首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Resonance Raman (RR) spectra were obtained in H2O or D2O solution for the purple intermediates of D-amino acid oxidase (DAO) with isotopically labeled substrates, i.e., [1-13C]-, [2-13C]-, [3-13C]-, [15N]-, and [3,3,3-D3]alanine; [carboxyl-13C]- and [15N]proline. RR spectra were also measured for the intermediates of DAO reconstituted with isotopically labeled FAD's, i.e., [4a-13C]-, [4,10a-13C2]-, [2-13C]-, [5-15N]-, and [1,3-15N2]FAD in D2O. The isotopic shift of the 1692 cm-1 band upon [15N]- or [2-13C]-substitution of alanine indicates that the band is due to the C = N stretching mode of an imino acid derived from D-alanine, i.e., alpha-iminopropionate. The 1658 cm-1 band with D-proline was also assigned to the C = N stretching mode of an imino acid derived from D-proline, i.e., delta 1-pyrrolidine-2-carboxylate, since the band shifts to 1633 cm-1 upon [15N]-substitution and its stretching frequency is generally found in this frequency region. Since the band shifts to low frequency in D2O, the imino acid should have a protonated imino group such as the C = N+1H form. The intense band at 1363 cm-1 with D-alanine was assigned to a mixing of the CO2- symmetric stretching and CH3 symmetric deformation modes in alpha-iminopropionate, based on the isotope effects. The 1359 cm-1 band with D-proline has probably contributions of CO2- symmetric stretching and CH2 wagging, considering the isotope effects with [carboxyl-13C]proline. The 1359 cm-1 band with D-proline was split into 1371 cm-1 and 1334 cm-1 bands in D2O. As this splitting of the 1359 cm-1 band with D-proline in D2O can not be interpreted only by the replacement of the C = N+1-H proton by deuterium, the carboxylate of the imino acid probably interacts with the enzyme through some proton(s) exchangeable by deuterium(s) in D2O. The bands around 1605 cm-1 which shift upon [4a-13C]- and [4,10a-13C2]-labeling of FAD are derived from a fully reduced flavin, because the isotopic shifts of the band are very different from those of the bands of oxidized or semiquinoid flavin observed near 1605 cm-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Resonance Raman (RR) spectra were measured for the purple intermediates of D-amino acid oxidase reconstituted with isotopically labelled FAD's, i.e., [4a-13C]-, [4,10a-13C2]-, [2-13C]-, [5-15N]-, and [1,3-15N2]flavin adenine dinucleotides, and compared with those with the native enzyme. The RR lines around 1605 cm-1 with D-alanine or D-proline as a substrate and at 1548 cm-1 with D-alanine undergo isotopic shifts upon [4a-13C]- and [4,10a-13C2]-labelling. These lines are assigned to the vibrational modes associated with C(10a) = C(4a) - C(4) = O moiety of reduced flavin, providing the first assignment of RR lines of reduced flavin and conclusive evidence that reduced flavin is involved in this intermediate.  相似文献   

3.
The reaction of D-amino acid oxidase [EC 1.4.3.3] (DAO) from porcine kidney with beta-cyano-D-alanine (D-BCNA) was studied. DAO was found to catalyze elimination of the cyano group as well as oxidation of D-BCNA. During the course of the reaction in the presence of excess oxygen, an intermediate was observed which exhibited a characteristic absorption spectrum with a broad charge transfer band in the longer wavelength region. The CD spectrum of this intermediate resembles that of DAO-anthranilate complex. The rate of oxygen consumption in the aerobic reaction decreased with time, suggesting product inhibition due to complex formation between the enzyme and the product. Anaerobic addition of D-BCNA reduced the enzyme to its fully reduced state, the CD spectrum of which closely resembles that of the enzyme reduced by excess D-alanine. When an appropriate amount of D-BCNA was added to the enzyme under air, the charge transfer complex was observed immediately, and underwent a change to the reduced state as the oxygen was consumed. The binding strength in the charge transfer complex was found to be comparable to that in DAO-benzoate complex. The accumulating product in the oxidation of D-BCNA had a strong absorption at 285 nm. The aerobic reaction of beta-cyano-L-alanine (L-BCNA) with snake venom L-amino acid oxidase (LAO) produced the same product with an absorption at 285 nm as the reaction of DAO with D-BCNA. The product obtained in the reaction with LAO was found to form the same charge transfer complex with DAO. We tentatively identified this product as alpha-amino-beta-cyanoacrylate and the charge transfer complex as the complex of alpha-amino-alpha-cyanoacrylate with the oxidized enzyme. A hypothetical reaction pathway based on the present finding is proposed. Addition of L-BCNA to the enzyme produced an absorption spectrum very similar to that of the DAO-benzoate complex without oxidation or elimination. L-BCNA was found to be a competitive inhibitor of the oxidation of D-alanine.  相似文献   

