首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of human diseases requires the testing of microorganisms in model systems. Although mammals are typically used, we argue the validity of using insects as models in order to examine human diseases, particularly the growing number of opportunistic microorganisms. Insects can be used in large numbers, are easily manipulated, and are not subject to the same ethical concerns as mammalian systems. Insects and mammals have many parallels with respect to microbial pathogenesis, from proteinaceous integuments that require breaching before infection to similarities in their innate immune responses. Reactions of insects to Candida and Pseudomonas spp. infections show good correlation with mouse models, providing precedent-setting examples of the study of human pathogens using insects. Insects as pathogen hosts also warrant study because they may act as reservoirs for emerging human pathogens. Finally, insect models may be used to examine the evolutionary processes involved in the acquisition of virulence factors and host-jumping mechanisms indispensable to emerging pathogens. Insect models may be used in 'niche' investigations where large sample sizes can facilitate rapid, informative screening of opportunistic diseases and provide insights into pathogen evolution, while reducing the cost and ethical concerns associated with mammalian models.  相似文献   

2.
This study evaluated whether herbivorous insects can be expected to have particular adaptations to withstand the harsh dry season in tropical dry forests (TDFs). We specifically investigated a possible escape in space, with herbivorous insects moving to the few evergreen trees that occur in this ecosystem; and escape in time, with herbivores presenting an increased nocturnal rather than diurnal activity during the dry season. We determined the variation in the free-feeding herbivorous insects (sap-sucking and leaf chewing) between seasons (beginning and middle of both rainy and dry seasons), plant phenological groups (deciduous and evergreen trees) and diel period (diurnal and nocturnal) in a Brazilian TDF. We sampled a total of 5827 insect herbivores in 72 flight-interception traps. Contrary to our expectations, we found a greater herbivore diversity during the dry season, with low species overlap among seasons. In the dry season, evergreen trees supported greater richness and abundance of herbivores as compared to deciduous trees. Insects were also more active at night during the dry season, but no diel differences in insect abundance were detected during the rainy season. These results indicate that the strategies used by insect herbivores to withstand the severe climatic conditions of TDFs during the dry season include both small-scale escape in space and time, with evergreen trees playing a key role in maintaining resident insect herbivore populations in TDFs. Relatively more nocturnal activity during the dry season may be related to the avoidance of harsh climatic conditions during the day. We suggest that the few evergreen tree species occurring in the TDF landscape should be especially targeted for protection in this threatened ecosystem, given their importance for insect conservation.  相似文献   

3.

The plant kingdom produces an extraordinary diversity of secondary metabolites and the majority of the literature supports a defensive ecological role for them, particularly against invertebrate herbivores (antagonists). Plants also produce secondary compounds in floral nectar and pollen and these are often similar to those produced for defense against invertebrates elsewhere in the plant. This is largely because the chemical armoury within a single plant species is typically restricted to a few biochemical pathways and limited chemical products but how their occurrence in floral rewards is regulated to mediate both defence and enhanced pollination is not well understood. Several phytochemicals are reviewed here comparing the defensive function alongside their benefit to flower visiting mutualists. These include caffeine, aconitine, nicotine, thymol, linalool, lupanine and grayanotoxins comparing the evidence for their defensive function with their impacts on pollinators, their behaviour and well-being. Drivers of adaptation and the evolution of floral traits are discussed in the context of recent studies. Ultimately more research is required that helps determine the impacts of floral chemicals in free flying bees, and how compounds are metabolized, sequestered or excreted by flower feeding insects to understand how they may then affect the pollinators or their parasites. More work is also required on how plants regulate nectar and pollen chemistry to better understand how secondary metabolites and their defensive and pollinator supporting functions are controlled, evolve and adapt.

