首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial population dynamics in a meromictic lake.   总被引:9,自引:6,他引:3       下载免费PDF全文
Polyclonal antibodies against nine different bacteria isolated from Lake Saelenvannet in western Norway were produced, and the population dynamics of these strains in the lake were monitored through two spring seasons by immunofluorescence staining. The total counts of bacteria varied over time and space from 1.5 x 10(6) to 1.5 x 10(7) cells ml-1. The counts of specific bacteria were in the range of 10(3) to 10(4) cells ml-1 or less; in sum, they generally made up less than 1% of the bacterial community. Some populations showed significant changes in abundance, with blooms lasting 1 to 3 weeks. The rate of change (increase and decrease) in abundance during blooms was estimated to be 0.2 to 0.6 day-1. The average virus-to-bacteria ratio was 50, and there was a significant correlation between the abundances of virus and bacteria. Both protozoan grazing and lytic virus infection were assessed as possible mechanisms driving the variations in bacterial population density.  相似文献   

2.
Microbial sulfate reduction in a brackish meromictic steppe lake   总被引:1,自引:0,他引:1  
Patterns of sulfate reduction were studied in water and sediments of Lake Shira, South Siberia, Russia. The lake was characterized by a high level of sulfate (91-116 mM). The concentration of hydrogen sulfide in the anoxic waters of the lake reached 0.6 mM. In summer the sulfate reduction rate in the water column, measured by radiometric technique, varied from 0.25 to 9.81 mol sulfate l-1 d-1. There were two peaks of sulfate reduction activity: just below the chemocline and near the sediment surface. Sulfate reduction rate in the profundal silts ranged from 4.1 to 90.6 mol l-1 d-1. The zone of the most active sulfate reduction was restricted to the surface sediment layers. The acceleration of sulfate reduction rate (up to 236 mol l-1 d-1) and the increase of density of viable sulfate reducers (up to 2 x 105 cells ml-1) were recorded in the littoral sediments adjacent to the mouth of the Son River and sewage discharge. It was apparently caused by the input of allochthonous organic substrates and also by a high environmental temperature. On an areal basis, sulfate reduction rate in the water was approximately 8 times higher than that in the profundal sediments. Sulfate reduction was the most important process of anaerobic oxidation of organic carbon in Lake Shira. In summer in the profundal zone of the lake, sulfate reducers were able to mineralize about 67% of the daily integrated primary production of phototrophic and chemotrophic organisms.  相似文献   

3.
Bacterial and phytoplankton cell number and productivity were measured in the mixolimnion and chemocline of saline meromictic Mahoney Lake during the spring (Apr.–May) and fall (Oct.) between 1982 and 1987. High levels of bacterial productivity (methyl 3H-thymidine incorporation), cell numbers, and heterotrophic assimilation of 14C-glucose and 14C-acetate in the mixolimnion shifted from near surface (1.5 m), at a secondary chemocline, to deeper water (4–7 m) as this zone of microstratification gradually weakened during a several year drying trend in the watershed. In the mixolimnion, bacterial carbon (13–261 µgC 1–1) was often similar to phytoplankton carbon (44–300 µgC 1–1) and represented between 14–57% of the total microbial (phytoplankton + bacteria) carbon depending on the depth interval. Phototrophic purple sulphur bacteria were stratified at the permanent primary chemocline (7.5–8.3 m) in a dense layer (POC 250 mg 1–1, bacteriochlorophyll a 1500–70001µ 1–1), where H2S changed from 0.1 to 2.5 mM over a 0.2 m depth interval. This phototrophic bacterial layer contributed between 17–66% of the total primary production (115–476 mgC m–2 d–1) in the vertical water column. Microorganisms in the phototrophic bacterial layer showed a higher uptake rate for acetate (0.5–3.7 µC 1–1 h–1) than for glucose (0.3–1.4 µgC 1–1 h–1) and this heterotrophic activity as well as bacterial productivity were 1 to 2 orders of magnitude higher in the dense plate than in the mixolimnetic waters above. Primary phytoplanktonic production in the mixolimnion was limited by phosphorus while light penetration appeared to regulate phototrophic productivity of the purple sulphur bacteria.  相似文献   

