首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open‐water diffusion and ebullition fluxes of CO2, CH4, and N2O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy‐covariance measurements of whole‐ecosystem CO2 and CH4 exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open‐water and vegetated cover types. Annual open‐water CO2, CH4, and N2O emissions were 915 ± 95 g C‐CO2 m?2 yr?1, 2.9 ± 0.5 g C‐CH4 m?2 yr?1, and 62 ± 17 mg N‐N2O m?2 yr?1, respectively. Diffusion dominated open‐water GHG transport, accounting for >99% of CO2 and N2O emissions, and ~71% of CH4 emissions. Seasonality was minor for CO2 emissions, whereas CH4 and N2O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open‐water fluxes (3.5 ± 0.3 kg CO2‐eq m?2 yr?1) exceeded that of vegetated zones (1.4 ± 0.4 kg CO2‐eq m?2 yr?1) due to high ecosystem respiration. After scaling results to the entire wetland using object‐based cover classification of remote sensing imagery, net uptake of CO2 (?1.4 ± 0.6 kt CO2‐eq yr?1) did not offset CH4 emission (3.7 ± 0.03 kt CO2‐eq yr?1), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO2‐eq yr?1. These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity.  相似文献   

2.
The magnitude, temporal, and spatial patterns of soil‐atmospheric greenhouse gas (hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil‐atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2, N2O, and CH4 fluxes (mean±SD) were 7.7±4.6 Mg CO2‐C ha?1 yr?1, 3.2±1.2 kg N2O‐N ha?1 yr?1, and 3.4±0.9 kg CH4‐C ha?1 yr?1, respectively. The climate was warm and wet from April through September 2003 (the hot‐humid season) and became cool and dry from October 2003 through March 2004 (the cool‐dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot‐humid season and low rates in the cool‐dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool‐dry season and higher N2O emission rates were often observed in the hot‐humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17–44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer.  相似文献   

3.
Currently, there is a lack of knowledge about GHG emissions, specifically N2O and CH4, in subtropical coastal freshwater wetland and mangroves in the southern hemisphere. In this study, we quantified the gas fluxes and substrate availability in a subtropical coastal wetland off the coast of southeast Queensland, Australia over a complete wet-dry seasonal cycle. Sites were selected along a salinity gradient ranging from marine (34 psu) in a mangrove forest to freshwater (0.05 psu) wetland, encompassing the range of tidal influence. Fluxes were quantified for CH4 (range ?0.4–483 mg C–CH4 h?1 m?2) and N2O (?5.5–126.4 μg N–N2O h?1 m?2), with the system acting as an overall source for CH4 and N2O (mean N2O and CH4 fluxes: 52.8 μg N–N2O h?1 m?2 and 48.7 mg C–CH4 h?1 m?2, respectively). Significantly higher N2O fluxes were measured during the summer months (summer mean 64.2 ± 22.2 μg N–N2O h?1 m?2; winter mean 33.1 ± 24.4 µg N–N2O h–1 m?2) but not CH4 fluxes (summer mean 30.2 ± 81.1 mg C–CH4 h?1 m?2; winter mean 37.4 ± 79.6 mg C–CH4 h?1 m?2). The changes with season are primarily driven by temperature and precipitation controls on the dissolved inorganic nitrogen (DIN) concentration. A significant spatial pattern was observed based on location within the study site, with highest fluxes observed in the freshwater tidal wetland and decreasing through the mangrove forest. The dissolved organic carbon (DOC) varied throughout the landscape and was correlated with higher CH4 fluxes, but this was a nonlinear trend. DIN availability was dominated by N–NH4 and correlated to changes in N2O fluxes throughout the landscape. Overall, we did not observe linear relationships between CH4 and N2O fluxes and salinity, oxygen or substrate availability along the fresh-marine continuum, suggesting that this ecosystem is a mosaic of processes and responses to environmental changes.  相似文献   

