首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Medicago truncatula represents a model plant species for understanding legume–bacteria interactions. M. truncatula roots form a specific root–nodule symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti. Symbiotic nitrogen fixation generates high iron (Fe) demands for bacterial nitrogenase holoenzyme and plant leghemoglobin proteins. Leguminous plants acquire Fe via “Strategy I,” which includes mechanisms such as rhizosphere acidification and enhanced ferric reductase activity. In the present work, we analyzed the effect of S. meliloti volatile organic compounds (VOCs) on the Fe-uptake mechanisms of M. truncatula seedlings under Fe-deficient and Fe-rich conditions. Axenic cultures showed that both plant and bacterium modified VOC synthesis in the presence of the respective symbiotic partner. Importantly, in both Fe-rich and -deficient experiments, bacterial VOCs increased the generation of plant biomass, rhizosphere acidification, ferric reductase activity, and chlorophyll content in plants. On the basis of our results, we propose that M. truncatula perceives its symbiont through VOC emissions, and in response, increases Fe-uptake mechanisms to facilitate symbiosis.  相似文献   

3.

Background and aims

Iron is an essential nutrient for plant growth. Although abundant in soil, iron is poorly available. Therefore, plants have evolved mechanisms for iron mobilization and uptake from the rhizospheric environment. In this study, we examined the physiological responses to iron deficiency in Medicago truncatula plants exposed to volatile organic compounds (VOCs) produced by Arthrobacter agilis UMCV2.

Methods

The VOC profiles of the plant and bacterium were determined separately and during interaction assays using gas chromatography. M. truncatula plants exposed to A. agilis VOCs and pure dimethylhexadecylamine were transferred to conditions of iron deficiency, and parameters associated with iron nutritional status were measured.

Results

The relative abundance of the bacterial VOC dimethylhexadecylamine increased 12-fold when in co-cultures of A. agilis and M. truncatula, compared to axenic cultures. Plants exposed to bacterial VOCs or dimethylhexadecylamine exhibited a higher rhizosphere acidification capacity, enhanced ferric reductase activity, higher biomass generation, and elevated chlorophyll and iron content relative to controls.

Conclusions

The VOCs emitted by A. agilis UMCV2 induce iron acquisition mechanisms in vitro in the Strategy I plant M. truncatula. Dimethylhexadecylamine is the signal molecule responsible for producing the beneficial effects.  相似文献   

4.
5.
Here we present a Zn transporter cDNA named MtZIP2 from the model legume Medicago truncatula. MtZIP2 encodes a putative 37 kDa protein with 8-membrane spanning domains and has moderate amino acid identity with the Arabidopsis thaliana Zn transporter AtZIP2p. MtZIP2 complemented a Zn-uptake mutant of yeast implying that the protein encoded by this gene can transport Zn across the yeast's plasma membrane. The product of a MtZIP2-GFP fusion construct introduced into onion cells by particle bombardment likewise localized to the plasma membrane. The MtZIP2 gene was expressed in roots and stems, but not in leaves of M. truncatula and, in contrast to all other plant Zn transporters characterized thus far, MtZIP2 was up-regulated in roots by Zn fertilization. Expression was highest in roots exposed to a toxic level of Zn. MtZIP2 expression was also examined in the roots of M. truncatula when colonized by the obligate plant symbiont, arbuscular mycorrhizal (AM) fungi, since AM fungi are renowned for their ability to supply plants with mineral nutrients, including Zn. Expression was down-regulated in the roots of the mycorrhizal plants and was associated with a reduced level of Zn within the host plant tissues.  相似文献   

