course of DNase 1 or micrococcal nuclease digestion of sperm chromatin was different from that found for somatic cell chromatin, it would appear that sperm chromatin does not have the repeating nucleosometype structure of somatic cell chromatin. The nuclease digestion studies further suggest that the organization of rabbit and fowl sperm chromatins is similar, and is different from that of Xenopus sperm chromatin. The dependence of the structure of sperm chromatin on the composition of its basic proteins, and a possible structure for a protamine-type sperm chromatin, are discussed.  相似文献   

2.
Chromatin from mature sea urchin spermatozoa is highly compacted and composed almost entirely of DNA and the five histones, although sperm H1, H2A, and H2b histones differ from those found in embryo or somatic cell nuclei. Release of acid-soluble DNA during pancreatic DNase I digestion is 20-fold slower from sperm nuclei than from embryonic nuclei. Following DNase I digestion, most sperm nuclear DNA remains at high molecular weight, although there appears to be some release of 10 base oligomer fragments. Size analysis of the higher molecular weight DNA reveals a series of fragments that indicate a cutting periodicity of approximately 500 base pairs. This pattern remains when electrophoretic separation is carried out under denaturing conditions. The 500 base pair cleavage pattern was not detected in digestions of embryonic nuclei. Nucleosomes reconstituted with fractionated core histones from sperm gave, upon digestion, a characteristic 10 base “ladder,” with no resistant high molecular weight DNA. Micrococcal nuclease and DNase II digested sperm nuclei to produce DNA fragments with a calculated repeat length of 248 ± 3 and 246 ± 6 base pairs, respectively. The structural basis for the 500 base pair cutting periodicity in sperm nuclei may reside in the unique sperm H1 histone.  相似文献   

3.
Cross-linking of DNA with trimethylpsoralen is a probe for chromatin structure   总被引:19,自引:0,他引:19  
T Cech  M L Pardue 《Cell》1977,11(3):631-640
  相似文献   

4.
5.
Nascent DNA in nucleosome like structures from chromatin   总被引:17,自引:0,他引:17  
A Levy  K M Jakob 《Cell》1978,14(2):259-267
We have used chromatin sensitivity to cleavage by micrococcal nuclease as a probe for differences between chromatin containing nascent DNA and that containing bulk DNA. Micrococcal nuclease digested the nascent DNA in chromatin of swimming blastulae of sea urchins more rapidly to acid-soluble nucleotides than the DNA of bulk chromatin. A part of the nascent DNA occurred in micrococcal nuclease-resistant structures which were either different from, or temporary modifications of, the bulk nucleosomes. This was inferred from the size differences between bulk and nascent DNA fragments in 10% polyacrylamide gels after micrococcal nuclease digestion of nuclei from a mixture of 14C-thymidine long- and 3H-thymidine pulse-labeled embryos. Bulk monomer and dimer DNA fragments contained about 170 and 410 base pairs (bp), respectively, when 18% of the bulk DNA had been rendered acid-soluble. At this level of digestion, “nascent monomer DNA” fragments of about 150 bp as well as 305 bp “large nascent DNA fragments” were observed. Increasing levels of digestion indicated that the large nascent DNA fragment was derived from a chromatin structure which was more resistant to micrococcal nuclease cleavage than bulk dimer chromatin subunits. Peaks of 3H-thymidine-labeled DNA fragments from embryos which had been pulse-labeled and then chased or labeled for several minutes overlapped those of 14C-thymidine long-labeled monomer, dimer and trimer fragments. This indicated that the chromatin organization at or near the replication fork which had temporarily changed during replication had returned to the organization of its nonreplicating state.  相似文献   

6.
The sequence specificity of micrococcal nuclease complicates its use in experiments addressed to the still controversial issue of nucleosome phasing. In the case of alpha-satellite DNA containing chromatin from African green monkey (AGM) cells cleavage by micrococcal nuclease in the nucleus was reported to occur predominantly at only one location around position 126 of the satellite repeat unit (Musich et al. (1982) Proc. Natl. Acad. Sci. USA 79, 118-122). DNA control experiments conducted in the same study indicated the presence of many preferential cleavage sites for micrococcal nuclease on the 172 bp long alpha-satellite repeat unit. This difference was taken as evidence for a direct and simple phase relationship between the alpha-satellite DNA sequence and the position of the nucleosomes on the DNA. We have quantitatively analyzed the digestion products of the protein-free satellite monomer with micrococcal nuclease and found that 50% of all cuts occur at positions 123 and 132, 5% at position 79, and to a level of 1-3% at about 20 other positions. We also digested high molecular weight alpha-satellite DNA from AGM nuclei with micrococcal nuclease. Again cleavage occurred mostly at positions 123 and 132 of the satellite repeat unit. Thus digestion of free DNA yields results very similar to those reported by Musich et al. for the digestion of chromatin. Therefore no conclusions on a possible phase relationship can be drawn from the chromatin digestion experiments.  相似文献   