  相似文献   

4.
Increasing atmospheric nitrogen (N) inputs have the potential to alter terrestrial ecosystem function through impacts on plant-herbivore interactions. The goal of our study is to search for a general pattern in responses of tree characteristics important for herbivores and insect herbivorous performance to elevated N inputs. We conducted a meta-analysis based on 109 papers describing impacts of nitrogen inputs on tree characteristics and 16 papers on insect performance. The differences in plant characteristics and insect performance between broadleaves and conifers were also explored. Tree aboveground biomass, leaf biomass and leaf N concentration significantly increased under elevated N inputs. Elevated N inputs had no significantly overall effect on concentrations of phenolic compounds and lignin but adversely affected tannin, as defensive chemicals for insect herbivores. Additionally, the overall effect of insect herbivore performance (including development time, insect biomass, relative growth rate, and so on) was significantly increased by elevated N inputs. According to the inconsistent responses between broadleaves and conifers, broadleaves would be more likely to increase growth by light interception and photosynthesis rather than producing more defensive chemicals to elevated N inputs by comparison with conifers. Moreover, the overall carbohydrate concentration was significantly reduced by 13.12% in broadleaves while increased slightly in conifers. The overall tannin concentration decreased significantly by 39.21% in broadleaves but a 5.8% decrease in conifers was not significant. The results of the analysis indicated that elevated N inputs would provide more food sources and ameliorate tree palatability for insects, while the resistance of trees against their insect herbivores was weakened, especially for broadleaves. Thus, global forest insect pest problems would be aggravated by elevated N inputs. As N inputs continue to rise in the future, forest ecosystem management should pay more attention to insect pest, especially in the regions dominated by broadleaves.  相似文献   

5.
The evolutionary history of phytophagous insects and mites and of their food-plants is traced in the conservative preferences of modern-day insects for plants. Based on UK data in the Phytophagous Insects Data Bank, a correspondence analysis displays 182 insect families and 117 plant families in a bi-variate plot. The overall pattern suggests the expansion of diversity of insects and host plants from Gymnosperms to Dicots. Plots for phytophagous insect orders and major plant clades are described, with families provisionally ranked as evolutionarily basal, intermediate or advanced. There are blurred patterns of evolutionary advancement from basal insect families with more species on conifers and on ferns and Eurosid I trees. Intermediate families are commoner on Malpighiales and Fabales, and advanced insects more frequent on later evolved euasterids II (Asterales and Lamiales), Caryophyllales and Gramineae. Basal Hymenoptera have associations with conifers, basal Lepidoptera to Eurosid I trees, and Diptera are mainly advanced families on commelinids (grasses) and Asteraceae. Blurred traces of similar phylogenetic sequences are described for subfamilies within eight example insect families. Basal families and clades tend to have fewer species than derived advanced clades. Insect communities on plants should be seen in the light of this linked past evolutionary background.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 78 , 51–83.  相似文献   

6.
Plants emit volatile compounds that can act as a communication method to insects, neighboring plants and pathogens. Plants respond to leaf and root damage by herbivores and pathogens by emitting these compounds. The volatile compounds can deter the herbivores or pathogens directly or indirectly by attracting their natural enemies to kill them. The simultaneous damage of plants by herbivores and pathogens can influence plant defense. The induced plant volatiles can also make neighboring plants ready for defense or induce defense in parts distant from the damaged area of the same plant. Belowground root herbivory can alter the defense response to aboveground leaf herbivory. In addition, most plants normally emit volatile compounds from their flowers that directly attract foraging mutualistic insects for nectar, which in turn perform the very important function of pollination for subsequent reproduction. The volatile compounds emitted from the floral and vegetative parts of plants belong to three main classes of compounds: terpenoids, phenylpropanoids/benzenoids, and C6-aldehydes (green-leaf volatiles). The volatile phytohormones methyl salicylate and methyl jasmonate serve as important signaling molecules for communication purposes, and interact with each other to optimize the plant defense response. Here we discuss and integrate the current knowledge on all types of communication between plants and insects, neighboring plants and pathogens that are mediated through plant volatiles.  相似文献   