4.
The three-dimensional structure of the purple intermediate of porcine kidney D-amino acid oxidase (DAO) was solved by cryo-X-ray crystallography; the purple intermediate is known to comprise a complex between the dehydrogenated product, an imino acid, and the reduced form of DAO. The crystalline purple intermediate was obtained by anaerobically soaking crystals of oxidized DAO in a buffer containing excess D-proline as the substrate. The dehydrogenated product, delta(1)-pyrrolidine-2-carboxylate (DPC), is found sandwiched between the phenol ring of Tyr 224 and the planar reduced flavin ring. The cationic protonated imino nitrogen is within hydrogen-bonding distance of the backbone carbonyl oxygen of Gly 313. The carboxyl group of DPC is recognized by the Arg 283 guanidino and Tyr 228 hydroxyl groups through ion-pairing and hydrogen-bonding, respectively. The (+)HN=C double bond of DPC overlaps the N(5)-C(4a) bond of reduced flavin. The electrostatic effect of the cationic nitrogen of DPC is suggested to shift the resonance hybridization of anionic reduced flavin toward a canonical form with a negative charge at C(4a), thereby augmenting the electron density at C(4a), from which electrons are transferred to molecular oxygen during reoxidation of reduced flavin. The reactivity of reduced flavin in the purple intermediate, therefore, is enhanced through the alignment of DPC with respect to reduced flavin.  相似文献   

5.
The apoprotein of glucose oxidase from Aspergillus niger was reconstituted with specifically 15N- and 13C-enriched FAD derivatives and investigated by 15N- and 13C-NMR spectroscopy. On the basis of the 15N-NMR results it is suggested that, in the oxidized state of glucose oxidase, hydrogen bonds are formed to the N(3) and N(5) positions of the isoalloxazine system. The hydrogen bond to N(3) is more pronounced than that to N(5) as compared with the respective hydrogen bonds formed between FMN and water. The resonance position of N(10) indicates a small decrease in sp2 hybridization compared to free flavin in water. Apparently the isoalloxazine ring is not planar at this position in glucose oxidase. Additional hydrogen bonds at the carbonyl groups of the oxidized enzyme-bound FAD were derived from the 13C-NMR results. A strong downfield shift observed for the C(4a) resonance may be ascribed in part to the decrease in sp2 hybridization at the N(10) position and to the polarization of the carbonyl groups at C(2) and C(4). The polarization of the isoalloxazine ring in glucose oxidase is more similar to FMN in water than to that of tetraacetyl-riboflavin in apolar solvents. In the reduced enzyme the N(1) position is anionic at pH 5.6. The pKa is shifted to lower pH values by at least 1 owing to the interaction of the FAD with the apoprotein. As in the oxidized state of the enzyme, a hydrogen bond is also formed at the N(3) position of the reduced flavin. The N(5) and N(10) resonances of the enzyme-bound reduced FAD indicate a decrease in the sp2 character of these atoms as compared with that of reduced FMN in aqueous solution. Some of the 15N- and 13C-resonance positions of the enzyme-bound reduced cofactor are markedly pH-dependent. The pH dependence of the N(5) and C(10a) resonances indicates a decrease in sp2 hybridization of the N(5) atom with increasing pH of the enzyme solution.  相似文献   

