首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Bromobenzene causes hepatic and extrahepatic toxicity in rats. Toxicity is related to the presence of covalently bound material in these tissues. A major bromobenzene metabolite, p-bromophenol, has been shown to give rise to covalently bound material in liver, lung and kidney in vivo, but is not toxic. p-Bromophenol is formed from bromobenzene in liver, lung and kidney microsomes and is subsequently metabolized to 4-bromocatechol and covalently bound material. Bromobenzene-3, 4-oxide generated in situ by liver microsomes, is detoxified by kidney, liver and lung cytosol. The results suggest that the kidney toxicity caused by bromobenzene is probably not mediated by either bromobenzene-3, 4-oxide or the reactive metabolites of p-bromophenol. In contrast, bromobenzene-3, 4-oxide may play a role in the lung toxicity observed after bromobenzene administration. However, the covalently bound material found in extrahepatic tissues may be derived from both bromobenzene-3, 4-oxide or the reactive metabolites of p-bromophenol, which may be formed directly by these tissues or transported there from the liver.  相似文献   

2.
Hepatocytes freshly isolated from diethylmaleate-treated rats exhibited a markedly decreased concentration of reduced glutathione (GSH) which increased to the level present in hepatocytes from nontreated rats upon incubation in a complete medium. When bromobenzene was present in the medium, however, this increase in GSH concentration upon incubation was reversed and a further decrease occurred that resulted in GSH depletion and cell death. This was prevented by metyrapone, an inhibitor of the cytochrome P-450-linked metabolism of bromobenzene. Bromobenzene metabolism in hepatocytes was accompanied by a fraction of metabolites covalently binding to cellular proteins. The size of this fraction, relative to the amount of total metabolites, was increased in hepatocytes isolated from diethylmaleate-treated rats and in hepatocytes from phenobarbital-treated rats incubated with bromobenzene in the presence of 1,2-epoxy-3,3,3-trichloropropane, an inhibitor of microsomal epoxide hydrase which, however, also acted as a GSH-depleting agent. In addition, the metabolism of bromobenzene by hepatocytes was associated with a marked decrease in various coenzyme levels, including coenzyme A, NAD(H), and NADP(H). Cysteine and cysteamine inhibited the formation of protein-bound metabolites of bromobenzene in microsomes, but did not prevent bromobenzene toxicity in hepatocytes when added at higher concentrations to the incubation medium (containing 0.4 mm cysteine). Methionine, on the other hand, did not cause a significant effect on bromobenzene metabolism in microsomes and prevented toxicity in hepatocytes, presumably by stimulating GSH synthesis and thereby decreasing the amount of reactive metabolites available for interaction with other cellular nucleophiles. It is concluded that, in contrast to hepatocytes with normal levels of GSH, hepatocytes from diethylmaleate-treated rats were sensitive to bromobenzene toxicity under our incubation conditions. In this system, bromobenzene metabolism led to GSH depletion and was associated with a progressive decrease in coenzyme A and nicotinamide nucleotide levels and a moderate increase in the formation of metabolites covalently bound to protein. Methionine was a potent protective agent which probably acted by enhanced GSH synthesis via the formation of cystathionine.  相似文献   

3.
The effect of a cysteine prodrug, L-2-oxothiazolidine-4-carboxylic acid (OTCA), on certain aspects of the metabolism and toxicity of bromobenzene administered acutely to mice was investigated by (i) characterizing the influence of OTCA on the metabolic profile of low and high bromobenzene dose at 0-6, 6-12, and 12-24 h, (ii) determining the effective doses range and administration time for OTCA, as well as the optimum period for urine sampling; and (iii) measuring the efficacy of OTCA for protection against bromobenzene induced toxicity. Coadministration of OTCA and bromobenzene enhanced the urinary excretion of mercapturic acid and phenolic metabolites, during 6-12 h, by approximately 152 and 193%, respectively. Maximum efficacy was observed when OTCA (16.0 mmol/kg) was administered concomitantly with bromobenzene (4.0 mmol/kg). Finally, OTCA administration was found to afford substantial protection against elevation of plasma transaminases used as indices of bromobenzene-induced hepatotoxicity. N-acetylcysteine, another cysteine prodrug, had essentially similar effects on the metabolism and toxicity of bromobenzene. Thus, administration of cysteine prodrugs enhances the urinary excretion of several metabolites of bromobenzene and affords protection against bromobenzene-induced hepatotoxicity.  相似文献   