7.
Woody climbers or, ‘lianas’, are one of the features that characterise rainforests. They contribute substantially to plant diversity and leaf biomass which makes them a potentially important food source for herbivores. Here, we focus on insect herbivores, folivores in particular, to show how disparities in the quantitative and qualitative availability of leaves between lianas and trees may differentially influence insect folivory and the herbivore communities themselves. We develop a conceptual model and show that lianas in general have lower structural and chemical defences, a greater nutritional profile and a preferable phenology in comparison with trees, which, contrary to our expectations, has led to assemblages of more‐specialised insects. The impacts this has on higher trophic levels and broader ecological networks, however, are poorly known. We show through a study of four tropical floras from different biogeographic realms that lianas are likely to be a target for a wide range of insect herbivore taxa as they are a phylogenetically diverse group and increase diversity of higher taxa at local scales. This, in combination with their highly palatable leaves, may also make them a suitable temporary food source for insects during times when preferred host plants are scarce. This phenomenon has been observed in mammalian herbivores but awaits investigation in insects as does the effects this may have on survival and fitness. Apparent recent increases in liana abundances in some forests, likely due to climate change, makes understanding their role in supporting and maintaining biodiversity an increasingly important and necessary challenge. Since trees or saplings have usually been the subject of studies on insect herbivory, major knowledge gaps remain about the ways in which lianas contribute to, support and maintain the ecosystems in which they exist. We use our conceptual model to guide future research directions and express the necessity for caution when extrapolating explanations of herbivory derived from data on trees to growth forms with fundamentally different ecologies.  相似文献   

8.
1 Natural and recurring disturbances caused by fire, native forest insects and pathogens have interacted for millennia to create and maintain forests dominated by seral or pioneering species of conifers in the interior regions of the western United States and Canada. 2 Changes in fire suppression and other factors in the last century have altered the species composition and increased the density of trees in many western forests, leading to concomitant changes in how these three disturbance agents interact. 3 Two‐ and three‐way interactions are reviewed that involve fire, insects and pathogens in these forests, including fire‐induced pathogen infection and insect attack, the effects of tree mortality from insects and diseases on fuel accumulation, and efforts to model these interactions. 4 The emerging concern is highlighted regarding how the amount and distribution of bark beetle‐caused tree mortality will be affected by large‐scale restoration of these fire‐adapted forest ecosystems via prescribed fire. 5 The effects of fire on soil insects and pathogens, and on biodiversity of ground‐dwelling arthropods, are examined. 6 The effects of fire suppression on forest susceptibility to insects and pathogens, are discussed, as is the use of prescribed fire to control forest pests.  相似文献   

9.
Most research on plant-plant chemical interactions has focussed on events following herbivore or pathogen attack. However, undamaged plants also interact chemically as a natural facet of their behaviour, and this may have consequences for insects that use the plants as hosts. In this review, the links between allelopathy and insect behaviour are outlined. Findings on how chemical interactions between different plant species and genotypes affect aphid herbivores and their natural enemies are reviewed, and the role of plant diversity and chemical interaction for trophic interactions in crops is discussed.  相似文献   

10.

Nematode pathogens cause wilt diseases in conifers and deciduous trees. The longhorn beetles (Coleoptera: Cerambycidae) and bark beetles (Coleoptera: Curculionidae: Scolytinae) act as nematode vectors spreading the invasive juvenile stages during their maturation feeding or during oviposition on the plant hosts. There are numerous reviews of nematodes associated with bark beetles on conifers, while little attention has been paid to the nematodes of deciduous trees. The development of Dutch elm disease and ash dieback is mainly caused by fungal pathogens transmitted by bark beetles; the latter act as vectors of not only fungi but also nematodes enclosed in nematangia under their elytra, and also in the tracheae and Malpighian canals. Apart from phytopathogenic nematodes, bark beetles transmit mycophagous and bacterivorous nematodes and own parasites of bark beetles. The ecological groups of nematodes associated with Scolytinae are reviewed; the known records of associations of nematodes with bark beetles are listed for coniferous host plants of Russia and neighboring countries; the world-wide list of these associations for deciduous plant hosts is given.