4.
Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH4) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO2) and CH4] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011–2013). Carbon accumulation in the sediments suggested that the marsh was a long‐term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m?2 yr?1 during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m?2 yr?1). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO2 sink in 2011 (?78.8 ± 33.6 g C m?2 yr?1), near CO2‐neutral in 2012 (29.7 ± 37.2 g C m?2 yr?1), and a CO2 source in 2013 (92.9 ± 28.0 g C m?2 yr?1). The CH4 emission was consistently high with a three‐year average of 50.8 ± 1.0 g C m?2 yr?1. Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m?2 yr?1, respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m?2 yr?1 to the three‐year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow‐through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.  相似文献   

5.
We estimated the long‐term carbon balance [net biome production (NBP)] of European (EU‐25) croplands and its component fluxes, over the last two decades. Net primary production (NPP) estimates, from different data sources ranged between 490 and 846 gC m?2 yr?1, and mostly reflect uncertainties in allocation, and in cropland area when using yield statistics. Inventories of soil C change over arable lands may be the most reliable source of information on NBP, but inventories lack full and harmonized coverage of EU‐25. From a compilation of inventories we infer a mean loss of soil C amounting to 17 g m?2 yr?1. In addition, three process‐based models, driven by historical climate and evolving agricultural technology, estimate a small sink of 15 g C m?2 yr?1 or a small source of 7.6 g C m?2 yr?1. Neither the soil C inventory data, nor the process model results support the previous European‐scale NBP estimate by Janssens and colleagues of a large soil C loss of 90 ± 50 gC m?2 yr?1. Discrepancy between measured and modeled NBP is caused by erosion which is not inventoried, and the burning of harvest residues which is not modeled. When correcting the inventory NBP for the erosion flux, and the modeled NBP for agricultural fire losses, the discrepancy is reduced, and cropland NBP ranges between ?8.3 ± 13 and ?13 ± 33 g C m?2 yr?1 from the mean of the models and inventories, respectively. The mean nitrous oxide (N2O) flux estimates ranges between 32 and 37 g C Eq m?2 yr?1, which nearly doubles the CO2 losses. European croplands act as small CH4 sink of 3.3 g C Eq m?2 yr?1. Considering ecosystem CO2, N2O and CH4 fluxes provides for the net greenhouse gas balance a net source of 42–47 g C Eq m?2 yr?1. Intensifying agriculture in Eastern Europe to the same level Western Europe amounts is expected to result in a near doubling of the N2O emissions in Eastern Europe. N2O emissions will then become the main source of concern for the impact of European agriculture on climate.  相似文献   

6.
Fine root dynamics have the potential to contribute significantly to ecosystem‐scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 (±35) and 153 (±27) g m?2 yr?1 for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k=?0.96 year?1) than in the sandy loam soil (k=?0.61 year?1), leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N2O) emissions were significantly greater in the clay soil (13±1 ng N cm?2 h?1) than in the sandy loam (1.4±0.2 ng N cm?2 h?1). Root mortality and decay following trenching doubled rates of N2O emissions in the clay and tripled them in sandy loam over a 1‐year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 g C m?2 yr?1, accounting for 24% to 35% of the total soil CO2 efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521±206 g C m2 yr?1) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land‐use change can contribute significantly to increased rates of nitrogen trace gas emissions.  相似文献   