4.
A hepatotoxic dose of bromobenzene (3 mmoles/kg) decreases hepatic glutathione concentration in rats by approximately 80% within 5 hr following ip injection. A major bromobenzene metabolite, p-bromophenol at a similar dose did not significantly alter hepatic glutathione levels compared to controls. Twenty four hr after administration, serum glutamate pyruvate transaminase (SGPT) levels were significantly increased by bromobenzene but not by p-bromophenol. After 14C-bromobenzene administration, a significant amount of covalently bound radiolabel was detected in liver, kidney and small intestine. A small amount of covalently bound radiolabel was also detected in the lung. After a similar dose of 14C-bromophenol, covalently bound radiolabel was found in liver (62% of the amount detected with 14C-bromobenzene) and smaller amounts were detected in kidney, small intestine and lung. These data are consistent with the view that the hepatotoxity and glutathione depleting ability of bromobenzene are mediated mainly by bromobenzene-3, 4-oxide rather than by chemically reactive metabolites of p-bromophenol derived from bromobenzene. Covalently bound radiolabel from 14C-bromobenzene, however, may be derived from both bromobenzene-3, 4-oxide and the nontoxic reactive metabolites of p-bromophenol.  相似文献   

5.
In an increasing number of cases, a deeper understanding of the biochemical basis for idiosyncratic adverse drug reactions (IADRs) has aided to replace a vague perception of a chemical class effect with a sharper picture of individual molecular peculiarity. Considering that IADRs are too complex to duplicate in a test tube, and their idiosyncratic nature precludes prospective clinical studies, it is currently impossible to predict which new drugs will be associated with a significant incidence of toxicity. Because it is now widely appreciated that reactive metabolites, as opposed to the parent molecules from which they are derived, are responsible for the pathogenesis of some IADRs, the propensity of drug candidates to form reactive metabolites is generally considered a liability. Procedures have been implemented to monitor reactive‐metabolite formation in discovery with the ultimate goal of eliminating or minimizing the liability via rational structural modification of the problematic chemical series. While such mechanistic studies have provided retrospective insight into the metabolic pathways which lead to reactive metabolite formation with toxic compounds, their ability to accurately predict the IADR potential of new drug candidates has been challenged. There are several instances of drugs that form reactive metabolites, but only a fraction thereof cause toxicity. This review article will outline current approaches to evaluate bioactivation potential of new compounds with particular emphasis on the advantages and limitation of these assays. Plausible reason(s) for the excellent safety record of certain drugs susceptible to bioactivation will also be explored and should provide valuable guidance in the use of reactive‐metabolite assessments when nominating drug candidates for development.  相似文献   

6.
The sensitive and specific detection of adducts derived from reactive intermediates during discovery metabolite profiling has been made feasible by advances in LC-MS/MS instrumentation. Many companies employ screens with nucleophilic trapping agents as a routine part of early screening efforts. Although certainly not as straightforward as initial adduct detection, the positives in the profiling experiment can be followed-up with determination of exact adduct structure. This information feeds naturally into drug design efforts as the structural motifs responsible for reactive metabolite formation can be altered to reduce the property. While the process of generation of reactive metabolite data has become more straightforward, the conversion of that data into an optimization paradigm remains challenging. Recent studies have shown a very loose correlation between extent of reactive metabolite formation and observed toxicity, so setting stringent criteria likely leads to discarding compounds that would not have problems. On the other hand, the central role of reactive metabolites in most accepted mechanisms of drug-induced toxicity points to the fact that there is value in minimizing the property. Decision making based on information on reactive metabolite formation remains a difficult process in all phases of drug discovery and development. Decisions on compounds in discovery can be made based on a fixed threshold value or relative to a reference point within a chemical series, but should be made with a firm understanding of the limitation of the data.  相似文献   