7.
Some parameters that influence the analysis in situ of DNA sensitivity to digestion with nuclease S1 have been studied in isolated HeLa nuclei with flow cytometry. DNA staining with the intercalating fluorochrome propidium iodide allowed the nucleolytic activity on double-stranded (ds) DNA to be determined by monitoring the relative reduction in nuclear fluorescence intensity. Nuclei isolated in buffer at low ionic strength in order to decondense chromatin fibres, showed a lower fluorescence intensity than nuclei with native chromatin, after digestion with nuclease S1 under identical conditions. Nuclei prepared with dispersed chromatin and digested with increasing amounts of enzyme showed a decrease in fluorescence intensity that reached a limit value at about 50% of the value of undigested control samples. On the other hand, in nuclei with native chromatin, fluorescence intensity decreased only about 18%. The NaCl concentration in the reaction buffer strongly influenced the DNA sensitivity to S1 nuclease. By increasing salt molarity from 5 mM to 200 mM, the digestion of dsDNA was significantly reduced as also shown by the amount of released nucleotides from purified calf thymus DNA. The detection of DNA sensitivity to nuclease S1, as assessed by the cytometric method, was shown to be more sensitive than a biochemical technique involving hydrolysis of purines. These results indicate that both the procedure for nuclei isolation and the digestion conditions have to be carefully controlled when evaluating in situ the presence of S1-sensitive sites.  相似文献   

8.
Summary Highly purified DNA from calf thymus nuclei (N-DNA) was found to cleave after reaction with a chelating agent and subsequent dialysis. During the cleavage phosphopeptides (PPs) were released into the dialysates. At the end of the cleavage, approximately one half of the PP material remained with the DNA. Since it was so strongly bound, it was considered to be retained in the DNA structure by covalent bonding. In order to confirm this, a commercial DNA (S-DNA) was ultrasonicated and digested with pancreatic DNAase, exonuclease III, and S1 nuclease. DEAE Sephacel chromatography of the digested material yielded 5 fractions. The fraction 2, having the highest proportion of proteinaceous material, was digested with Pronase. Amino acid analysis of the hydrolysis mixture yielded phosphoserine (Pser), asp, thr, ser, glu, gly, ala, val, ile, leu, and arg. The mixture was chromatographed again on DEAE Sephacel. From this a single fraction, number 5, was found to contain both deoxynucleotides and the amino acids, Pser, asp, ser, glu, and gly in a molar ratio of > 7:3:2:2:5. The mixture obtained by hydrolysis of this fraction with snake venom diesterase was again chromatographed on DEAE Sephacel. This fractionation gave two main peaks, one corresponding to the same 5 amino acids and the other to deoxynucleotide material. From this it was concluded that the fraction used for diesterase digestion consisted of deoxynucleotide-amino acids, with covalent diester bonds between the deoxynucleotide and amino acid portions.Dedicated to Prof. L.E. Feinendegen on the occasion of his 60th birthday  相似文献   

9.
We have digested nuclei, isolated from [3H] thymidine pulse labelled cells, with nuclease S1. Short pulse labelled DNA fragments were excised by the enzyme and released upon subsequent treatment with 2 M NaCl. Only a small fraction of the label was released from the S1 digested nuclei by 0.5 M NaCl indicating that the cleavage sites were located in the DNA of the nucleosome cores. The results are not compatible with the hypothesis that the initiation of the Okazaki fragments occurs at the internucleosomal linkers.  相似文献   

