首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metacaspases in plants, fungi, and protozoa constitute new members of a conserved superfamily of caspase-related proteases. A yeast caspase-1 protein (Yca1p), which is the single metacaspase in Saccharomyces cerevisiae, was shown to mediate apoptosis triggered by oxidative stress or aging in yeast. To examine whether plant metacaspase genes are functionally related to YCA1, we carried out analyses of AtMCP1b and AtMCP2b, representing the two subtypes of the Arabidopsis metacaspase family, utilizing yeast strains with wild-type and the disrupted YCA1 gene (yca1Delta). Inducible expression of AtMCP1b and AtMCP2b significantly promoted yeast apoptosis-like cell death of both the wild-type and yca1Delta strains, relative to the vector controls, during oxidative stress and early aging process. Mutational analysis of the two AtMCPs revealed that their cell-death-inducing activities depend on their catalytic center cysteine residues as well as caspase-like processing. In addition, the phenotype induced by the expression of two AtMCPs was effectively prevented when the cells were pretreated with a broad-spectrum caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl-ketone. These results suggest that the two subtypes of Arabidopsis metacaspases are functionally related to Yca1p with caspase-like characteristics. However, we found that bacterial and yeast extracts containing AtMCP1b, AtMCP2b, or Yca1p exhibit arginine/lysine-specific endopeptidase activities but cannot cleave caspase-specific substrates. Together, the results strongly implicate that expression of metacaspases could result in the activation of downstream protease(s) with caspase-like activities that are required to mediate cell death activation via oxidative stress in yeast. Metacaspases from higher plants may serve similar functions.  相似文献   

2.
Yca1, the only metacaspase in Saccharomyces cerevisiae, is thought to be a clan CD cysteine protease that includes the caspase subfamily. Although yeast is a single cell eukaryote, it can undergo a cell death process reminiscent of apoptosis. Yca1 has been reported to play an important role in the regulation of such apoptotic process. However, the structure and functional mechanism of Yca1 remain largely enigmatic. In this study, we report the crystal structure of the Yca1 metacaspase at 1.7 Å resolution, confirming a caspase-like fold. In sharp contrast to canonical caspases, however, Yca1 exists as a monomer both in solution and in the crystals. Canonical caspase contains six β-strands, with strand β6 pairing up with β6 of another caspase molecule to form a homodimerization interface. In Yca1, an extra pair of antiparallel β-strands forms a continuous β-sheet with the six caspase-common β-strands, blocking potential dimerization. Yca1 was reported to undergo autocatalytic processing in yeast; overexpression in bacteria also led to autoprocessing of Yca1 into two fragments. Unexpectedly, we found that both the autocatalytic processing and the proteolytic activity of Yca1 are greatly facilitated by the presence of calcium (Ca2+), but not other divalent cations. Our structural and biochemical characterization identifies Yca1 as a Ca2+-activated cysteine protease that may cleave specific substrates during stress response in yeast.  相似文献   

3.
4.
The two metacaspases MCA1 and MCA2 of the fungal aging model organism Podospora anserina (PaMCA1 and PaMCA2, respectively) have previously been demonstrated to be involved in the control of programmed cell death (PCD) and life span. In order to identify specific pathways and components which are controlled by the activity of these enzymes, we set out to characterize them further. Heterologous overexpression in Escherichia coli of the two metacaspase genes resulted in the production of proteins which aggregate and form inclusion bodies from which the active protein has been recovered via refolding in appropriate buffers. The renaturated proteins are characterized by an arginine-specific activity and are active in caspase-like self-maturation leading to the generation of characteristic small protein fragments. Both activities are dependent on the presence of calcium. Incubation of the two metacaspases with recombinant poly(ADP-ribose) polymerase (PARP), a known substrate of mammalian caspases, led to the identification of PARP as a substrate of the two P. anserina proteases. Using double mutants in which P. anserina Parp (PaParp) is overexpressed and PaMca1 is either overexpressed or deleted, we provide evidence for in vivo degradation of PaPARP by PaMCA1. These results support the idea that the substrate profiles of caspases and metacaspases are at least partially overlapping. Moreover, they link PCD and DNA maintenance in the complex network of molecular pathways involved in aging and life span control.  相似文献   