6.
The mixed effects of nitrogen nutrition and sulphate assimilation were investigated in barley plants (Hordeum vulgare var. Alfeo) that were subjected to long-term sulphur and/or nitrogen starvation, by measuring the O-acetylserine(thio)lyase (OASTL-EC 4.2.99.8) activity, changes in -SH compounds and amino acid levels.The growth of barley plants cultured in the hydroponic vessels was severely affected by altered nutrient levels. The barley plants grown in medium deprived of nitrogen and/or sulphur sources for 21 days showed increase in both root length and weight. In contrast, the shoot growth was reduced in nitrogen-starved plants and was unaffected by sulphur deprivation. Sulphur starvation affected the level of proteins in barley plants more than nitrogen deprivation. The decline in the protein levels observed under sulphur-deficient conditions was coupled with the accumulation of glutamine, asparagine and serine, mainly in the roots; additionally, a nitrogen deficiency in the roots promoted a decrease in both glutathione and cysteine levels.The simultaneous deprivation of nitrogen and sulphur in plants leads to an alteration in their metabolism; high levels of glutathione (GSH) in the shoots could signify the induction of a mechanism intended for coping with stressful conditions.Sulphate deprivation enhanced OASTL activity, mainly in the roots; on the other hand, OASTL increases observed under S deprivation were clearly dependent on the nitrogen availability in the culture medium. In fact, the nitrate supply to the N and S starved plants that showed OASTL activity very low, rapidly recovered the OASTL activities to the levels typical of control plants. Nevertheless, the ammonium supply had negligible effects on the OASTL activity only observed after three days in the roots.Our results support the hypothesis that in barley plants, a portion of S assimilation (up to cysteine biosynthesis) occurs in the roots, and a reciprocal influence of nitrogen assimilation on cysteine synthesis occurs.  相似文献   

7.
8.
9.
Hevea brasiliensis is a mycotrophic tree for which root colonization by arbuscular mycorrhizal fungi (AMF) under in vitro or pot culture conditions can take several weeks. The reason for this slow colonization is still unknown, but the exudation of antifungal compounds such as hevein by the roots may be one of the causes. Here, the root colonization of Medicago truncatula, a highly mycotrophic plant, was assessed after 12 days of growth in the extraradical mycelium network of the AMF Rhizophagus irregularis in close vicinity of H. brasiliensis plantlets or Urtica dioica seedlings (also known to synthesize antifungal compounds of the hevein family). We hypothesized that a negative impact on the root colonization of a M. truncatula seedling developing close to H. brasiliensis and U. dioica may give indirect proofs for the exudation of inhibitory molecules. The percentages of total root colonization of M. truncatula were 30.1 % lower in the presence of H. brasiliensis than in the control plants, and 29.1 % lower in presence of U. dioica. The abundance of arbuscules in the roots of M. truncatula was also lower in plants grown in presence of H. brasiliensis plantlets than in the control plants. Similarly, the succinate dehydrogenase and the phosphatase activities measured in the extraradical mycelium of R. irregularis were significantly lower in the presence of both plants, compared with the controls. No root colonization was observed in H. brasiliensis and U. dioica within the time-frame of the experiments. The low root colonization of M. truncatula when grown in the presence of rubber or stinging nettle suggested the exudation of diffusible molecules which could also explain the delayed root colonization of H. brasiliensis and the absence of colonization of U. dioica.  相似文献   

10.
Nitric oxide (NO) is a bioactive molecule involved in numerous biological events that has been reported to display both pro-oxidant and antioxidant properties in plants. Several reports exist which demonstrate the protective action of sodium nitroprusside (SNP), a widely used NO donor, which acts as a signal molecule in plants responsible for the expression regulation of many antioxidant enzymes. This study attempts to provide a novel insight into the effect of application of low (100 μΜ) and high (2.5 mM) concentrations of SNP on the nitrosative status and nitrate metabolism of mature (40 d) and senescing (65 d) Medicago truncatula plants. Higher concentrations of SNP resulted in increased NO content, cellular damage levels and reactive oxygen species (ROS) concentration, further induced in older tissues. Senescing M. truncatula plants demonstrated greater sensitivity to SNP-induced oxidative and nitrosative damage, suggesting a developmental stage-dependent suppression in the plant’s capacity to cope with free oxygen and nitrogen radicals. In addition, measurements of the activity of nitrate reductase (NR), a key enzyme involved in the generation of NO in plants, indicated a differential regulation in a dose and time-dependent manner. Furthermore, expression levels of NO-responsive genes (NR, nitrate/nitrite transporters) involved in nitrogen assimilation and NO production revealed significant induction of NR and nitrate transporter during long-term 2.5 mM SNP application in mature plants and overall gene suppression in senescing plants, supporting the differential nitrosative response of M. truncatula plants treated with different concentrations of SNP.  相似文献   