6.
Resonance Raman (RR) spectra of the complex of anionic semiquinoid D-amino acid oxidase (DAO) with picolinate in H2O and D2O were observed in the 300-1,750 cm-1 region. RR spectra were also measured for the complex of the semiquinoid enzyme reconstituted with isotopically labeled FAD's, i.e., [4a-13C]-, [4,10a-13C2]-, [2-13C]-, [5-15N]-, and [1,3-15N2]-FAD. On the basis of the isotope effects, tentative assignments of the observed bands of the anionic semiquinoid flavin were made. The spectra differ from those of oxidized, neutral semiquinoid, and anionic reduced flavins previously reported. The 1,602 cm-1 band was not shifted for any FAD labeled in ring II and/or ring III and was assigned to a ring I mode. The 1,516 cm-1 band underwent an isotopic shift upon [4a-13C]- or [4,10a-13C2]-labeling. The band was assigned to the mode containing C(4a)-C(10a) stretching. The 1,331 and 1,292 cm-1 bands shifted upon [4a-13C]- or [5-15N]-labeling and were assigned to the modes containing C(4a)-N(5) stretching. The 1,217 and 1,188 cm-1 bands were assigned to the skeletal vibrations of ring III coupled with the N(3)-H bending mode. The RR spectrum of the complex of anionic semiquinoid DAO with alpha-iminopropionate or N-methyl-alpha-iminopropionate was essentially identical with that of the complex with picolinate.  相似文献   

7.
D-Amino acid oxidase (DAO) from porcine kidney was reconstituted with FAD's which were enriched with 13C at the 2-, 4-, 4a-, and 10a-positions of the isoalloxazine moiety, and 13C-NMR spectra of the reconstituted DAO were measured in the absence and presence of various competitive inhibitors. When compared to the corresponding chemical shifts of FMN at infinite dilution (Moonen, C.T.W. et al. (1984) Biochemistry 23, 4859-4867), the resonances of C(2), C(4), C(4a), and C(10a) of FAD bound to apoDAO were all shifted to higher field. However, when the reconstituted DAO was complexed with o-, m-, p-aminobenzoate, or benzoate, each of the four 13C-signals underwent a different change in chemical shift. In these changes we observed no characteristics which distinguish DAO-aminobenzoate complexes from DAO-benzoate complex, even though o-, m-, and p-aminobenzoates are known to form charge-transfer complexes with DAO. The signals due to 2- and 4-13C were more sensitive to the formation of the inhibitor-DAO complexes than those of the other carbon atoms. These findings suggest the modulation of the hydrogen bonds at the oxygen atoms of C(2) = O and C(4) = O with the protein moiety as the result of the inhibitor-binding.  相似文献   

8.
Resonance Raman (RR) spectra were obtained for the purple complexes of D-amino acid oxidase (DAO) with D-lysine or N-methylalanine. RR spectra of a complex of oxidized DAO with the oxidation product of D-lysine or D-proline were also measured. The isotope shifts of the observed bands of the purple complex with D-lysine upon 13C- or 15N-substitution of lysine indicate that the ligand is delta 1-piperideine-2-carboxylate. That the band at 1671 cm-1 for the purple intermediate with N-methylalanine shifts to 1666 cm-1 in D2O solution indicates that the imino acid, N-methyl-alpha-iminopropionate, has a protonated imino group. Many bands due to a ligand in the RR spectra of the complex of oxidized DAO with an oxidation product can be observed below 1000 cm-1, but no band for the purple complex is seen in this frequency region. The band associated with the CO2-symmetric stretching mode of the product, such as delta 1-piperideine-2-carboxylate or delta 1-pyrrolidine-2-carboxylate, complexed with the oxidized DAO shifts in D2O solution. This suggests that the product imino acid interacts with the enzyme through some proton(s).  相似文献   