5.
Metacaspases are caspase family cysteine peptidases found in plants, fungi, and protozoa but not mammals. Trypanosoma brucei is unusual in having five metacaspases (MCA1-MCA5), of which MCA1 and MCA4 have active site substitutions, making them possible non-enzymatic homologues. Here we demonstrate that recombinant MCA4 lacks detectable peptidase activity despite maintaining a functional peptidase structure. MCA4 is expressed primarily in the bloodstream form of the parasite and associates with the flagellar membrane via dual myristoylation/palmitoylation. Loss of function phenotyping revealed critical roles for MCA4; rapid depletion by RNAi caused lethal disruption to the parasite's cell cycle, yet the generation of MCA4 null mutant parasites (Δmca4) was possible. Δmca4 had normal growth in axenic culture but markedly reduced virulence in mice. Further analysis revealed that MCA4 is released from the parasite and is specifically processed by MCA3, the only metacaspase that is both palmitoylated and enzymatically active. Accordingly, we have identified that the multiple metacaspases in T. brucei form a membrane-associated proteolytic cascade to generate a pseudopeptidase virulence factor.  相似文献   

6.
Pyrococcus furiosus is a hyperthermophilic archaeon. Its ribulose-1,5-bisphosphate carboxylase/oxygenase (PfRubisco) has only large subunit (L). PfRubisco has a novel (L2)5, decameric structure and it possesses higher carboxylase activity and thermotolerance. To assess the potential functionality of PfRubisco in higher plants under high-temperature stress, PfRubisco coding sequence was transiently expressed in Nicotiana benthamiana by Pea early browning virus mediated ectopic expression. The transgenic PfRubisco plants produced chlorotic yellow stripes in their leaves. Relative to the control leaves, those with yellow stripes exhibited decreased net photosynthetic rate and chlorophyll content, altered chloroplast ultrastructure, and more severe photoinhibition of both photosystem I and II. We concluded that the ectopic expression of PfRubisco might disrupt the chloroplast development and function in N. benthamiana. The potential cause of the disruption was discussed.  相似文献   

7.
Developmental processes and stress-induction activate many key proteins in plants such as metacaspase which regulate programmed cell death (PCD). In this study, identification of barley metacaspases and their possible roles upon boron (B)-induction was investigated by using in silico and wet-lab methods. Genome-wide analysis revealed that barley genome harbor ten metacaspases which divided into three groups: Type-I, -I* and -II. Segmental and tandem duplication contributed their expansion. Metacaspase-specific catalytic residues (His and Cys) were found to be altered in HvMC1, 2, and 4, in which His exchanged to Meth or Ala, critical for their activity and substrate selectivity. Cis-acting elements were found to be associated with three main processes: stress response, growth/development, and light response. Digital expression analysis from eight tissues revealed tissue specific metacaspase expressions. In addition, RT-qPCR analysis conducted in appropriate (50 µM) and excess-B (1 and-3 mM) conditions in different time points (3 and 10 days). Toxic level of B caused growth inhibition and chlorosis which appeared at the leaf tips. Also, PCD initiation was detected after 3 days of excess-B exposure. Digital expression and qPCR analysis agreed with each other that HvMC4 expression was significantly increased upon excess-B supplementation. In opposite, HvMC5 was down-regulated in the leaf zones which was another critical B-responsive gene in barley. Hence, HvMC4 and HvMC5 seem to have antagonistic effect during PCD regulation. These results can provide insights for metacaspase functionality in barley, not only limited for B-induction but also various kinds of PCD-causing conditions.  相似文献   

8.
The complete sequence of a type-1 metacaspase from Acanthamoeba castellanii is reported comprising 478 amino acids. The metacaspase was recovered from an expression library using sera specific for membrane components implicated in stimulating encystation. A central domain of 155 amino acid residues contains the Cys/His catalytic dyad and is the most conserved region containing at least 30 amino acid identities in all metacaspases. The Acanthamoeba castellanii metacaspase has the most proline-rich N-terminus so far reported in type-1 metacaspases with over 40 prolines in the first 150 residues. Ala–Pro–Pro is present 11 times. Phylogenies constructed using only the conserved proteolytic domains or the complete sequences show identical branching patterns, differing only in the rates of change.  相似文献   