7.
Aim Savannas and seasonally‐dry ecosystems cover a significant part of the world's land surface. If undisturbed, these ecosystems might be expected to show a net uptake of methane (CH4) and a limited emission of nitrous oxide (N2O). Land management has the potential to change dramatically the characteristics and gas exchange of ecosystems. The present work investigates the contribution of warm climate seasonally‐dry ecosystems to the atmospheric concentration of nitrous oxide and methane, and analyses the impact of land‐use change on N2O and CH4 fluxes from the ecosystems in question. Location Flux data reviewed here were collected from the literature; they come from savannas and seasonally‐dry ecosystems in warm climatic regions, including South America, India, Australasia and Mediterranean areas. Methods Data on gas fluxes were collected from the literature. Two factors were considered as determinants of the variation in gas fluxes: land management and season. Land management was grouped into: (1) control, (2) ‘burned only’ and (3) managed ecosystems. The season was categorized as dry or wet. In order to avoid the possibility that the influence of soil properties on gas fluxes might confound any differences caused by land management, sites were grouped in homogeneous clusters on the basis of soil properties, using multivariate analyses. Inter‐ and intra‐cluster analysis of gas fluxes were performed, taking into account the effects of season, land management and main vegetation types. Results Soils were often acid and nutrient‐poor, with low water retention. N2O emissions were generally very low (median flux 0.32 mg N2O m?2 day?1), and no significant differences were observed between woodland savannas and managed savannas. The highest fluxes (up to 12.9 mg N2O m?2 day?1) were those on relatively fertile soils with high air‐filled porosity and water retention. The effect of season on N2O production was evident only when sites were separated in homogeneous groups on the basis of soil properties. CH4 fluxes varied over a wide range (?22.9 to 3.15 mg CH4 m?2 day?1, where the negative sign denotes removal of gas from the atmosphere), with an annual average daily flux of ?0.48 ± 0.96 (SD) mg CH4 m?2 day?1 in undisturbed (control) sites. Land‐use change dramatically reduced this CH4 sink. Managed sites were weak sinks of CH4 in the dry season and became sources of CH4 in the wet season. This was particularly evident for pastures. Burning alone did not reduce soil net CH4 oxidation, but decreased N2O production. Main conclusions Despite the low potential for N2O production, both in natural and managed conditions, tropical seasonally‐dry ecosystems represent a significant source of N2O (4.4 Tg N2O year?1) on a global scale, as a consequence of the large area they occupy. The same environments represent a potential CH4 sink of 5.17 Tg CH4 year?1. However, assuming that c. 30% of the tropical land is converted to different uses, the sink would be reduced to 3.2 Tg CH4 year?1. The limited information on fluxes from Mediterranean ecosystems does not allow a meaningful scaling up.  相似文献   

8.
We present the annual patterns of net ecosystem‐atmosphere exchange (NEE) of CO2 and H2O observed from a 447 m tall tower sited within a mixed forest in northern Wisconsin, USA. The methodology for determining NEE from eddy‐covariance flux measurements at 30, 122 and 396 m above the ground, and from CO2 mixing ratio measurements at 11, 30, 76, 122, 244 and 396 m is described. The annual cycle of CO2 mixing ratio in the atmospheric boundary layer (ABL) is also discussed, and the influences of local NEE and large‐scale advection are estimated. During 1997 gross ecosystem productivity (947?18 g C m?2 yr?1), approximately balanced total ecosystem respiration (963±19 g C m?2 yr?1), and NEE of CO2 was close to zero (16±19 g C m?2 yr?1 emitted into the atmosphere). The error bars represent the standard error of the cumulative daily NEE values. Systematic errors are also assessed. The identified systematic uncertainties in NEE of CO2 are less than 60 g C m?2 yr?1. The seasonal pattern of NEE of CO2 was highly correlated with leaf‐out and leaf‐fall, and soil thaw and freeze, and was similar to purely deciduous forest sites. The mean daily NEE of CO2 during the growing season (June through August) was ?1.3 g C m?2 day?1, smaller than has been reported for other deciduous forest sites. NEE of water vapor largely followed the seasonal pattern of NEE of CO2, with a lag in the spring when water vapor fluxes increased before CO2 uptake. In general, the Bowen ratios were high during the dormant seasons and low during the growing season. Evapotranspiration normalized by potential evapotranspiration showed the opposite pattern. The seasonal course of the CO2 mixing ratio in the ABL at the tower led the seasonal pattern of NEE of CO2 in time: in spring, CO2 mixing ratios began to decrease prior to the onset of daily net uptake of CO2 by the forest, and in fall mixing ratios began to increase before the forest became a net source for CO2 to the atmosphere. Transport as well as local NEE of CO2 are shown to be important components of the ABL CO2 budget at all times of the year.  相似文献   