11.
Hexavalent chromium is a contaminant highly mobile in the environment that is toxic for plants at low concentrations. In this work, the physiological response of Convolvulus arvensis and Medicago truncatula plants to Cr(VI) treatments was compared. C. arvensis is a potential Cr hyperaccumulator well adapted to semiarid conditions that biotransform Cr(VI) to the less toxic Cr(III). M. truncatula is a model plant well adapted to semiarid conditions with a well studied genetic response to heavy metal stress. The results demonstrated that C. arvensis is more tolerant to Cr toxicity and has a higher Cr translocation to the leaves. The inductively coupled plasma optical emission spectroscopy results showed that C. arvensis plants treated with 10 mg Cr(VI) L–1 accumulated 1512, 210, and 131 mg Cr kg–1 in roots, stems, and leaves, respectively. While M. truncatula plants treated with the same Cr(VI) concentration accumulated 1081, 331, and 44 (mg Cr kg–1) in roots, stems, and leaves, respectively. Enzymatic assays demonstrated that Cr(VI) decreased ascorbate peroxidase activity and increased catalase activity in M. truncatula, while an opposite response was found in C. arvensis. The x-ray absorption spectroscopy studies showed that both plant species reduced Cr(VI) to the less toxic Cr(III).  相似文献   

12.
In legumes, symbiotic nitrogen (N) fixation (SNF) occurs in specialized organs called nodules after successful interactions between legume hosts and rhizobia. In a nodule, N-fixing rhizobia are surrounded by symbiosome membranes, through which the exchange of nutrients and ammonium occurs between bacteria and the host legume. Phosphorus (P) is an essential macronutrient, and N2-fixing legumes have a higher requirement for P than legumes grown on mineral N. As in the previous studies, in P deficiency, barrel medic (Medicago truncatula) plants had impaired SNF activity, reduced growth, and accumulated less phosphate in leaves, roots, and nodules compared with the plants grown in P sufficient conditions. Membrane lipids in M. truncatula tissues were assessed using electrospray ionization–mass spectrometry. Galactolipids were found to increase in P deficiency, with declines in phospholipids (PL), especially in leaves. Lower PL losses were found in roots and nodules. Subsequently, matrix-assisted laser desorption/ionization–mass spectrometry imaging was used to spatially map the distribution of the positively charged phosphatidylcholine (PC) species in nodules in both P-replete and P-deficient conditions. Our results reveal heterogeneous distribution of several PC species in nodules, with homogeneous distribution of other PC classes. In P poor conditions, some PC species distributions were observed to change. The results suggest that specific PC species may be differentially important in diverse nodule zones and cell types, and that membrane lipid remodeling during P stress is not uniform across the nodule.

ESI–MS and matrix-assisted laser desorption ionization–mass spectrometry imaging reveal alterations in Medicago truncatula nodules membrane lipid composition and spatial distribution in phosphorus deficiency.  相似文献   

13.
Mt4 is a cDNA representing a phosphate-starvation-inducible gene from Medicago truncatula that is down-regulated in roots in response to inorganic phosphate (Pi) fertilization and colonization by arbuscular mycorrhizal fungi. Split-root experiments revealed that the expression of the Mt4 gene in M. truncatula roots is down-regulated systemically by both Pi fertilization and colonization by arbuscular mycorrhizal fungi. A comparison of Pi levels in these tissues suggested that this systemic down-regulation is not caused by Pi accumulation. Using a 30-bp region of the Mt4 gene as a probe, Pi-starvation-inducible Mt4-like genes were detected in Arabidopsis and soybean (Glycine max L.), but not in corn (Zea mays L.). Analysis of the expression of the Mt4-like Arabidopsis gene, At4, in wild-type Arabidopsis and pho1, a mutant unable to load Pi into the xylem, suggests that Pi must first be translocated to the shoot for down-regulation to occur. The data from the pho1 and split-root studies are consistent with the presence of a translocatable shoot factor responsible for mediating the systemic down-regulation of Mt4-like genes in roots.  相似文献   