7.
Herbal bioactivation: the good, the bad and the ugly   总被引:14,自引:0,他引:14  
Zhou S  Koh HL  Gao Y  Gong ZY  Lee EJ 《Life sciences》2004,74(8):935-968
It has been well established that the formation of reactive metabolites of drugs is associated with drug toxicity. Similarly, there are accumulating data suggesting the role of the formation of reactive metabolites/intermediates through bioactivation in herbal toxicity and carcinogenicity. It has been hypothesized that the resultant reactive metabolites following herbal bioactivation covalently bind to cellular proteins and DNA, leading to toxicity via multiple mechanisms such as direct cytotoxicity, oncogene activation, and hypersensitivity reactions. This is exemplified by aristolochic acids present in Aristolochia spp, undergoing reduction of the nitro group by hepatic cytochrome P450 (CYP1A1/2) or peroxidases in extrahepatic tissues to reactive cyclic nitrenium ion. The latter was capable of reacting with DNA and proteins, resulting in activation of H-ras oncogene, gene mutation and finally carcinogenesis. Other examples are pulegone present in essential oils from many mint species; and teucrin A, a diterpenoid found in germander (Teuchrium chamaedrys) used as an adjuvant to slimming diets. Extensive pulegone metabolism generated p-cresol that was a glutathione depletory, and the furan ring of the diterpenoids in germander was oxidized by CYP3A4 to reactive epoxide which reacts with proteins such as CYP3A and epoxide hydrolase. On the other hand, some herbal/dietary constituents were shown to form reactive intermediates capable of irreversibly inhibiting various CYPs. The resultant metabolites lead to CYP inactivation by chemical modification of the heme, the apoprotein, or both as a result of covalent binding of modified heme to the apoprotein. Some examples include bergamottin, a furanocoumarin of grapefruit juice; capsaicin from chili peppers; glabridin, an isoflavan from licorice root; isothiocyanates found in all cruciferous vegetables; oleuropein rich in olive oil; dially sulfone found in garlic; and resveratrol, a constituent of red wine. CYPs have been known to metabolize more than 95% therapeutic drugs and activate a number of procarcinogens as well. Therefore, mechanism-based inhibition of CYPs may provide an explanation for some reported herb-drug interactions and chemopreventive activity of herbs. Due to the wide use and easy availability of herbal medicines, there is increasing concern about herbal toxicity. The safety and quality of herbal medicine should be ensured through greater research, pharmacovigilance, greater regulatory control and better communication between patients and health professionals.  相似文献   

8.
Rat liver microsomes and isolated rat hepatocytes metabolized bromobenzene to watersoluble and protein-bound metabolites. The latter fraction—which normally accounted for 2–5% of the total products—was slightly increased when 1,2-epoxy-3,3,3-trichloropropane, an inhibitor of microsomal epoxide hydrase, was added to the microsomal incubate. The presence of reduced glutathione (GSH), on the other hand, caused an almost complete inhibition of the formation of protein-bound metabolites from bromobenzene in microsomes. The rates of bromobenzene metabolism were similar in liver microsomes and hepatocytes, and increased severalfold after phenobarbital pretreatment of the rats. Metyrapone and SKF 525-A were inhibitory in both systems. Bromobenzene metabolism in hepatocytes isolated from phenobarbital-treated rats was associated with a rapid and marked decrease in the level of intracellular GSH. When the cells were incubated in a complete medium, however, the decrease in GSH leveled off at about 40% of the original concentration and there was no evidence of any accelerated rate of cell death even when the incubation with bromobenzene was prolonged to 10 h. This was most probably due to resynthesis of GSH by the hepatocytes, which partly compensated for the loss of this thiol associated with bromobenzene metabolism. Accordingly, in a deficient medium (lacking amino acids), the cytotoxic effect of bromobenzene metabolism was pronounced—less than 5% of the zerotime level of GSH and only 25% cell viability remaining after 5 h of incubation. It is concluded that the intracellular level of GSH is of major importance in regard to the cytotoxic effect of bromobenzene metabolism and that hepatocytes incubated in a complete medium are protected against toxicity by their ability to resynthesize this thiol.  相似文献   