9.
Ponderosa pine (Pinus ponderosa) forests of the southwestern United States are a mosaic of stands where undisturbed forests are carbon sinks, and stands recovering from wildfires may be sources of carbon to the atmosphere for decades after the fire. However, the relative magnitude of these sinks and sources has never been directly measured in this region, limiting our understanding of the role of fire in regional and US carbon budgets. We used the eddy covariance technique to measure the CO2 exchange of two forest sites, one burned by fire in 1996, and an unburned forest. The fire was a high‐intensity stand‐replacing burn that killed all trees. Ten years after the fire, the burned site was still a source of CO2 to the atmosphere [109±6 (SEM) g C m?2 yr?1], whereas the unburned site was a sink (?164±23 g C m?2 yr?1). The fire reduced total carbon storage and shifted ecosystem carbon allocation from the forest floor and living biomass to necromass. Annual ecosystem respiration was lower at the burned site (480±5 g C m?2 yr?1) than at the unburned site (710±54 g C m?2 yr?1), but the difference in gross primary production was even larger (372±13 g C m?2 yr?1 at the burned site and 858±37 g C m?2 yr?1at the unburned site). Water availability controlled carbon flux in the warm season at both sites, and the burned site was a source of carbon in all months, even during the summer, when wet and warm conditions favored respiration more than photosynthesis. Our study shows that carbon losses following stand‐replacing fires in ponderosa pine forests can persist for decades due to slow recovery of the gross primary production. Because fire exclusion is becoming increasingly difficult in dry western forests, a large US forest carbon sink could shift to a decadal‐scale carbon source.  相似文献   

10.
This study investigated how nitrogen (N) fertilization with 200 kg N ha?1 of urea affected ecosystem carbon (C) sequestration in the first‐postfertilization year in a Pacific Northwest Douglas‐fir (Pseudotsuga menziesii) stand on the basis of multiyear eddy‐covariance (EC) and soil‐chamber measurements before and after fertilization in combination with ecosystem modeling. The approach uses a data‐model fusion technique which encompasses both model parameter optimization and data assimilation and minimizes the effects of interannual climatic perturbations and focuses on the biotic and abiotic factors controlling seasonal C fluxes using a prefertilization 9‐year‐long time series of EC data (1998–2006). A process‐based ecosystem model was optimized using the half‐hourly data measured during 1998–2005, and the optimized model was validated using measurements made in 2006 and further applied to predict C fluxes for 2007 assuming the stand was not fertilized. The N fertilization effects on C sequestration were then obtained as differences between modeled (unfertilized stand) and EC or soil‐chamber measured (fertilized stand) C component fluxes. Results indicate that annual net ecosystem productivity in the first‐post‐N fertilization year increased by~83%, from 302 ± 19 to 552 ± 36 g m?2 yr?1, which resulted primarily from an increase in annual gross primary productivity of~8%, from 1938 ± 22 to 2095 ± 29 g m?2 yr?1 concurrent with a decrease in annual ecosystem respiration (Re) of~5.7%, from 1636 ± 17 to 1543 ± 31 g m?2 yr?1. Moreover, with respect to respiration, model results showed that the fertilizer‐induced reduction in Re (~93 g m?2 yr?1) principally resulted from the decrease in soil respiration Rs (~62 g m?2 yr?1).  相似文献   