4.
Abstract The meromictic Mahoney Lake (British Columbia, Canada) contains an extremely dense layer of purple sulfur bacteria ( Amoebobacter purpureus ). The buoyant density of Amoebobacter cells grown in pure culture at saturating light intensity was significantly higher (1027–1034 kg m−3) than the density of lake water (1015 kg m−3). When stationary cultures were shifted to the dark, the gas-vesicle content increased by a factor of 9 and buoyant density decreased to 1002 kg m−3 within three days.
A novel mechanism of cell aggregation was detected for the Mahoney Lake strain. Dense cell aggregates were formed after depletion of sulfide. Formation of aggregates was correlated with an increase in cell surface hydrophobicity. Cell aggregates could be disintegrated within less than 1 s by addition of sulfide or various thiol compounds. Mercaptanes with a branched structure in the vicinity of the terminal thiol group, compounds with esterified thiol groups (methylmercaptanes), reducing compounds lacking thiol groups and detergents did not influence aggregate stability. Cell aggregates disintegrated upon addition of urea or of proteinase K. Addition of various sugars had no effect on aggregation; this points to the absence of lectins. The results indicate that cell-to-cell adhesion in A, purpureus ML1 is mainly caused by a hydrophobic effect and includes a specific mechanism possibly mediated by a surface protein.
Extrapolation of laboratory results to field conditions demonstrated that both regulation of buoyant density and formation of cell aggregates result in passive accumulation of cells at the chemocline and contribute to the narrow stratification of A. purpureus in Mahoney Lake.  相似文献   

5.
Abstract The meromictic Mahoney Lake (British Columbia, Canada) contains an extremely dense layer of purple sulfur bacteria ( Amoebobacter purpureus ). The buoyant density of Amoebobacter cells grown in pure culture at saturating light intensity was significantly higher (1027–1034 kg m−3) than the density of lake water (1015 kg m−3). When stationary cultures were shifted to the dark, the gas-vesicle content increased by a factor of 9 and buoyant density decreased to 1002 kg m−3 within three days.
A novel mechanism of cell aggregation was detected for the Mahoney Lake strain. Dense cell aggregates were formed after depletion of sulfide. Formation of aggregates was correlated with an increase in cell surface hydrophobicity. Cell aggregates could be disintegrated within less than 1 s by addition of sulfied or various thiol compounds. Mercaptanes with a branched structure in the vicinity of the terminal thiol group, compounds with esterified thiol groups (methyl-mercaptanes), reducing compounds lacking thiol groups and detergents did not influence aggregate stability. Cell aggregates disintegrated upon addition of urea or of proteinase K. Addition of various sugars had no effect on aggregation; this points to the absence of lectins. The results indicate that cell-to-cell adhesion in A. purpureus ML1 is mainly caused by a hydrophobic effect and includes a specific mechanism possibly mediated by a surface protein.
Extrapolation of laboratory results to field conditions demonstrated that both regulation of buoyant density and formation of cell aggregates result in passive accumulation of cells at the chemocline and contribute to the narrow stratification of A. purpureus in Mahoney Lake.  相似文献   

6.
Vertical distributions of zooplankton were studied in relation to profiles of temperature, oxygen and chlorophyll a in Roi Lake, a small meromictic lake in central Alberta. Zooplankton were distributed fairly evenly through the oxygenated part of the water column in early summer, but a gradual descent of several species became evident in June. The vertical distribution of chlorophyll was dominated by a huge peak at the 8- to 9-m-deep chemocline. the location of a plate of photosynthetic sulfur bacteria. Ambient concentration of chlorophyll was a poor predictor of the numbers of zooplankton and the fecundity of Daphnia pulicaria at different depths, and per capita birth rates of Daphnia were usually highest in the surface waters. The reproductively disadvantageous restriction of daphnids to deep water by late summer and their catastrophic decline in the face of high ambient concentrations of chlorophyll suggest that factors other than temperature and food supply are important in influencing the dynamics and distribution of zooplankton in this lake.  相似文献   