9.
Paraquat, a cationic herbicide, produces degenerative lesions in the lung and in the nervous system after systemic administration to man and animals. Many cases of acute poisoning and death have been reported over the past few decades. Although a definitive mechanism of toxicity of paraquat has not been delineated, a cyclic single electron reduction/oxidation is a critical mechanistic event. The redox cycling of paraquat has two potentially important consequences relevant to the development of toxicity: the generation of the superoxide anion, which can lead to the formation of more toxic reactive oxygen species which are highly reactive to cellular macromolecules; and the oxidation of reducing equivalents (e.g., NADPH, reduced glutathione), which results in the disruption of important NADPH-requiring biochemical processes necessary for normal cell function. Nitric oxide is an important signaling molecule that reacts with superoxide derived from the paraquat redox cycle, to form the potent oxidant peroxynitrite, which causes serious cell damage. Although nitric oxide has been involved in the mechanism of paraquat-mediated toxicity, the role of nitric oxide has been controversial as both protective and harmful effects have been described. The present review summarizes recent findings in the field and describes new knowledge on the role of nitric oxide in the paraquat-mediated toxicity.  相似文献   

10.
Glutathione plays an important role as not only a scavenger of reactive oxygen species but also in the conjugation or detoxification of electrophilic reactive metabolites, which has been thought to be one of the causes for idiosyncratic drug toxicity (IDT). Therefore, toxic responses to the reactive metabolites have been expected to be expressed more strongly in a glutathione-depleted condition. In the present study, we attempted to establish an in vitro cytotoxicity assay method to evaluate the toxicity of the reactive metabolite using rat primary cultured hepatocytes with cellular glutathione depletion by l-buthionine-S,R-sulfoximine. Also, we investigated whether the IDT risk is predictable by comparing the cytotoxic sensitivity between glutathione-depleted hepatocytes and untreated hepatocytes. Consequently, 10 drugs of 42 approved drugs, which were classified into 4 IDT categories (Withdrawn, Black box warning, Warning, and Safe), demonstrated higher cytotoxic sensitivity in the glutathione-depleted hepatocytes. Furthermore, a correlation was observed between the incidence of drugs with higher cytotoxic sensitivity in the glutathione-depleted hepatocytes and the IDT risk. The incidence was 50% in the Withdrawn category, 38% in the Black box warning category, 22% in the Warning category, and 8% in the Safe category. These results suggest that the IDT risk of some drugs may be predicted by comparing the cytotoxic sensitivity between them. Additionally, this method may be useful as a screening in the early stage of drug development where leads/candidates are optimized.  相似文献   

11.
Glutathione (GSH) plays a major role in cytoprotection, acting as a nucleophile trap for reactive species derived from xenobiotics. This has led to the development of an assay for the detection of reactive species generated by liver microsomal metabolism of xenobiotics. This assay has been used extensively to study reactive metabolites which initiate toxicity through a direct (non-immunological) mechanism, but there are few data on its ability to detect reactive metabolites that initiate toxicity through neo-antigen formation, or to detect xenobiotics that cause GSH loss by oxidation mediated by a redox cycling process. Accordingly, the ability of rat and human liver microsomes to metabolize xenobiotics to GSH-depleting metabolites has been investigated further. Of the five neo-antigen-forming xenobiotics tested, four (amodiaquine, phenobarbitone, procainamide, and sulphanilamide) displayed GSH reactivity that was either dependent or independent (amodiaquine) on metabolism. The other neo-antigen-forming xenobiotic (carbamazepine) was inactive in all microsomal samples tested. Four quinones believed to exert toxcity through arylation (1,4-benzoquinone) and/or redox cycling (duroquinone, menadione, mitomycin c) displayed GSH reactivity, as did nitrofurantoin and diquat, two other redox cycling xenobiotics. Induction of the mixed function oxidase system with Aroclor afforded little advantage when using rat liver microsomes, whilst there was considerable inter-individual variation in the ability of human liver microsomes to mediate metabolism-dependent GSH depletion. It is concluded that the liver microsome GSH depletion assay may be of general utility as a screen for a number of xenobiotic-derived reactive species.  相似文献   