9.
Resonance Raman (RR) spectra excited at 632.8 nm within a charge transfer absorption band were obtained for a catalytic intermediate, the purple complex of D-amino acid oxidase with D-proline or D-alanine as a substrate. The resonance enhanced Raman lines around 1605 and 1360 cm?1 in either of the complexes were suggested to be derived from vibrational modes of reduced flavin molecule. Since the highest energy band at 1692 cm?1 in the RR spectrum with D-alanine was shifted to 1675 cm?1 upon [15N] substitution of alanine and ammonium, this Raman line in the spectrum with D-alanine or the line at 1658 cm?1 with D-proline is assigned to the CN stretching mode of an imino acid corresponding to each amino acid. These results confirm the concept that the purple intermediate of D-amino acid oxidase consists of reduced flavin and an imino acid.  相似文献   

10.
The 31P- and 13C-NMR spectra of old yellow enzyme (OYE) were measured. The 31P-NMR signal of FMN bound to apo OYE-I, one of the pure forms of OYE, was observed at a substantially lower field compared to that of free FMN. While the 31P-signal of free FMN is pH-titratable with a pK value of about 6.5, which corresponds to the monoanion-dianion transition of the phosphate group, the 31P-signal of FMN bound to OYE-I shows no pH-dependence at pH 5-9, indicating that the phosphate group of FMN bound to OYE-I is fixed in the dianionic form in the pH region of 5-9. Apo OYE(0), i.e., the OYE preparation obtained by the conventional method, was reconstituted with [2-13C]FMN or [4,10a-13C2]FMN, while apo OYE-I was reconstituted with [4a-13C]FMN. The 13C-NMR spectra of these reconstituted OYE species were measured in the absence and presence of phenolic compounds which form complexes with OYE. Each 13C-signal of the 13C-labeled FMN became broader in the bound state compared to the free state, indicating restriction of flavin mobility in the bound form. Complex formation of the reconstituted OYE species with p-bromophenol did not shift the 10a-13C signal but shifted the 2- and 4-13C signals slightly upfield, whereas the 4a-13C signal was shifted significantly upfield in the complexed form. This complex-induced upfield shift of the 4a-13C signal was measured with various p-substituted phenols.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Two recombinant mutants of porcine kidney D-amino acid oxidase [EC 1.4.3.3, DAO], in which Tyr(228) and His(307) are replaced with Phe and Leu, respectively, have been expressed in Escherichia coli and purified to apparent homogeneity. The molecular size and amino-terminal sequence of the two mutants were the same as those of the native DAO. Kinetic analysis revealed that the Michaelis constants of the Phe-228 and Leu-307 mutants for D-alanine were 71- and 10-fold and the inhibition constants for benzoate, a potent competitive inhibitor, were 1,189- and 18-fold greater than those of the native DAO, respectively. The maximum velocities of the Phe-228 and Leu-307 mutants were 66 and 58% that of the native DAO. The kinetically estimated dissociation constant of the Leu-307 mutant for FAD was 28-fold greater than that of the native DAO, whereas the value of the Phe-228 mutant was comparable to that of the native DAO. The Leu-307 mutant and the recombinant wild-type DAO were inactivated by D-propargylglycine (D-PG), a suicide substrate. However, the Phe-228 mutant was resistant to the inactivation. Absorption peaks of the Phe-228 mutant were blue-shifted about 10 nm from the corresponding peaks of the wild-type DAO, and the oxidized form was fully reduced by D-alanine without appearance of the purple intermediate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
p-Hydroxyphenylacetate (HPA) hydroxylase (HPAH) was purified from Acinetobacter baumannii and shown to be a two-protein component enzyme. The small component (C1) is the reductase enzyme with a subunit molecular mass of 32 kDa. C1 alone catalyses HPA-stimulated NADH oxidation without hydroxylation of HPA. C1 is a flavoprotein with FMN as a native cofactor but can also bind to FAD. The large component (C2) is the hydroxylase component that hydroxylates HPA in the presence of C1. C2 is a tetrameric enzyme with a subunit molecular mass of 50 kDa and apparently contains no redox centre. FMN, FAD, or riboflavin could be used as coenzymes for hydroxylase activity with FMN showing the highest activity. Our data demonstrated that C2 alone was capable of utilizing reduced FMN to form the product 3,4-dihydroxyphenylacetate. Mixing reduced flavin with C2 also resulted in the formation of a flavin intermediate that resembled a C(4a)-substituted flavin species indicating that the reaction mechanism of the enzyme proceeded via C(4a)-substituted flavin intermediates. Based on the available evidence, we conclude that the reaction mechanism of HPAH from A. baumannii is similar to that of bacterial luciferase. The enzyme uses a luciferase-like mechanism and reduced flavin (FMNH2, FADH2, or reduced riboflavin) to catalyse the hydroxylation of aromatic compounds, which are usually catalysed by FAD-associated aromatic hydroxylases.  相似文献   