7.
M. D. Burch 《Hydrobiologia》1988,165(1):59-75
The annual cycle of phytoplankton in saline, meromictic Ace Lake (68°2S.4S, 78°11.1E) in the Vestfold Hills, Antarctica, was studied from January, 1979 to January 1980. Ace Lake has permanent gradients of temperature, salinity, dissolved oxygen, and hydrogen sulphide, and is ice covered with up to 2 m of ice for 10–12 months each year. The phytoplankton community had low diversity, consisting of only four species, all flagellates — a prasinophyte Pyramimonas gelidicola McFadden et al., a cryptophyte of the genus Cryptomonas; an unidentified colourless microflagellate, and an unarmoured dinoflagellate. These were restricted to the oxic zone of the lake from the surface to 10 m.The phytoplankton had a cycle of seven months of active growth over spring and summer. Low numbers of cells survived in the water column over winter. Spring growth was initiated below the ice by increased light penetration through the ice into the lake, enhanced at the time by the removal of surface snow which accumulated on the ice over winter. Peak phytoplankton biomass production was by the shade adapted P. gelidicola and occurred at the interface of the oxic and anoxic zones where substantial available nitrogen as ammonia is found.The three dominant phytoplankton species displayed distinct vertical stratification over the oxic zone. This stratification was not static and developed over spring as the flagellates migrated to preferred light climate zones. Mean cell volume of two of the flagellates varied significantly over the year. Minimum volumes were recorded in winter and volume increased progressively over spring to reach maximum mean cell volume in summer. Mean cell volume was positively correlated with light intensity (maximum ambient PAR at the respective depth for date of sample). Low cell volume in winter may be related to winter utilization of carbohydrate reserves by slow respiration, and may represent a survival mechanism.  相似文献   

8.
Sulfur cycling was examined in sediments inhabited with the isoetids Littorella uniflora and Isoetes lacustris in the oligotrophic soft-water Lake Kalgaard, Denmark. Based on short-term tracer incubations sulfate reduction was measured along a transect from the shore (0.6 m) to profundal sediments (4.6 m). The sulfate reduction rates were low (0.008–0.8 mmol m−2 d−1) in the sandy shallow sediments with low organic content (<1.3 mmol C g−1 sed DW) and high redox potentials (>100 mV), whereas sulfate reduction was higher at the deeper sites (2.7–4.6 mmol m−2 d−1) with high organic content (max. 11.5 mmol C g−1 sed DW) and lower redox potentials (<100 mV). High concentrations of dissolved organic carbon (DOC) were found in the low particulate organic sediments (up to 18.4 mM), and most of the DOC pool consisted of acetate (40–77%). Reoxidation of sulfides due to root oxygen release was probably important at all sites and a positive efflux of sulfate across the sediment–water interface was measured, attaining rates (up to 4.8 mmol m−2 d−1) similar to the sulfate reduction rates. Reoxidation of sulfides was also manifested by high fraction (>80%) of reduced sulfides being accumulated as elemental sulfur or pyrite (chromium reducible sulfur, CRS). The largest pools of CRS were found in high organic sediment with vertical distributions resembling those of the sulfate reduction rates. The overall effect of isoetid growth on sulfur cycling in the rhizosphere is a suppression of sulfate reduction in low organic sediments and the governing of sulfide reoxidation in sediments with higher organic content.  相似文献   