14.
In plants, microRNAs play an important role in many regulatory circuits, including responses to environmental cues such as nutrient limitations. One such microRNA is miR395, which is strongly up-regulated by sulfate deficiency and targets two components of the sulfate uptake and assimilation pathway. Here we show that miR395 levels are affected by treatments with metabolites regulating sulfate assimilation. The precursor of cysteine, O-acetylserine, which accumulates during sulfate deficiency, causes increase in miR395 accumulation. Feeding plants with cysteine, which inhibits sulfate uptake and assimilation, induces miR395 levels while buthionine sulfoximine, an inhibitor of glutathione synthesis, lowers miR395 expression. Thus, miR395 is an integral part of the regulatory network of sulfate assimilation.  相似文献   

15.
16.
The interaction of sulfate assimilation with nitrate assimilation inBrassica juncea roots was analyzed by monitoring the regulation of ATP sulfurylase (AS), adenosine-5’-phosphosulfate reductase (AR), sulfite reductase (SiR), and nitrite reductase (NiR). Depending on the status of sulfur and nitrogen nutrition, AS and AR activities and mRNA levels were increased by sulfate starvation but decreased by nitrate starvation. The activation of AS and AR by sulfate starvation was inhibited by sulfate/nitrate starvation. However, the rise in steady-state mRNA levels for AS and AR by sulfate starvation was not affected by sulfate/nitrate starvation. SiR gene expression was slightly activated by both sulfate starvation and sulfate/nitrate starvation, but was decreased by nitrate starvation. Although NiR gene expression was little affected by sulfate starvation, it was diminished significantly by either nitrate or nitrate/sulfate starvation. Cysteine (Cys) also decreased AS and AR activities and mRNA levels even when plants were simultaneously starved for sulfate; in contrast, both SiR and NiR gene expressions were only slightly, if at all, affected under the same conditions. This supports our conclusion that Cys, the end-product of sulfate assimilation, is the key regulatory signal. Moreover, SiR and NiR apparently are not the linking step in the co-regulation of sulfate and nitrate assimilation in plants.  相似文献   

17.
The level of endogenous sugars was inversely related to nitrate availability in young cotton (Gossypium hirsutum L.) plants, with high nitrate causing a greater decline in sugar content of roots than of shoots. High nitrate (low sugar) plants also displayed relatively more shoot growth and less root growth than low nitrate (high sugar) plants. These data are consistent with the theory that roots are poor competitors for sugar, and that sugar supply is a major factor limiting root growth in vivo.

The effects of endogenous sugar level on root growth and on nitrate reductase activity in the root were different. When root sugar level was experimentally controlled by varying nitrate concentration in the nutrient solution, root growth was less sensitive than nitrate reductase activity to sugar deficiency. Also, in sterile root tips cultured on media containing a wide range of sucrose concentrations, growth rate was considerably less sensitive to endogenous sugar deficiency than was nitrate assimilation rate. Similarly, in plants which were detopped or girdled, nitrate reductase activity in the roots declined more rapidly than did root sugars, especially glucose and fructose. These results suggest that when sugar is deficient, cotton roots preferentially use it for growth at the expense of nitrate reduction.