13.
Resonance Raman (RR) spectra of purple intermediates of L-phenylalanine oxidase (PAO) with non-labeled and isotopically labeled phenylalanines as substrates, i.e., [1-13C], [2-13C], [ring-U-13C6], and [15N]phenylalanines, were measured with excitation at 632.8 nm within the broad absorption band around 540 nm. The spectra obtained resemble those of purple intermediates of D-amino acid oxidase (DAO). The isotope effects on the 1,665 cm-1 band with [15N] or [2-13C]phenylalanine indicate that the band is due to the C = N stretching mode of an imino acid derived from phenylalanine, i.e., alpha-imino-beta-phenylpropionate. The intense band at 1,389 cm-1 is contributed to by the CO2- symmetric stretching and C-CO2- stretching modes of alpha-imino-beta-phenylpropionate. The 1,602 cm-1 band, which does not shift upon isotopic substitution of phenylalanine, corresponds to the 1,605 cm-1 band of DAO purple intermediates and was assigned to a vibrational mode associated with the C(10a) = C(4a) - C(4) = O moiety of reduced flavin. These results confirm that PAO purple intermediates consist of the reduced enzyme and an imino acid derived from a substrate, and suggest that the plane defined by C(10a) = C(4a) - C(4) = O of reduced flavin and the plane containing H2+N = C - CO2- of an imino acid are arranged in close contact to each other, generating a charge-transfer interaction.  相似文献   

14.
Resonance Raman (RR) spectra of the complex of pig kidney medium-chain acyl-CoA dehydrogenase with acetoacetyl-CoA and of the purple complex formed upon the addition of octanoyl-CoA to the dehydrogenase were obtained. RR spectra were also measured for the complexes prepared by using isotopically labeled compounds, i.e., [3-13C]-, [1,3-13C]-, and [2,4-13C2]acetoacetyl-CoA; [1-13C]octanoyl-CoA; the dehydrogenase reconstituted with [4a-13C]- and [4,10a-13C2]FAD. Both bands of oxidized flavin and acetoacetyl-CoA were resonance-enhanced in the 632.8 nm excited spectra of the acetoacetyl-CoA complex; this confirms that the broad long-wavelength absorption band is a charge-transfer absorption band between oxidized flavin and acetoacetyl-CoA. The 1,622 cm-1 band was assigned to the C(3)=O stretching mode coupling with the C(2)-H bending mode of the enolate form of acetoacetyl-CoA and the bands at 1,483 and 1,119 cm-1 were assigned to bands associated with the C(2)=C(1)-O- moiety. Both bands of fully reduced flavin and the substrate were resonance-enhanced in the 632.8 nm excited spectra of the purple complex. As the enzyme is already reduced, the substrate must be oxidized to octenoyl-CoA; the complex is a charge-transfer complex between the reduced enzyme and octenoyl-CoA. The low frequency value of the 1,577 cm-1 band, which is associated with the C(2)-C(1)=O moiety of the octenoyl-CoA, suggests that the enzyme-bound octenoyl-CoA has an appreciable contribution of C(2)=C(1)-O-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The ene reaction involves the addition of an ‘ene’ to an ‘enophile.’ The retro-ene reaction is the reverse of the ene reaction. In recent years various biological molecules have been found to form covalent intermediates (ene-adducts) that might be the result of an ene reactions. Such adducts have been characterized or implicated for dihydropyridines and pyridininum cofactors derived from vitamin B3, such as the reduced and oxidized forms of nicotinamide adenine dinucleotide (NADH/NAD); flavin cofactors derived from vitamin B2, such as flavin adenine dinucleotide, FAD, and flavin mononucleotide, FMN; vitamin C; the oxime intermediate of nitric oxide synthase; tyrosine; and other biomolecules. Given the ubiquitous nature of these cofactors, it might be speculated that the formation of ene-adducts is a more common principle in biochemistry.  相似文献   