9.
Receptor(-like) kinases with Lysin Motif (LysM) domains in their extracellular region play crucial roles during plant interactions with microorganisms; e.g. Arabidopsis thaliana CERK1 activates innate immunity upon perception of fungal chitin/chitooligosaccharides, whereas Medicago truncatula NFP and LYK3 mediate signalling upon perception of bacterial lipo-chitooligosaccharides, termed Nod factors, during the establishment of mutualism with nitrogen-fixing rhizobia. However, little is still known about the exact activation and signalling mechanisms of MtNFP and MtLYK3. We aimed at investigating putative molecular interactions of MtNFP and MtLYK3 produced in Nicotiana benthamiana. Surprisingly, heterologous co-production of these proteins resulted in an induction of defence-like responses, which included defence-related gene expression, accumulation of phenolic compounds, and cell death. Similar defence-like responses were observed upon production of AtCERK1 in N. benthamiana leaves. Production of either MtNFP or MtLYK3 alone or their co-production with other unrelated receptor(-like) kinases did not induce cell death in N. benthamiana, indicating that a functional interaction between these LysM receptor-like kinases is required for triggering this response. Importantly, structure-function studies revealed that the MtNFP intracellular region, specific features of the MtLYK3 intracellular region (including several putative phosphorylation sites), and MtLYK3 and AtCERK1 kinase activity were indispensable for cell death induction, thereby mimicking the structural requirements of nodulation or chitin-induced signalling. The observed similarity of N. benthamiana response to MtNFP and MtLYK3 co-production and AtCERK1 production suggests the existence of parallels between Nod factor-induced and chitin-induced signalling mediated by the respective LysM receptor(-like) kinases. Notably, the conserved structural requirements for MtNFP and MtLYK3 biological activity in M. truncatula (nodulation) and in N. benthamiana (cell death induction) indicates the relevance of the latter system for studies on these, and potentially other symbiotic LysM receptor-like kinases.  相似文献   

10.
Hao L  Goodwin PH  Hsiang T 《Plant cell reports》2007,26(10):1879-1888
Metacaspases are cysteine proteinases that have homology to caspases, which play a central role in signaling and executing programmed cell death in animals. A type II metacaspase cDNA, NbMCA1, was amplified from Nicotiana benthamiana infected with Colletotrichum destructivum. It showed a peak in expression at 72 h post-inoculation corresponding with the switch to necrotrophy by C. destructivum. Inoculation of N. benthamiana with an incompatible bacterium, Pseudomonas syringae pv. tomato, which should induce a non-host hypersensitive response (HR), did not result in an increase in NbMCA1 expression at the time of necrosis development at 20–24 h postinoculation. Virus-induced silencing of NbMCA1 resulted in three to four times more lesions due to C. destructivum compared with leaves inoculated with the PVX vector without the cloned metacaspase gene or inoculated with water only. However, virus-induced silencing of NbMCA1 did not affect the HR necrosis or population levels of P. syringae pv. tomato. Although this metacaspase gene does not appear to be involved in the programmed cell death of non-host HR resistance to P. syringae, it does affect the susceptibility of N. benthamiana to C. destructivum indicating a function in a basal defense response. Possible roles of NbMCA1could be in degrading virulence factors of the pathogen, processing pro-proteins involved in stress responses, eliminating damaged proteins created during stress, and/or degrading proteins to remobilize amino acids to fuel de novo synthesis of proteins involved in stress adaptations.  相似文献   

11.
Food supplementation with the conditionally essential amino acid arginine (Arg) has been shown to have nutritional benefits. Degradation of cyanophycin (CGP), a peptide polymer used for nitrogen storage by cyanobacteria, requires cyanophycinase (CGPase) and results in the release of β‐aspartic acid (Asp)‐Arg dipeptides. The simultaneous production of CGP and CGPase in plants could be a convenient source of Arg dipeptides. Different variants of the cphB coding region from Thermosynechococcus elongatus BP‐1 were transiently expressed in Nicotiana benthamiana plants. Translation and enzyme stability were optimized to produce high amounts of active CGPase. Protein stability was increased by the translational fusion of CGPase to the green fluorescent protein (GFP) or to the transit peptide of the small subunit of RuBisCO for peptide production in the chloroplasts. Studies in mice showed that plant‐expressed CGP fed in combination with plant‐made CGPase was hydrolysed in the intestine, and high levels of ß‐Asp‐Arg dipeptides were found in plasma, demonstrating dipeptide absorption. However, the lack of an increase in Asp and Arg or its metabolite ornithine in plasma suggests that Arg from CGP was not bioavailable in this mouse group. Intestinal degradation of CGP by CGPase led to low intestinal CGP content 4 h after consumption, but after ingestion of CGP alone, high CGP concentrations remained in the large intestine; this indicated that intact CGP was transported from the small to the large intestine and that CGP was resistant to colonic microbes.  相似文献   