  相似文献   

11.
Insects are amongst the most successful of animals, both in terms of diversity and in colonizing all ecological niches. Recent studies have highlighted the benefi ciary roles that bacteria play in the success and establishment of insects. By adopting techniques like 16S rRNA sequencing we are now in a position to understand the diversity of bacteria present in insect guts. It has been shown that some of these bacteria, like Wolbachia and Cardinium are involved in manipulating insect populations and distorting their sex ratio. Attempts have been made to culture these bacteria in insect cell lines, as they are recalcitrant to culture under normal microbiological conditions. The diversity of bacteria associated with insects and the functional role played by them in the insect is discussed below.  相似文献   

12.
Most herbivorous arthropods are specialists that feed on one or a few related plant species. To understand why this is so, both mechanistic and functional studies have been carried out, predominantly restricted to bitrophic aspects. Host-selection behaviour of herbivorous arthropods has been intensively studied and this has provided ample evidence for the role of secondary plant chemicals as source of information in behavioural decisions of herbivores. Many evolutionary studies have regarded co-evolution between plants and herbivores to explain the diversity of secondary plant chemicals and host specialisation of herbivores. However, many cases remain unexplained where herbivores select host plants that are suboptimal in terms of fitness returns. A stimulating paper by Bernays and Graham [(1988) Ecology 69, 886-892)] has initiated a discussion on the need of a multitrophic perspective to understand the evolution of host-plant specialisation by herbivorous arthropods. However, this has hardly resulted in ecological studies on host-selection behaviour that take a multitrophic perspective. Yet, evidence is accumulating that constitutive and induced infochemicals from natural enemies and competitors can affect herbivore behaviour. These cues may constitute important information on fitness prospects, just as plant cues can do. In this paper I selectively review how information from organisms at different trophic levels varies in space and time and how herbivores can integratively exploit this information during host selection. In doing so, research areas are identified that are likely to provide important new insights to explain several of the questions in herbivore host selection that remain unanswered so far. These research areas are at the interface of evolutionary ecology, behavioural ecology and chemical ecology.  相似文献   

13.
  • 1 High productivity in plantations of exotic tree species is achieved by management for fast growth in the absence of the full complex of co‐evolved insect herbivores. In the case of Eucalyptus, silvicultural selection for desirable wood traits is concomitant with a trade‐off against defence and a reduction of chemical and genetic diversity. These factors, combined with accidental introductions, rapid insect evolution and the emergence of new pests, increase the likelihood that future plantations will need insect pest management to maintain productivity.
  • 2 Forestry researchers have suggested that selecting for resistant genotypes may be beneficial in insect control. There are, however, significant differences between long‐lived trees and annual crops that make this approach unlikely to be successful. This is illustrated using several examples of research into resistance to insect herbivores in trees.
  • 3 Selection for resistance to insects in trees requires an assessment of trial plantations for heritable variation in insect damage and then a determination of the effect of variation in resistance on insect population parameters. Identifying rare resistant genotypes using markers is difficult because many factors interact to produce a resistant phenotype, and phytophagous insects have less intimate relationships with their host than pathogens, resulting in weak associations with genetic loci.
  • 4 If resistant genotypes are identified, their widespread deployment in plantations might not provide satisfactory management of insect pests when the use of extensive monocultures is continued. In this paper, experiments are suggested that would explore the effectiveness of polycultures or chemotype mixtures with respect to ameliorating the damage of insects on plantation productivity. In addition, mitigating the effects of some insects on plantation productivity by maintaining vigour of fast‐growing eucalypts should be considered.
  相似文献   