9.
Periodic high spring runoff, in addition to lake surface snow and ice melt, is shown to be a major cause of sharp secondary chemocline formation in a small (20 ha) lake arid and south-central British Columbia. Initially detected in 1982 at about 1 m and enhanced by high inflow of low salinity meltwater in spring 1983, the secondary chemocline gradually deepened and broke down over four subsequent years. Associated microstratification layers (major changes within a few cm of depth), exhibited very high temperatures (> 30 °C), and very high dissolved oxygen (> 200% saturation) as well as very low (close to 0% saturation) levels. Oxygen supersaturation resulted from photosynthetic production at the microstratification boundaries. In the springs of 1982 and 1983, formation of an anoxic layer between regions of high oxygen concentration, separated the phytoplankton and zooplankton communities into two layers above the primary chemocline. The several year persistence of the secondary chemoclines and associated interface processes (concentration of particulate organic matter, bacterial decomposition, nutrient regeneration, phytoplanktonic production) attest to their functional importance in this meromictic lake.  相似文献   

10.
Photosynthetic activity by phytoplankton was measured during the ice-free seasons of 1984, 1985 and 1987 using the 14C radioassay in high altitude Emerald Lake (California). Relative quantum yield (B) and light-saturated chlorophyll-specific carbon uptake (Pm B) were calculated from the relationship of light and photosynthesis fitted to a hyperbolic tangent function. Temporal changes in Pm B showed no regular pattern. Seasonal patterns of B generally had peaks in the summer and autumn. Phytoplankton biomass (as measured by chlorophyll a) and light-saturated carbon uptake (Pm) had peaks in the summer and autumn which were associated with vertical mixing. Estimates of mean daily carbon production were similar among the three years: 57 mg C m–2 2 d–1 in 1984, 70 mg C m–2 2 d–1 in 1985 and 60 mg C m–2 d–1 in 1987. Primary productivity in Emerald Lake is low compared to other montane lakes of California and similar to high-altitude or high-latitude lakes in other regions.  相似文献   

11.
12.
An integrative study of a meromictic lake ecosystem in Antarctica   总被引:1,自引:0,他引:1  
In nature, the complexity and structure of microbial communities varies widely, ranging from a few species to thousands of species, and from highly structured to highly unstructured communities. Here, we describe the identity and functional capacity of microbial populations within distinct layers of a pristine, marine-derived, meromictic (stratified) lake (Ace Lake) in Antarctica. Nine million open reading frames were analyzed, representing microbial samples taken from six depths of the lake size fractionated on sequential 3.0, 0.8 and 0.1 μm filters, and including metaproteome data from matching 0.1 μm filters. We determine how the interactions of members of this highly structured and moderately complex community define the biogeochemical fluxes throughout the entire lake. Our view is that the health of this delicate ecosystem is dictated by the effects of the polar light cycle on the dominant role of green sulfur bacteria in primary production and nutrient cycling, and the influence of viruses/phage and phage resistance on the cooperation between members of the microbial community right throughout the lake. To test our assertions, and develop a framework applicable to other microbially driven ecosystems, we developed a mathematical model that describes how cooperation within a microbial system is impacted by periodic fluctuations in environmental parameters on key populations of microorganisms. Our study reveals a mutualistic structure within the microbial community throughout the lake that has arisen as the result of mechanistic interactions between the physico-chemical parameters and the selection of individual members of the community. By exhaustively describing and modelling interactions in Ace Lake, we have developed an approach that may be applicable to learning how environmental perturbations affect the microbial dynamics in more complex aquatic systems.  相似文献   

13.
14.
The cyanobacterium Oscillatoria limnetica, capable of anoxygenic photosynthesis in the light with sulfide as electron donor can anaerobically break down its intracellular polyglucose in the dark. In the absence of elemental sulfur, the organism carries out lactate fermentation; in its presence, anaerobic respiration occurs in which sulfur is reduced to sulfide. Induction of anoxygenic photosynthesis or synthesis of new proteins is not necessary for either process. Cells adapted in the dark to sulfur reduction are capable of anoxygenic photosynthesis during a subsequent light period, unless protein synthesis has been inhibited during the dark incubation period.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FCCP Carbonylcyanide p-trifluoromethoxyphenylhydrazone - mgat milligramatom - OD optical density  相似文献   