11.
Temperate pastures are often managed with P fertilizers and N2-fixing legumes to maintain and increase pasture productivity which may lead to greater nitrous oxide (N2O) emissions and reduced methane (CH4) uptake. However, the diel and inter-daily variation in N2O and CH4 flux in pastures is poorly understood, especially in relation to key environmental drivers. We investigated the effect of pasture productivity, rainfall, and changing soil moisture and temperature upon short-term soil N2O and CH4 flux dynamics during spring in sheep grazed pasture systems in southeastern Australia. N2O and CH4 flux was measured continuously in a High P (23 kg P ha?1 yr?1) and No P pasture treatment and in a sheep camp area in a Low P (4 kg P ha?1 yr?1) pasture for a four week period in spring 2005 using an automated trace gas system. Although pasture productivity was three-fold greater in the High P than No P treatment, mean CH4 uptake was similar (?6.3?±?SE 0.3 to ?8.6?±?0.4 μg C m?2 hr?1) as were mean N2O emissions (6.5 to 7.9?±?0.8 μg N m?2 hr?1), although N2O flux in the No P pasture did not respond to changing soil water conditions. N2O emissions were greatest in the Low P sheep camp (12.4 μg?±?1.1 N m?2 hr?1) where there were also net CH4 emissions of 5.2?±?0.5 μg C m?2 hr?1. There were significant, but weak, relationships between soil water and N2O emissions, but not between soil water and CH4 flux. The diel temperature cycle strongly influenced CH4 and N2O emissions, but this was often masked by the confounding covariate effects of changing soil water content. There were no consistently significant differences in soil mineral N or gross N transformation rates, however, measurements of substrate induced respiration (SIR) indicated that soil microbial processes in the highly productive pasture are more N limited than P limited after >20 years of P fertilizer addition. Increased productivity, through P fertilizer and legume management, did not significantly increase N2O emissions, or reduce CH4 uptake, during this 4 week measurement period, but the lack of an N2O response to rainfall in the No P pasture suggests this may be evident over a longer measurement period. This study also suggests that small compacted and nutrient enriched areas of grazed pastures may contribute greatly to the overall N2O and CH4 trace gas balance.  相似文献   

12.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   

13.
The biosphere–atmosphere exchange of methane (CH4) was estimated for a temperate/boreal lowland and wetland forest ecosystem in northern Wisconsin for 1997–1999 using the modified Bowen ratio (MBR) method. Gradients of CH4 and CO2 and CO2 flux were measured on the 447‐m WLEF‐TV tower as part of the Chequamegon Ecosystem–Atmosphere Study (ChEAS). No systematic diurnal variability was observed in regional CH4 fluxes measured using the MBR method. In all 3 years, regional CH4 emissions reached maximum values during June–August (24±14.4 mg m?2 day?1), coinciding with periods of maximum soil temperatures. In 1997 and 1998, the onset in CH4 emission was coincident with increases in ground temperatures following the melting of the snow cover. The onset of emission in 1999 lagged 100 days behind the 1997 and 1998 onsets, and was likely related to postdrought recovery of the regional water table to typical levels. The net regional emissions were 3.0, 3.1, and 2.1 g CH4 m?2 for 1997, 1998, and 1999, respectively. Annual emissions for wetland regions within the source area (28% of the land area) were 13.2, 13.8, and 10.3 g CH4 m?2 assuming moderate rates of oxidation of CH4 in upland regions in 1997, 1998, and 1999, respectively. Scaling these measurements to the Chequamegon Ecosystem (CNNF) and comparing with average wetland emissions between 40°N and 50°N suggests that wetlands in the CNNF emit approximately 40% less than average wetlands at this latitude. Differences in mean monthly air temperatures did not affect the magnitude of CH4 emissions; however, reduced precipitation and water table levels suppressed CH4 emission during 1999, suggesting that long‐term climatic changes that reduce the water table will likely transform this landscape to a reduced source or possibly a sink for atmospheric CH4.  相似文献   

14.
Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento‐San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long‐term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land‐use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land‐use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land‐use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m?2 yr?1 as CO2 and 11.4 g C m?2 yr?1 as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m?2 yr?1. However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m?2 yr?1. In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land‐use types can help reduce or reverse soil subsidence and reduce GHG emissions.  相似文献   