14.
It is widely reported that plants emit volatile compounds when they are attacked by herbivorous insects, which may be used by parasitoids and predators to locate their host or prey. The study of herbivore-induced plant volatiles and their role in mediating interactions between plants, herbivores and their natural enemies have been primarily based on aboveground systems, generally ignoring the potential interactions between above and belowground infochemical- and food webs. This study examines whether herbivory by Delia radicum feeding on roots of Brassica nigra (black mustard) affects the behaviour of Cotesia glomerata , a parasitoid of the leaf herbivore Pieris brassicae , mediated by changes in plant volatiles. In a semi-field experiment with root-damaged and root-undamaged plants C. glomerata prefers to oviposit in hosts feeding on root-undamaged plants. In addition, in a flight-cage experiment the parasitoid also prefers to search for hosts on plants without root herbivores. Plants exposed to root herbivory were shown to emit a volatile blend characterized by high levels of specific sulphur volatile compounds, which are reported to be highly toxic for insects, combined with low levels of several compounds, i.e. beta-farnesene, reported to act as attractants for herbivorous and carnivorous insects. Our results provide evidence that the foraging behaviour of a parasitoid of an aboveground herbivore can be influenced by belowground herbivores through changes in the plant volatile blend. Such indirect interactions may have profound consequences for the evolution of host selection behaviour in parasitoids, and may play an important role in the structuring and functioning of communities.  相似文献   

15.
Trees are large organisms that structure forest ecosystems by providing an environment for an enormous diversity of animal, microbial and plant species. As these species use trees as their common hosts, many are likely to interact with each other directly or indirectly. From studies on herbaceous plant species we know that microbes can affect the interaction of plants with herbivorous insects, for example via changes in plant metabolite profiles. The consequences of fungal colonization for tree-insect interactions are, however, barely known, despite the importance of these ecological communities. In this review we explore the interaction of leaf-inhabiting pathogenic and endophytic fungi with trees and the consequences for tree-living insect herbivores. We discuss molecular, physiological, chemical, biochemical and ecological aspects of tree-fungus interactions and summarize the current knowledge on the direct and indirect effects of tree-inhabiting fungi on insect herbivores.Our mechanistic understanding of the tripartite interaction of trees with leaf-inhabiting fungi and insect herbivores is still in its infancy. We are currently facing substantial drawbacks in experimental methodology that prevent us from revealing the effect of one single fungal species on a particular insect herbivore species and vice versa. Future studies applying a versatile toolbox of modern molecular, chemical analytical and ecological techniques in combined laboratory and field experiments will unequivocally lead to a better understanding of fungus-tree-insect interactions.  相似文献   

16.
Symbiotic bacteria in herbivorous insects can have strong beneficial impacts on their host's survival, including conferring resistance to natural enemies such as parasitoid wasps or pathogens, while also imposing energetic costs on the host, resulting in cost‐benefit trade‐offs. Whether these trade‐offs favour the hosting of symbionts depends on the growth environment of the herbivore. Long‐term experimental grassland studies have shown that increasing plant species richness leads to an increased diversity of associated herbivores and their natural enemies. Such a change in natural enemy diversity, related to changes in plant diversity, could also drive changes in the community of symbionts hosted by the herbivorous insects. Aphids are one model system for studying symbionts in insects, and effects of host‐plant species and diversity on aphid‐symbiont interactions have been documented. Yet, we still understand little of the mechanisms underlying such effects. We review the current state of knowledge of how biodiversity can impact aphid‐symbiont communities and the underlying drivers. Then, we discuss this in the framework of sustainable agriculture, where increased plant biodiversity, in the form of wildflower strips, is used to recruit natural enemies to crop fields for their pest control services. Although aphid symbionts have the potential to reduce biological control effectiveness through conferring protection for the host insect, we discuss how increasing plant and natural enemy biodiversity can mitigate these effects and identify future research opportunities. Understanding how to promote beneficial interactions in ecological systems can help in the development of more sustainable agricultural management strategies.  相似文献   

17.
The value of healthy forest ecosystems is well known and trees in these systems form symbioses with a variety of living organisms. This review focuses on literature pertaining to the potential interactions of arboreal yeast endophytes with trees and their associated insects. Although very little is known about the symbioses of arboreal yeast endophytes, indications are that some of these unicellular fungi produce plant-growth promoting phytohormones, while others are antagonistic towards phytopathogens or are capable of producing pheromones that affect the behavior of insect herbivores. However, more research needs to be conducted to fully understand the role of arboreal yeast endophytes in ecosystem processes.  相似文献   