12.
Geminivirus disease complexes potentially interfere with plants physiology and cause disastrous effects on a wide range of economically important crops throughout the world. Diverse geminivirus betasatellite associations exacerbate the epidemic threat for global food security. Our previous study showed that βC1, the pathogenicity determinant of geminivirus betasatellites induce symptom development by disrupting the ultrastructure and function of chloroplasts. Here we explored the betasatellite-virus-chloroplast interaction in the scope of viral pathogenesis as well as plant defence responses, using Nicotiana benthamiana—Radish leaf curl betasatellite (RaLCB) as the model system. We have shown an interaction between RaLCB-encoded βC1 and one of the extrinsic subunit proteins of oxygen-evolving complex of photosystem II both in vitro and in vivo. Further, we demonstrate a novel function of the Nicotiana benthamiana oxygen-evolving enhancer protein 2 (PsbP), in that it binds DNA, including geminivirus DNA. Transient silencing of PsbP in N. benthamiana plants enhances pathogenicity and viral DNA accumulation. Overexpression of PsbP impedes disease development during the early phase of infection, suggesting that PsbP is involved in generation of defence response during geminivirus infection. In addition, βC1-PsbP interaction hampers non-specific binding of PsbP to the geminivirus DNA. Our findings suggest that betasatellite-encoded βC1 protein accomplishes counter-defence by physical interaction with PsbP reducing the ability of PsbP to bind geminivirus DNA to establish infection.  相似文献   

13.
14.
Phosphatidic acid plays an important role in Nicotiana benthamiana immune responses against phytopathogenic bacteria. We analyzed the contributions of endoplasmic reticulum-derived chloroplast phospholipids, including phosphatidic acid, to the resistance of N. benthamiana against Ralstonia solanacearum. Here, we focused on trigalactosyldiacylglycerol 3 (TGD3) protein as a candidate required for phosphatidic acid signaling. On the basis of Arabidopsis thaliana TGD3 sequences, we identified two putative TGD3 orthologs in the N. benthamiana genome, NbTGD3-1 and NbTGD3-2. To address the role of TGD3s in plant defense responses, we created double NbTGD3-silenced plants using virus-induced gene silencing. The NbTGD3-silenced plants showed a moderately reduced growth phenotype. Bacterial growth and the appearance of bacterial wilt disease were accelerated in NbTGD3-silenced plants, compared with control plants, challenged with R. solanacearum. The NbTGD3-silenced plants showed reduced both expression of allene oxide synthase that encoded jasmonic acid biosynthetic enzyme and NbPR-4, a marker gene for jasmonic acid signaling, after inoculation with R. solanacearum. Thus, NbTGD3-mediated endoplasmic reticulum—chloroplast lipid transport might be required for jasmonic acid signaling-mediated basal disease resistance in N. benthamiana.  相似文献   

15.
Metacaspases   总被引:2,自引:0,他引:2  
Metacaspases are cysteine-dependent proteases found in protozoa, fungi and plants and are distantly related to metazoan caspases. Although metacaspases share structural properties with those of caspases, they lack Asp specificity and cleave their targets after Arg or Lys residues. Studies performed over the past 10 years have demonstrated that metacaspases are multifunctional proteases essential for normal physiology of non-metazoan organisms. This article provides a comprehensive overview of the metacaspase function and molecular regulation during programmed cell death, stress and cell proliferation, as well as an analysis of the first metacaspase-mediated proteolytic pathway. To prevent further misapplication of caspase-specific molecular probes for measuring and inhibiting metacaspase activity, we provide a list of probes suitable for metacaspases.  相似文献   

16.
The role of programmed cell death in filamentous fungi is not well-understood, but is important due to the role of fungi in opportunistic infections. Plants, fungi and protozoa do not have caspase genes, but instead express the homologous proteins denoted metacaspases. To better understand the role of metacaspases in fungi we present an analysis of the sequences and activities of all five Type I metacaspases from Schizophyllum commune (ScMC), a mushroom-forming basiodmycete that undergoes sexual reproduction. The five Type I metacaspases of S. commune can be divided into two groups based on sequence similarity. Enzymes both with and without the N-terminal prodomain are active, but here we report on the constructs without the prodomains (Δpro). All five ScMCΔpro proteins show the highest enzymatic activity between pH 7 and 8 and require calcium for optimal activity. Optimal Ca2+ concentrations for ScMC1Δpro and ScMC2Δpro are 50 mM, while ScMC3, ScMC4Δpro and ScMC5Δpro activity is optimal around 5 mM calcium. All five S. commune metacaspases have similar substrate specificity. They are most active with Arg in the P1 position and inactive with Asp in the P1 position.  相似文献   