16.
The intramolecular and intermolecular perturbation on the electronic state of FAD was investigated by FTIR spectroscopy by using the C=O stretching vibrations as probes in D(2)O solution. Natural and artificial FADs, i.e. 8-CN-, 8-Cl-, 8-H-, 8-OCH(3)-, and 8-NH(2)-FAD labelled by 2-(13)C, (18)O=C(2), or 4,10a-(13)C(2) were used for band assignments. The C(2)=O and C(4)=O stretching vibrations of oxidized FAD were shifted systematically by the substitution at the 8-position, i.e. the stronger the electron-donating ability (NH(2) > OCH(3) > CH(3) > H > Cl > CN) of the substituent, the lower the wavenumber region where both the C(2)=O and C(4)=O bands appear. In contrast, the C(4)=O band of anionic reduced FAD scarcely shifted. The 1,645-cm(-1) band containing C(2)=O stretching vibration shifted to 1,630 cm(-1) in the medium-chain acyl-CoA dehydrogenase (MCAD)-bound state, which can be explained by hydrogen bonds at C(2)=O of the flavin ring. The band was observed at 1,607 cm(-1) in the complex of MCAD with 3-thiaoctanoyl-CoA. The 23 cm(-1) shift was explained by the charge-transfer interaction between oxidized flavin and the anionic acyl-CoA. In the case of electron-transferring flavoprotein, two bands associated with the C(4)=O stretching vibration were obtained at 1,712 and 1,686 cm(-1), providing evidence for the multiple conformations of the protein.  相似文献   

17.
The Na(+)-pumping NADH-ubiquinone oxidoreductase has six polypeptide subunits (NqrA-F) and a number of redox cofactors, including a noncovalently bound FAD and a 2Fe-2S center in subunit F, covalently bound FMNs in subunits B and C, and a noncovalently bound riboflavin in an undisclosed location. The FMN cofactors in subunits B and C are bound to threonine residues by phosphoester linkages. A neutral flavin-semiquinone radical is observed in the oxidized enzyme, whereas an anionic flavin-semiquinone has been reported in the reduced enzyme. For this work, we have altered the binding ligands of the FMNs in subunits B and C by replacing the threonine ligands with other amino acids, and we studied the resulting mutants by EPR and electron nuclear double resonance spectroscopy. We conclude that the sodium-translocating NADH:quinone oxidoreductase forms three spectroscopically distinct flavin radicals as follows: 1) a neutral radical in the oxidized enzyme, which is observed in all of the mutants and most likely arises from the riboflavin; 2) an anionic radical observed in the fully reduced enzyme, which is present in wild type, and the NqrC-T225Y mutant but not the NqrB-T236Y mutant; 3) a second anionic radical, seen primarily under weakly reducing conditions, which is present in wild type, and the NqrB-T236Y mutant but not the NqrC-T225Y mutant. Thus, we can tentatively assign the first anionic radical to the FMN in subunit B and the second to the FMN in subunit C. The second anionic radical has not been reported previously. In electron nuclear double resonance spectra, it exhibits a larger line width and larger 8alpha-methyl proton splittings, compared with the first anionic radical.  相似文献   