10.
Summary Some parameters that influence the analysis in situ of DNA sensitivity to digestion with nuclease S1 have been studied in isolated HeLa nuclei with flow cytometry. DNA staining with the intercalating fluorochrome propidium iodide allowed the nucleolytic activity on double-stranded (ds) DNA to be determined by monitoring the relative reduction in nuclear fluorescence intensity. Nuclei isolated in buffer at low ionic strength in order to decondense chromatin fibres, showed a lower fluorescence intensity than nuclei with native chromatin, after digestion with nuclease S1 under identical conditions. Nuclei prepared with dispersed chromatin and digested with increasing amounts of enzyme showed a decrease in fluorescence intensity that reached a limit value at about 50% of the value of undigested control samples. On the other hand, in nuclei with native chromatin, fluorescence intensity decreased only about 18%. The NaCl concentration in the reaction buffer strongly influenced the DNA sensitivity to S1 nuclease. By increasing salt molarity from 5 mM to 200 mM, the digestion of dsDNA was significantly reduced as also shown by the amount of released nucleotides from purified calf thymus DNA. The detection of DNA sensitivity to nuclease S1, as assessed by the cytometric method, was shown to be more sensitive than a biochemical technique involving hydrolysis of purines. These results indicate that both the procedure for nuclei isolation and the digestion conditions have to be carefully controlled when evaluating in situ the presence of S1-sensitive sites.  相似文献   

11.
DNA isolated from (a) liver chromatin digested in situ with endogenous Ca2+, Mg2+-dependent endonuclease, (b) prostate chromatin digested in situ with micrococcal nuclease or pancreatic DNAase I, and (c) isolated liver chromatin digested with micrococcal nuclease or pancreatic DNAase I has been analyzed electrophoretically on polyacrylamide gels. The electrophoretic patterns of DNA prepared from chromatin digested in situ with either endogenous endonuclease (liver nuclei) or micrococcal nuclease (prostate nuclei) are virtually identical. Each pattern consists of a series of discrete bands representing multiples of the smallest fragment of DNA 200 +/- 20 base pairs in length. The smallest DNA fragment (monomer) accumulates during prolonged digestion of chromatin in situ until it accounts for nearly all of the DNA on the gel; approx. 20% of the DNA of chromatin is rendered acid soluble during this period. Digestion of liver chromatin in situ in the presence of micrococcal nuclease results initially in the reduction of the size of the monomer from 200 to 170 base pairs of DNA and subsequently results in its conversion to as many as eight smaller fragments. The electrophoretic pattern obtained with DNA prepared from micrococcal nuclease digests of isolated liver chromatin is similar, but not identical, to that obtained with liver chromatin in situ. These preparations are more heterogeneous and contain DNA fragments smaller than 200 base pairs in length. These results suggest that not all of the chromatin isolated from liver nuclei retains its native structure. In contrast to endogenous endonuclease and micrococcal nuclease digests of chromatin, pancreatic DNAase I digests of isolated chromatin and of chromatin in situ consist of an extremely heterogeneous population of DNA fragments which migrates as a continuum on gels. A similar electrophoretic pattern is obtained with purified DNA digested by micrococcal nuclease. The presence of spermine (0.15 mM) and spermidine (0.5 mM) in preparative and incubation buffers decreases the rate of digestion of chromatin by endogenous endonuclease in situ approx. 10-fold, without affecting the size of the resulting DNA fragments. The rates of production of the smallest DNA fragments, monomer, dimer, and trimer, are nearly identical when high molecular weight DNA is present in excess, indicating that all of the chromatin multimers are equally susceptible to endogenous endonuclease. These observations points out the effects of various experimental conditions on the digestion of chromatin by nucleases.  相似文献   

12.
The purpose of this work was to investigate the distribution in chromatin of deoxyribonucleic acid (DNA) adducts of aflatoxin B1, following exposure in vivo. Rainbow trout were injected intraperitoneally with radiolabeled aflatoxin B1, a potent procarcinogen known to readily induced hepatocellular carcinomas in these fish. After maximum incorporation, liver nuclei were prepared and digested with micrococcal nuclease. Mono-, di-, and trinucleosomal fractions were purified from several stages of nuclease digestion, and the lengths and specific activities of their DNA were determined. The results indicate that aflatoxin B1 is approximately 5 times as likely on a per nucleotide basis to localize on internucleosomal (linker) DNA as on nucleosomal core DNA in this system.  相似文献   

13.
Negatively superhelical pNS1 DNA with a molecular weight of 2.55 MDa (4 kbp) was found to contain 13 specific, unbasepaired sites that are sensitive to a single-strand-specific S1 nuclease cleavage. The S1-cleavage occurred once at these sites. In the absence of added Mg2+, the topoisomerase I purified from Haemophilus gallinarum formed a complex with the superhelical pNS1 DNA which has a hidden strand cleavage. Extensive proteinase K digestion of the complex led to cleavage of the DNA chain. Then the proteinase K-cleaved product was digested with S1, which can cut the opposite strand at the preexisting strand cleavage to generate unit-length linear DNA. Restriction endonuclease analysis of the linear DNA shows that the topoisomerase-induced cleavage occurred once at ten specific sites on the DNA. The topoisomerase caused mainly single-strand cleavage at these sites, but infrequently also caused double-strand cleavage at the same sites. Of interest is the fact that these sites considerably coincide with the S1-cleavable, unbasepaired sites.  相似文献   