15.
The impact of feeding on autotrophic picoplankton (APP) on the ciliate composition of the assemblage was surveyed monthly along a depth gradient in the maar crater, athalassohaline, warm monomictic Lake Alchichica (Puebla, Mexico) from June 2003 to December 2005. Numbers of APP were evaluated from their autofluorescence. DAPI staining and the Fluorescently Labeled Bacteria technique were employed to count ciliates and estimate their feeding rates. A total of 38 taxa of ciliates have been identified using Quantitative Protargol Staining. Peritrichs followed by minute spirotrichs (particularly Halteria grandinella) often numerically dominated the ciliate assemblage and emerged as the most efficient APP feeders. A maximum of 54 ciliate cells ml−1 was observed in the surface layer at the end of the mixing period, during the development of diatoms (Cyclotella alchichicana), the cyanobacterial bloom (Nodularia sp.) and its decay. Vorticellids (Pelagovorticella natans, Vorticella sp.) had the highest APP uptake (median 130 APP cil−1 h−1). Mixotrophic Euplotes cf. daidaleos were important APP grazers near the oxycline. Scuticociliates (Cyclidium glaucoma, Uronema nigricans and an anaerobic cf. Isocyclidium globossum), were numerically dominant within the hypolimnetic assemblages and did not ingest APP. Generally, APP were not an important food source for the majority of the ciliate assemblage, being positively selected by a few species during the APP decay in aerobic and microaerobic conditions.  相似文献   

16.
The characteristic feature of the physical structure of Lac Pavin is a distinct and permanent chemically induced density increase between about 60 and 70 m depth. This chemocline separates the seasonally mixed mixolimnion from the monimolimnion, which is characterized by elevated temperature and salinity as well as complete anoxia. Previously published box-models of the lake postulated substantial groundwater input at the lake bottom, and consequently a short water residence time in the monimolimnion and high fluxes of dissolved constituents across the chemocline. We present a new view of the physical structure and dynamics of Lac Pavin, which is based on the results of high-resolution CTD profiles, transient and geochemical tracers (tritium, CFCs, helium), and numerical modeling. The CTD profiles indicate the existence of a sublacustrine spring above rather than below the chemocline. A stability analysis of the water column suggests that vertical turbulent mixing in the chemocline is very weak. A numerical one-dimensional lake model is used to reconstruct the evolution of transient tracer distributions over the past 50 years. Model parameters such as vertical diffusivity and size of sublacustrine springs are constrained by comparison with observed tracer data. Whereas the presence of a significant water input to the monimolimnion can clearly be excluded, the input to the mixolimnion – both at the surface and from the indicated sublacustrine spring – cannot be accurately determined. The vertical turbulent diffusivity in the chemocline is well constrained to K 5×10-8 m2 s-1, about a factor of three below the molecular diffusivity for heat. Assuming thus purely molecular heat transport, the heat flow through the chemocline can be estimated to between 30 and 40 mW m-2. With respect to dissolved constituents, the very weak turbulent diffusive exchange is equivalent to a stagnant monimolimnion with a residence time of nearly 100 years. Based on these results and vertical concentration profiles of dissolved species, diffusive fluxes between monimolimnion and mixolimnion can be calculated. A large excess of helium with a 3He/4He ratio of (9.09 ± 0.01)×10-6 (6.57 R a) is present in the monimolimnion, clearly indicating a flux of magmatic gases into the monimolimnion. We calculate a flux of 1.0×10-12 mol m-2 s-1 for mantle helium and infer a flux of 1.2×10-7 mol m-2 s-1 (72 t year-1) for magmatic CO2. The monimolimnion appears to be in steady state with respect to these fluxes.  相似文献   