  相似文献   

18.
Plants cover their need for sulfur by taking up inorganic sulfate, reducing it to sulfide, and incorporating it into the amino acid cysteine. In herbaceous plants the pathway of assimilatory sulfate reduction is highly regulated by the availability of the nutrients sulfate and nitrate. To investigate the regulation of sulfate assimilation in deciduous trees we used the poplar hybrid Populus tremula × P. alba as a model. The enzymes of the pathway are present in several isoforms, except for sulfite reductase and -glutamylcysteine synthetase; the genomic organization of the pathway is thus similar to herbaceous plants. The mRNA level of APS reductase, the key enzyme of the pathway, was induced by 3 days of sulfur deficiency and reduced by nitrogen deficiency in the roots, whereas in the leaves it was affected only by the withdrawal of nitrogen. When both nutrients were absent, the mRNA levels did not differ from those in control plants. Four weeks of sulfur deficiency did not affect growth of the poplar plants, but the content of glutathione, the most abundant low molecular thiol, was reduced compared to control plants. Sulfur limitation resulted in an increase in mRNA levels of ATP sulfurylase, APS reductase, and sulfite reductase, probably as an adaptation mechanism to increase the efficiency of the sulfate assimilation pathway. Altogether, although distinct differences were found, e.g. no effect of sulfate deficiency on APR in poplar leaves, the regulation of sulfate assimilation by nutrient availability observed in poplar was similar to the regulation described for herbaceous plants.  相似文献   

19.
Little work has been done on root exudation in soybean under P deficiency. This study examined the effect of P supply on release of protons and carboxylates by roots of soybean (Glycine max Heinong 35), and to correlate the release with excess uptake of cations over anions. Plants were either reliant on N2 fixation or supplied with nitrate and were grown in nutrient solution with 1–50 μM P for 7 weeks. Release of protons and carboxylates from roots, and concentrations of Ca, Mg, K, Na, P, S, Cl and N in plants were measured weekly from week 4. Unlike in many other species, P deficiency decreased proton release per unit root biomass in N2-fixing plants and increased release of hydroxyl ions in nitrate-fed soybean. While P deficiency generally decreased uptake of K, Ca, Mg, S, Cl and P, it increased nitrate uptake per unit root biomass. Irrespective of P supply, amounts of protons released correlated well with excess uptake of cations over anions by the roots. Phosphorus deficiency increased release of carboxylates but the amounts released were small. The results suggest that soybean displays strategies of P acquisition through decreasing proton release which favors P mobilization in acid soils, and increasing root-to-shoot ratio and specific root length.  相似文献   

20.
Ammonium transporters (AMTs) are crucial for the high affinity primary uptake and translocation of ammonium in plants. In the model legume Medicago truncatula, the genomic set of AMT-type ammonium transporters comprises eight members. Only four genes were abundantly expressed in young seedlings, both in roots and shoots. While the expression of all AMTs in the shoot was not affected by the nitrogen availability, the dominating MtAMT1;1 gene was repressed by nitrogen in roots, despite that cellular nitrogen concentrations were far above deficiency levels. A contrasting de-repression by nitrogen was observed for MtAMT1;4 and MtAMT2;1, which were both expressed at intermediate level. Weak expression was found for MtAMT1;2 and MtAMT2;3, while the other AMTs were not detected in young seedlings. When expressed from their endogenous promoters, translational fusion proteins of MtAMT1;1 and MtAMT2;1 with green fluorescent protein were co-localized in the plasma membrane of rhizodermal cells, but also detected in cortical root layers. Both transporter proteins similarly functionally complemented a yeast strain that is deficient in high affinity ammonium transport, both at acidic and neutral pH. The uptake into yeast mediated by these transporters saturated with Km AMT1;1 = 89 µM and Km AMT2;1 = 123 µM, respectively. When expressed in oocytes, MtAMT1;1 mediated much larger 15N-ammonium uptake than MtAMT2;1, but NH4 + currents were only recorded for MtAMT1;1. These currents saturated with a voltage-dependent Km = 90 µM at ?80 mV. The cellular localization and regulation of the AMTs suggests that MtAMT1;1 encodes the major high affinity ammonium transporter gene in low nitrogen grown young M. truncatula roots and despite the similar localization and substrate affinity, MtAMT2;1 appears functionally distinct and more important at higher nitrogen supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号