15.
Soil respiration is derived from heterotrophic (decomposition of soil organic matter) and autotrophic (root/rhizosphere respiration) sources, but there is considerable uncertainty about what factors control variations in their relative contributions in space and time. We took advantage of a unique whole‐ecosystem radiocarbon label in a temperate forest to partition soil respiration into three sources: (1) recently photosynthesized carbon (C), which dominates root and rhizosphere respiration; (2) leaf litter decomposition and (3) decomposition of root litter and soil organic matter >1–2 years old. Heterotrophic sources and specifically leaf litter decomposition were large contributors to total soil respiration during the growing season. Relative contributions from leaf litter decomposition ranged from a low of ~1±3% of total soil respiration (6± 3 mg C m?2 h?1) when leaf litter was extremely dry, to a high of 42±16% (96± 38 mg C m?2 h?1). Total soil respiration fluxes varied with the strength of the leaf litter decomposition source, indicating that moisture‐dependent changes in litter decomposition drive variability in total soil respiration fluxes. In the surface mineral soil layer, decomposition of C fixed in the original labeling event (3–5 years earlier) dominated the isotopic signature of heterotrophic respiration. Root/rhizosphere respiration accounted for 16±10% to 64±22% of total soil respiration, with highest relative contributions coinciding with low overall soil respiration fluxes. In contrast to leaf litter decomposition, root respiration fluxes did not exhibit marked temporal variation ranging from 34±14 to 40±16 mg C m?2 h?1 at different times in the growing season with a single exception (88±35 mg C m?2 h?1). Radiocarbon signatures of root respired CO2 changed markedly between early and late spring (March vs. May), suggesting a switch from stored nonstructural carbohydrate sources to more recent photosynthetic products.  相似文献   

16.
We examined the possibility that microbial adaptation to temperature could affect rates of CO2, N2O and CH4 release from soils. Laboratory incubations were used to determine the functional relationship between temperature and CO2, N2O and CH4 fluxes for five soils collected across an elevational range in Hawaii. Initial rates of CO2 production and net N mineralization increased exponentially from 15 °C to 55 °C; initial rates of CH4 and N2O release were more complex. No optimum temperature (in which rates decline at higher and lower temperatures) was apparent for any of the gases, but respiration declined with time at higher temperatures, suggesting rapid depletion of readily available substrate. Mean Q10S for respiration varied from 1.4 to 2.0, a typical range for tropical soils. The functional relationship between CO2 production and temperature was consistent among all five soils, despite the substantial differences in mean annual temperature, soils, and land-use among the sites. Temperature responses of N2O and CH4 fluxes did not follow simple Q10 relationships suggesting that temperature functions developed for CO2 release from heterotrophic respiration cannot be simply extrapolated. Expanding this study to tropical heterotrophic respiration, the flux is more sensitive to changes in Q10 than to changes in temperature on a per unit basis: the partial derivative with respect to temperature is 2.4 Gt C ·° C?1 with respect to Q10, it is 3.5 Gt C · Q10 unit?1. Therefore, what appears to be minor variability might still produce substantial uncertainty in regional estimates of gas exchange.  相似文献   

17.
At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus (‘forest’) lead to expansion of permafrost‐free wetlands (‘wetland’). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH4) emissions. Here, we quantify the thaw‐induced increase in CH4 emissions for a boreal forest‐wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long‐term net carbon dioxide (CO2) exchange. Using nested wetland and landscape eddy covariance net CH4 flux measurements in combination with flux footprint modeling, we find that landscape CH4 emissions increase with increasing wetland‐to‐forest ratio. Landscape CH4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May–October) wetland CH4 emission of ~13 g CH4 m?2 is the dominating contribution to the landscape CH4 emission of ~7 g CH4 m?2. In contrast, forest contributions to landscape CH4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr?1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH4 m?2 yr?1 in landscape CH4 emissions. A long‐term net CO2 uptake of >200 g CO2 m?2 yr?1 is required to offset the positive radiative forcing of increasing CH4 emissions until the end of the 21st century as indicated by an atmospheric CH4 and CO2 concentration model. However, long‐term apparent carbon accumulation rates in similar boreal forest‐wetland landscapes and eddy covariance landscape net CO2 flux measurements suggest a long‐term net CO2 uptake between 49 and 157 g CO2 m?2 yr?1. Thus, thaw‐induced CH4 emission increases likely exert a positive net radiative greenhouse gas forcing through the 21st century.  相似文献   