17.
Photosynthetic organisms and excess of metals   总被引:5,自引:0,他引:5  
When cells get metals in small excess, mechanisms of avoidance occur, such as exclusion, sequestration, or compartmentation. When the excess reaches sub-lethal concentrations, the oxidative stress, that toxic metals trigger, leads to persistent active oxygen species. Biomolecules are then destroyed and metabolism is highly disturbed. At the chloroplast level, changes in pigment content and lipid peroxidation are observed. The disorganized thylakoids impair the photosynthetic efficiency. The Calvin cycle is also less efficient and the photosynthetic organism grows slowly. When an essential metal is given together with a harmful one, the damages are less severe than with the toxic element alone. Combined metals and phytochelatins may act against metal toxicity.  相似文献   

18.
Sulfonates and sulfate esters are widespread in nature, and make up over 95% of the sulfur content of most aerobic soils. Many microorganisms can use sulfonates and sulfate esters as a source of sulfur for growth, even when they are unable to metabolize the carbon skeleton of the compounds. In these organisms, expression of sulfatases and sulfonatases is repressed in the presence of sulfate, in a process mediated by the LysR-type regulator protein CysB, and the corresponding genes therefore constitute an extension of the cys regulon. Additional regulator proteins required for sulfonate desulfonation have been identified in Escherichia coli (the Cbl protein) and Pseudomonas putida (the AsfR protein). Desulfonation of aromatic and aliphatic sulfonates as sulfur sources by aerobic bacteria is oxygen-dependent, carried out by the alpha-ketoglutarate-dependent taurine dioxygenase, or by one of several FMNH(2)-dependent monooxygenases. Desulfurization of condensed thiophenes is also FMNH(2)-dependent, both in the rhodococci and in two Gram-negative species. Bacterial utilization of aromatic sulfate esters is catalyzed by arylsulfatases, most of which are related to human lysosomal sulfatases and contain an active-site formylglycine group that is generated post-translationally. Sulfate-regulated alkylsulfatases, by contrast, are less well characterized. Our increasing knowledge of the sulfur-regulated metabolism of organosulfur compounds suggests applications in practical fields such as biodesulfurization, bioremediation, and optimization of crop sulfur nutrition.  相似文献   

19.
The solubilization and the photosynthetic activity of cyanobacteria (Anabaena variabilis) in water-in-oil microemulsions consisting of (Tween85/Span80)/hexadecane/water is investigated. Transparent and stable solutions containing up to 10(8) cells/mL could be obtained. The physical state and stability of the cells in the microemulsion, as evidenced from optical and electron microscopy, is dependent upon the physical parameters of the system, and in particular on the hydrophylic-lypophilic balance (HLB) of the surfactant system. Conditions could be found, under which the cells in the microemulsion system display photosynthetic activity This was judged by measuring polarographically the oxygen evolution and by studying the photosynthetic activity in the presence of specific inhinbitors.  相似文献   

20.
The multi-layered microbial mats in the sand flats of Great Sippewissett Salt Marsh were found to have five distinct layers of phototrophic organisms. The top 1–3 mm contained oxygenic phototrophs. The lower 3–4 mm contained anoxygenic phototrophic bacteria. The uppermost gold layer contained diatoms and cyanobacteria, and chlorophyll a was the major chlorophyll. The next layer down was green and was composed of primarily filamentous cyanobacteria containing chlorophyll a. This was followed by a bright pink layer of bacteriochlorophyll b-containing purple sulfur bacteria. The lowest layer was a thin dull green layer of green sulfur bacteria containing bacteriochlorophyll c. The distribution of the chlorophylls with depth revealed that two-thirds of the total chlorophyll in the mat was composed of bacteriochlorophylls present in the anoxygenic phototrophys. The cyanobacterial layers and both purple sulfur bacterial layers had photoautotrophic activity. Light was attenuated in the uppermost layers so that less than 5% of the total radiation at the surface penetrated to the layers of anoxygenic phototrophys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号