18.
昆虫共生微生物在病虫害和疾病控制上的应用前景   总被引:2,自引:0,他引:2  
魏舸  白亮  曲爽  王四宝 《微生物学报》2018,58(6):1090-1102
昆虫与微生物之间的互利共生关系是自然界中一种常见的互作形式。昆虫的种类丰富多样并且在自然界中分布广泛,在一定程度上得益于共生微生物的帮助。随着生物技术的不断发展,越来越多的共生微生物和互利共生模式得以发现并深入研究。微生物不仅能够为昆虫的生长发育提供营养,还能合成很多生物活性物质、调节宿主的免疫、对抗捕食者和抵御病原微生物感染,成为宿主昆虫健康和适应的守护者。鉴于共生微生物与昆虫生理生态的密切联系,以及昆虫对人类经济与健康的重要影响,利用共生微生物对昆虫及虫媒病进行生物控制已经成为一个热点研究方向,并展现了良好的应用前景。本文对昆虫共生微生物的多样性、生物学功能、与宿主相互作用机制及其在病虫害和虫媒病防治中的研究进展进行综述和展望。  相似文献   

19.
Plants produce a high diversity of natural products or secondary metabolites which are important for the communication of plants with other organisms. A prominent function is the protection against herbivores and/or microbial pathogens. Some natural products are also involved in defence against abiotic stress, e.g. UV-B exposure. Many of the secondary metabolites have interesting biological properties and quite a number are of medicinal importance. Because the production of the valuable natural products, such as the anticancer drugs paclitaxel, vinblastine or camptothecin in plants is a costly process, biotechnological alternatives to produce these alkaloids more economically become increasingly important. This review provides an overview of the state of art to produce alkaloids in recombinant microorganisms, such as bacteria or yeast. Some progress has been made in metabolic engineering usually employing a single recombinant alkaloid gene. More importantly, for benzylisoquinoline, monoterpene indole and diterpene alkaloids (taxanes) as well as some terpenoids and phenolics the proof of concept for production of complex alkaloids in recombinant Escherichia coli and yeast has already been achieved. In a long-term perspective, it will probably be possible to generate gene cassettes for complete pathways, which could then be used for production of valuable natural products in bioreactors or for metabolic engineering of crop plants. This will improve their resistance against herbivores and/or microbial pathogens.  相似文献   

20.
刘媛  王浩  王志鹏  陈利民  王亚如  侯有明 《昆虫学报》2021,64(12):1465-1477
内共生菌(endosymbionts)与其昆虫宿主的共生关系是普遍存在的,它们彼此相互依赖、相互影响、协同进化。近年来,关于昆虫内共生菌的研究多以半翅目(Hemiptera)和双翅目(Diptera)昆虫为主,但数量不断增加的研究表明鳞翅目(Lepidoptera)昆虫与其体内共生菌的互作模式和机制也正在受到越来越多的关注。鳞翅目昆虫种类多,分布广,主要作为植食者、传粉者在生态系统中发挥作用,而其绝大部分幼虫会对农林业生产造成巨大经济损失。鳞翅目昆虫体内共生菌群落多样性相对较低,主要以次生共生菌Wolbachia为主,少数也感染有Spiroplasma,Arsenophonus及Rickettsia。它们常呈严格的母系垂直传播,也会发生一定比例的水平传播,在宿主的生长发育、生殖调控、环境适应、遗传进化方面发挥重要作用。目前一般采用诊断性聚合酶链反应、高通量扩增子测序、宏基因组测序等方法检测内共生菌。但鳞翅目昆虫内共生菌研究领域存在一些难点,包括:大多数内共生菌无法离体培养;丰度较低的内共生菌的生物学功能难以确定。基于鳞翅目昆虫内共生菌的分布及该领域的难点,建议未来的研究重点应放在次生共生菌及其生物学功能上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号