18.
There is considerable uncertainty in the estimates of indirect N2O emissions as defined by the Intergovernmental Panel on Climate Change's (IPCC) methodology. Direct measurements of N2O yields and fluxes in aquatic river environments are sparse and more data are required to determine the role that rivers play in the global N2O budget. The objectives of this research were to measure the N2O fluxes from a spring‐fed river, relate these fluxes to the dissolved N2O concentrations and NO3‐N loading of the river, and to try to define the indirect emission factor (EF5‐r) for the river. Gas bubble ebullition was observed at the river source with bubbles containing 7.9 μL N2O L?1. River NO3‐N and dissolved N2O concentrations ranged from 2.5 to 5.3 mg L?1 and 0.4 to 1.9 μg N2O‐N L?1, respectively, with N2O saturation reaching 404%. Floating headspace chambers were used to sample N2O fluxes. N2O‐N fluxes were significantly related to dissolved N2O‐N concentrations (r2=0.31) but not to NO3‐N concentrations. The N2O‐N fluxes ranged from 38 to 501 μg m?2 h?1, averaging 171 μg m?2 h?1 (±SD 85) overall. The measured N2O‐N fluxes equated to an EF5‐r of only 6.6% of that calculated using the IPCC methodology, and this itself was considered to be an overestimate because of the degassing of antecedent dissolved N2O present in the groundwater that fed the river.  相似文献   

19.
There is considerable uncertainty in the estimates of indirect N2O emissions as defined by the intergovernmental panel on climate change's (IPCC) methodology. Direct measurements of N2O yields and fluxes in aquatic river environments are sparse and more data are required to determine the role that rivers play in the global N2O budget. The objectives of this research were to measure the N2O fluxes from a spring‐fed river, relate these fluxes to the dissolved N2O concentrations and NO3‐N loading of the river, and to try and define the indirect emission factor (EF5‐r) for the river. Gas bubble ebullition was observed at the river source with bubbles containing 7.9 μL N2O L?1. River NO3‐N and dissolved N2O concentrations ranged from 2.5 to 5.3 mg L?1 and 0.4 to 1.9 μg N2O‐N L?1, respectively, with N2O saturation reaching 404%. Floating headspace chambers were used to sample N2O fluxes. N2O‐N fluxes were significantly related to dissolved N2O‐N concentrations (r2=30.6) but not to NO3‐N concentrations. The N2O‐N fluxes ranged from 38–501 μg m?2 h?1, averaging 171 μg m?2 h?1 (±SD 85) overall. The measured N2O‐N fluxes equated to an EF5‐r of only 6.6% of that calculated using the IPCC methodology, and this itself was considered to be an overestimate because of the degassing of antecedent dissolved N2O present in the groundwater that fed the river.  相似文献   

20.
We investigated N2O and CH4 fluxes from soils of Quercus ilex, Quercus pyrenaica and Pinus sylvestris stands located in the surrounding area of Madrid (Spain). The fluxes were measured for 18?months from both mature stands and post fire stands using the static chamber technique. Simultaneously with gas fluxes, soil temperature, soil water content, soil C and soil N were measured in the stands. Nitrous oxide fluxes ranged from ?11.43 to 8.34?μg N2O–N?m?2?h?1 in Q.ilex, ?7.74 to 13.52?μg N2O–N?m?2?h?1 in Q. pyrenaica and ?28.17 to 21.89?μg N2O–N?m?2?h?1 in P. sylvestris. Fluxes of CH4 ranged from ?8.12 to 4.11?μg CH4–C?m?2?h?1 in Q.ilex, ?7.74 to 3.0?μg CH4–C m?2?h?1 in Q. pyrenaica and ?24.46 to 6.07?μg CH4–C?m?2?h?1 in P. sylvestris. Seasonal differences were detected; N2O fluxes being higher in wet months whereas N2O fluxes declined in dry months. Net consumption of N2O was related to low N availability, high soil C contents, high soil temperatures and low moisture content. Fire decreased N2O fluxes in spring. N2O emissions were closely correlated with previous day’s rainfall and soil moisture. Our ecosystems generally were a sink for methane in the dry season and a source of CH4 during wet months. The available water in the soil influenced the observed seasonal trend. The burned sites showed higher CH4 oxidation rates in Q. ilex, and lower rates in P. sylvestris. Overall, the data suggest that fire alters both N2O and CH4 fluxes. However, the magnitude of such variation depends on the site, soil characteristics and seasonal climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号