14.
Ehrlich ascites cells were pulse-labeled with [3H]thymidine and subjected to prolonged labeling with [14C]thymidine. The isolated nuclei were digested with the restriction endonuclease BspRI and then processed to yield a 'matrix fraction' and a 'non-matrix fraction'. The DNA fragments purified from these fractions and from whole digested nuclei were examined for nitrocellulose-binding sites before and after digestion with single-strand-specific (S1) nuclease. Both, pulse-labeled and long-time-labeled fragments, isolated from the matrix fraction, exhibited a significantly increased content of nitrocellulose-binding sites. The major portion of these sites were rendered non-binding by digestion with single-strand-specific nuclease and consisted most probably of structures exposing relatively small stretches of non-base-paired DNA. The nature of the minor portion of binding sites which was insensitive to single-strand-specific nuclease is not clear. Both types of binding sites are possible candidates for mediating the attachment of DNA to the nuclear matrix.  相似文献   

15.
Assembly of an active chromatin structure during replication.   总被引:19,自引:5,他引:14       下载免费PDF全文
MSB cells were pulse labeled with 3H-thymidine and the isolated nuclei digested with either staphylococcal nuclease (to about 40% acid solubility) or DNase I (to 15% acid solubility). The purified, nuclease resistant single-copy DNA was then hybridized to nuclear RNA (nRNA). The results of these experiments show that actively transcribed genes are assembled into nucleosome-like structures within 5-10 nucleosomes of the replication fork and that they also acquire a conformation characteristic of actively transcribed nucleosomes (ie, a DNase I sensitive structure) within 20 nucleosomes of the fork. Assuming DNA sequence specific interactions are required for establishing a DNase I sensitive conformation on active genes during each round of replication, our results indicate that a specific recognition event can occur very rapidly and very specifically in eukaryotic cells. The results are discussed in terms of the possible mechanisms responsible for propagating active, chromosomal conformations from mother cells to daughter cells.  相似文献   

16.
Kerry S. Bloom  John Carbon 《Cell》1982,29(2):305-317
We have examined the chromatin structure of the centromere regions of chromosomes III and XI in yeast by using cloned functional centromere DNAs (CEN3 and CEN11) as labeled probes. When chromatin from isolated nuclei is digested with micrococcal nuclease and the resulting DNA fragments separated electrophoretically and blotted to nitrocellulose filters, the centromeric nucleosomal sub-units are resolved into significantly more distinct ladders than are those from the bulk of the chromatin. A discrete protected region of 220–250 bp of CEN sequence flanked by highly nuclease-sensitive sites was revealed by mapping the exact nuclease cleavage sites within the centromeric chromatin. On both sides of this protected region, highly phased and specific nuclease cutting sites exist at nucleosomal intervals (160 bp) for a total length of 12–15 nucleosomal subunits. The central protected region in the chromatin of both centromeres spans the 130 bp segment that exhibits the highest degree of sequence homology (71%) between functional CEN3 and CEN11 DNAs. This unique chromatin structure is maintained on CEN sequences introduced into yeast on autonomously replicating plasmids, but is not propagated through foreign DNA sequences flanking the inserted yeast DNA.  相似文献   

17.
Fertilization requires decondensation of promatine-condensed sperm chromatin, a dynamic process serving as an attractive system for the study of chromatin reprogramming. Nucleoplasmin is a key factor in regulating nucleosome assembly as a chaperone during fertilization process. However, knowledge on nucleoplasmin in chromatin formation remains elusive. Herein, magnetic tweezers (MT) and a chromatin assembly system were used to study the nucleoplasmin-mediated DNA decondensation/condensation at the single-molecular level in vitro. We found that protamine induces DNA condensation in a stepwise manner. Once DNA was condensed, nucleoplasmin, polyglutamic acid, and RNA could remove protamine from the DNA at different rates. The affinity binding of the different polyanions with protamine suggests chaperone-mediated chromatin decondensation activity occurs through protein–protein interactions. After decondensation, both RNA and polyglutamic acid prevented the transfer of histones onto the naked DNA. In contrast, nucleoplasmin is able to assist the histone transfer process, even though it carries the same negative charge as RNA and polyglutamic acid. These observations imply that the chaperone effects of nucleoplasmin during the decondensation/condensation process may be driven by specific spatial configuration of its acidic pentamer structure, rather than by electrostatic interaction. Our findings offer a novel molecular understanding of nucleoplasmin in sperm chromatin decondensation and subsequent developmental chromatin reprogramming at individual molecular level.  相似文献   