18.
Yeh E  Cole LJ  Barr EW  Bollinger JM  Ballou DP  Walsh CT 《Biochemistry》2006,45(25):7904-7912
The flavin-dependent halogenase RebH catalyzes chlorination at the C7 position of tryptophan as the initial step in the biosynthesis of the chemotherapeutic agent rebeccamycin. The reaction requires reduced FADH(2) (provided by a partner flavin reductase), chloride ion, and oxygen as cosubstrates. Given the similarity of its sequence to those of flavoprotein monooxygenases and their common cosubstrate requirements, the reaction of FADH(2) and O(2) in the halogenase active site was presumed to form the typical FAD(C4a)-OOH intermediate observed in monooxygenase reactions. By using stopped-flow spectroscopy, formation of a FAD(C4a)-OOH intermediate was detected during the RebH reaction. This intermediate decayed to yield a FAD(C4a)-OH intermediate. The order of addition of FADH(2) and O(2) was critical for accumulation of the FAD(C4a)-OOH intermediate and for subsequent product formation, indicating that conformational dynamics may be important for protection of labile intermediates formed during the reaction. Formation of flavin intermediates did not require tryptophan, nor were their rates of formation affected by the presence of tryptophan, suggesting that tryptophan likely does not react directly with any flavin intermediates. Furthermore, although final oxidation to FAD occurred with a rate constant of 0.12 s(-)(1), quenched-flow kinetic data showed that the rate constant for 7-chlorotryptophan formation was 0.05 s(-)(1) at 25 degrees C. The kinetic analysis establishes that substrate chlorination occurs after completion of flavin redox reactions. These findings are consistent with a mechanism whereby hypochlorite is generated in the RebH active site from the reaction of FADH(2), chloride ion, and O(2).  相似文献   

19.
A stable apoprotein has been prepared from a soluble purified bovine thyroid iodotyrosine deiodinase, previously shown to be an FMN-containing flavoprotein requiring dithionite for enzymatic activities. The apoprotein binds FMN (Ka = 1.47 x 10(8) M-1) with an almost complete restoration of enzymatic activity. It can also bind FAD (Ka = 0.58 x 10(8) M-1) with partial restoration of activity, but does not bind riboflavin. Photoreduction of the holoenzyme in presence of excess of its free cofactor, FMN, supported enzyme activity at a level of 50% of that obtained with dithionite; substituting FAD or riboflavin for FMN produced, respectively, 20 and 11% of the dithionite-supported activity. The oxidation-reduction potential (E1) of the couple semiquinone/fully reduced enzyme is -0.412 V at pH 7 and 25 degrees C. The value (E2) for the oxidized/semiquinone couple is -0.190 V at pH 7 and 25 degrees C. Potentiometric titrations with sodium hydrosulfite suggests that the enzyme is reduced in two successive 1-electron oxidation-reduction steps. Effects of pH on E1 suggest ionization of the protonated flavin with an ionization constant of 5.7 x 10(-7). The highly negative oxidation-reduction potential for the fully reduced enzyme species and the apparent requirement for full reduction for enzymatic activity suggests that in NADPH-mediated microsomal deiodination an NADPH-linked electron carrier of suitably negative midpoint potential is a probable intermediate.  相似文献   

20.
The objective of this study was to clarify the mechanism of electron transfer in the human neuronal nitric oxide synthase (nNOS) flavin domain using the recombinant human nNOS flavin domains, the FAD/NADPH domain (contains FAD- and NADPH-binding sites), and the FAD/FMN domain (the flavin domain including a calmodulin-binding site). The reduction by NADPH of the two domains was studied by rapid-mixing, stopped-flow spectroscopy. For the FAD/NADPH domain, the results indicate that FAD is reduced by NADPH to generate the two-electron-reduced form (FADH(2)) and the reoxidation of the reduced FAD proceeds via a neutral (blue) semiquinone with molecular oxygen or ferricyanide, indicating that the reduced FAD is oxidized in two successive one-electron steps. The neutral (blue) semiquinone form, as an intermediate in the air-oxidation, was unstable in the presence of O(2). The purified FAD/NADPH domain prepared under our experimental conditions was activated by NADP(+) but not NAD(+). These results indicate that this domain exists in two states; an active state and a resting state, and the enzyme in the resting state can be activated by NADP(+). For the FAD/FMN domain, the reduction of the FAD-FMN pair of the oxidized enzyme with NADPH proceeded by both one-electron equivalent and two-electron equivalent mechanisms. The formation of semiquinones from the FAD-FMN pair was greatly increased in the presence of Ca(2+)/CaM. The air-stable semiquinone form, FAD-FMNH(.), was further rapidly reduced by NADPH with an increase at 520 nm, which is a characteristic peak of the FAD semiquinone. Results presented here indicate that intramolecular one-electron transfer from FAD to FMN is activated by the binding of Ca(2+)/CaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号