17.
Chloroplasts play an indispensable role in the arms race between plant viruses and hosts. Chloroplast proteins are often recruited by plant viruses to support viral replication and movement. However, the mechanism by which chloroplast proteins regulate potyvirus infection remains largely unknown. In this study, we observed that Nicotiana benthamiana ribosomal protein large subunit 1 (NbRPL1), a chloroplast ribosomal protein, localized to the chloroplasts via its N-terminal 61 amino acids (transit peptide), and interacted with tobacco vein banding mosaic virus (TVBMV) nuclear inclusion protein b (NIb), an RNA-dependent RNA polymerase. Upon TVBMV infection, NbRPL1 was recruited into the 6K2-induced viral replication complexes in chloroplasts. Silencing of NbRPL1 expression reduced TVBMV replication. NbRPL1 competed with NbBeclin1 to bind NIb, and reduced the NbBeclin1-mediated degradation of NIb. Therefore, our results suggest that NbRPL1 interacts with NIb in the chloroplasts, reduces NbBeclin1-mediated NIb degradation, and enhances TVBMV infection.  相似文献   

18.
19.
The H subunit of Mg-chelatase (CHLH) was shown to regulate abscisic acid (ABA) signaling and the I subunit (CHLI) was also reported to modulate ABA signaling in guard cells. However, it remains essentially unknown whether and how the Mg-chelatase-catalyzed Mg-protoporphyrin IX-production differs from ABA signaling. Using a newly-developed surface plasmon resonance system, we showed that ABA binds to CHLH, but not to the other Mg-chelatase components/subunits CHLI, CHLD (D subunit) and GUN4. A new rtl1 mutant allele of the CHLH gene in Arabidopsis thaliana showed ABA-insensitive phenotypes in both stomatal movement and seed germination. Upregulation of CHLI1 resulted in ABA hypersensitivity in seed germination, while downregulation of CHLI conferred ABA insensitivity in stomatal response in Arabidopsis. We showed that CHLH and CHLI, but not CHLD, regulate stomatal sensitivity to ABA in tobacco (Nicotiana benthamiana). The overexpression lines of the CHLD gene showed wild-type ABA sensitivity in Arabidopsis. Both the GUN4-RNA interference and overexpression lines of Arabidopsis showed wild-type phenotypes in the major ABA responses. These findings provide clear evidence that the Mg-chelatase-catalyzed Mg-ProtoIX production is distinct from ABA signaling, giving information to understand the mechanism by which the two cellular processes differs at the molecular level.  相似文献   

20.
Fungal plant pathogens secrete virulence-related proteins, called effectors, to establish host infection; however, the details are not fully understood yet. Functional screening of effector candidates using Agrobacterium-mediated transient expression assay in Nicotiana benthamiana identified two virulence-related effectors, named SIB1 and SIB2 (Suppression of Immunity in N. benthamiana), of an anthracnose fungus Colletotrichum orbiculare, which infects both cucurbits and N. benthamiana. The Agrobacterium-mediated transient expression of SIB1 or SIB2 increased the susceptibility of N. benthamiana to C. orbiculare, which suggested these effectors can suppress immune responses in N. benthamiana. The presence of SIB1 and SIB2 homologs was found to be limited to the genus Colletotrichum. SIB1 suppressed both (i) the generation of reactive oxygen species triggered by two different pathogen-associated molecular patterns, chitin and flg22, and (ii) the cell death response triggered by the Phytophthora infestans INF1 elicitin in N. benthamiana. We determined the NMR-based structure of SIB1 to obtain its structural insights. The three-dimensional structure of SIB1 comprises five β-strands, each containing three disulfide bonds. The overall conformation was found to be a cylindrical shape, such as the well-known antiparallel β-barrel structure. However, the β-strands were found to display a unique topology, one pair of these β-strands formed a parallel β-sheet. These results suggest that the effector SIB1 present in Colletotrichum fungi has unique structural features and can suppress pathogen-associated molecular pattern–triggered immunity in N. benthamiana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号