18.
DNAase II has been shown to cleave condensed mouse liver chromatin at 100-bp2 intervals while chromatin in the extended form is cleaved at 200-bp intervals (Altenburger et al., 1976). Evidence is presented here that DNA digestion patterns of a half-nucleosomal periodicity are also obtained upon DNAase II digestion of chicken erythrocyte nuclei and yeast nuclei, both of which differ in their repeat lengths (210 and 165 bp) from mouse liver chromatin. In the digestion of mouse liver nuclei a shift from the 100-bp to the 200-bp cleavage mode takes place when the concentration of monovalent cations present during digestion is decreased below 1 mM. When soluble chromatin prepared by micrococcal nuclease is digested with DNAase II the same type of shift occurs, albeit at higher ionic strength.In order to map the positions of the DNAase II cleavage sites on the DNA relative to the positions of the nucleosome cores, the susceptibility of DNAase II-derived DNA termini to exonuclease III was investigated. In addition, oligonucleosome fractions from HaeIII and micrococcal nuclease digests were end-labelled with polynucleotide kinase and digested with DNAase II under conditions leading to 100 and 200-bp digestion patterns. Analysis of the chain lengths of the resulting radioactively labelled fragments together with the results of the exonuclease assay allow the following conclusions. In the 200-bp digestion mode, DNAase II cleaves exclusively in the internucleosomal linker region. Also in the 100-bp mode cleavage occurs initially in the linker region. Subsequently, DNAase II cleaves at intranucleosomal locations, which are not, however, in the centre of the nucleosome but instead around positions 20 and 125 of the DNA associated with the nucleosome core. At late stages of digestion intranucleosomal cuts predominate and linkers that are still intact are largely resistant to DNAase II due to interactions between adjacent nucleosomes. These findings offer an explanation for the sensitivity of DNAase II to the higher-order structure of chromatin.  相似文献   

19.
Chromosome-bound mitotic factors: release by endonucleases.   总被引:2,自引:0,他引:2       下载免费PDF全文
Additional evidence is presented to support our recently reported conclusion that the mitotic factors of mammalian cells, which induce germinal vesicle breakdown and chromosome condensation when injected into fully grown Xenopus laevis oocytes, are localized on metaphase chromosomes. Chromosomes isolated from mitotic HeLa cells were further purified on sucrose gradients and digested for varying periods with either the micrococcal nuclease or DNase II. At each time point of digestion the amount of mitotic factors released was determined by injecting a supernatant of these fractions, obtained by high-speed centrifugation, into oocytes. The amount of DNA rendered acid soluble under the conditions of digestion used was 3% ot 5% of the total chromosomal DNA. The extent of release of mitotic factors with both nucleases was estimated to be about 30% to 40% as evidenced by the reextraction of the undigested chromosomal pellet with 0.2 M NaC1. Similar results were obtained when nuclei from G2 cells were digested under identical conditions. The release of these chromosome-bound mitotic factors by mild digestion with these nucleases though only partial, clearly demonstrates that a significant proportion of these factors are localized on metaphase chromosomes.  相似文献   

20.
When superhelical DNA (RFI)2 of phages φX174 or G4 takes up a homologous single-stranded fragment, RF DNA and fragment are linked by as many as 300 base-pairs, and a corresponding length of one strand of the RFI is displaced, forming a displacement loop (D-loop). The length of the base-paired region was estimated from the fraction of the associated 32P-labeled fragment that was resistant to digestion by exonuclease VII, as well as by electron microscopy. Dissociation of the fragment by heating was characterized by a sharp melting curve. The displaced strand of the RF DNA was digested by two endonucleases that act on single-stranded DNA, the S1 nuclease of Aspergillus oryzae and the recBC DNAase of Escherichia coli. Acting on complexes, both enzymes converted the form I [3H]DNA into form II DNA, and left some of the associated 32P-labeled fragment undigested. The remaining 32P-labeled fragment could no longer be displaced by branch migration, as expected if the displaced strand of the RF DNA were digested. The action of S1 nuclease also produced the amount of acid-soluble 3H expected from digestion of the D-loop. Treatment of such digested complexes with polynucleotide ligase covalently linked about 35% of the remaining 32P-labeled fragment to 3H-labeled strands, which proves that S1 nuclease digested the D-loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号