12.
Glutathione (GSH) plays a major role in cytoprotection, acting as a nucleophile trap for reactive species derived from xenobiotics. This has led to the development of an assay for the detection of reactive species generated by liver microsomal metabolism of xenobiotics. This assay has been used extensively to study reactive metabolites which initiate toxicity through a direct (non-immunological) mechanism, but there are few data on its ability to detect reactive metabolites that initiate toxicity through neo-antigen formation, or to detect xenobiotics that cause GSH loss by oxidation mediated by a redox cycling process. Accordingly, the ability of rat and human liver microsomes to metabolize xenobiotics to GSH-depleting metabolites has been investigated further. Of the five neo-antigen-forming xenobiotics tested, four (amodiaquine, phenobarbitone, procainamide, and sulphanilamide) displayed GSH reactivity that was either dependent or independent (amodiaquine) on metabolism. The other neo-antigen-forming xenobiotic (carbamazepine) was inactive in all microsomal samples tested. Four quinones believed to exert toxcity through arylation (1,4-benzoquinone) and/or redox cycling (duroquinone, menadione, mitomycin c) displayed GSH reactivity, as did nitrofurantoin and diquat, two other redox cycling xenobiotics. Induction of the mixed function oxidase system with Aroclor afforded little advantage when using rat liver microsomes, whilst there was considerable inter-individual variation in the ability of human liver microsomes to mediate metabolism-dependent GSH depletion. It is concluded that the liver microsome GSH depletion assay may be of general utility as a screen for a number of xenobiotic-derived reactive species.  相似文献   

13.
Many crops cultivated in mining areas have been found to accumulate high levels of antimony (Sb) in their edible parts, thereby causing potential risks to human health. Understanding the behaviours of Sb in plants is important, particularly the mechanisms involved in its uptake, toxicity, detoxification and accumulation in crops. Many factors affect the uptake of Sb in plants, including water management, Sb speciation and some coexisting ions in soils. At present, the mechanisms of Sb uptake by plants have not been fully elucidated so far. The uptake of Sb has been proposed to occur mainly through the passive pathway; however, it is possible that an active pathway exists as well. Antimony can damage plants, including growth retardation, inhibition of photosynthesis, decreases in the uptake of certain essential elements and decreases in the synthesis of certain metabolites. Plants often have defence mechanisms to alleviate Sb toxicity; e.g., a highly efficient antioxidative system and the ability to immobilise Sb in the cell wall or compartmentalise Sb in the cytosol. Such mechanisms have been widely reported in Sb-tolerant and Sb-accumulating plants. In view of the above knowledge, several questions remain: (1) What is the actual uptake pathway of Sb in plants? (2) Does Sb participate in redox reactions within plants? (3) What is the role of metabolic reactions of Sb in Sb toxicity to plants? (4) Can Sb be methylated, and if so, how? (5) How does Sb induce bursts of reactive oxidative species (ROS)?  相似文献   

14.
For fasiglifam (TAK875) and its metabolites the substance‐specific mechanisms of liver toxicity were studied. Metabolism studies were run to identify a putatively reactive acyl glucuronide metabolite. In vitro cytotoxicity and caspase 3/7 activation were assessed in primary human and dog hepatocytes in 2D and 3D cell culture. Involvement of glutathione (GSH) detoxication system in mediating cytotoxicity was determined by assessing potentiation of cytotoxicity in a GSH depleted in vitro system. In addition, potential mitochondrial liabilities of the compounds were assessed in a whole‐cell mitochondrial functional assay. Fasiglifam showed moderate cytotoxicity in human primary hepatocytes in the classical 2D cytotoxicity assays and also in the complex 3D human liver microtissue (hLiMT) after short‐term treatment (24 hours or 48 hours) with TC50 values of 56 to 68 µM (adenosine triphosphate endpoint). The long‐term treatment for 14 days in the hLiMT resulted in a slight TC50 shift over time of 2.7/3.6 fold lower vs 24‐hour treatment indicating possibly a higher risk for cytotoxicity during long‐term treatment. Cellular GSH depletion and impairment of mitochondrial function by TAK875 and its metabolites evaluated by Seahorse assay could not be found being involved in DILI reported for TAK875. The acyl glucuronide metabolites of TAK875 have been finally identified to be the dominant reason for liver toxicity.  相似文献   

15.
Bromobenzene is a well-known environmental toxin which causes liver and kidney damage through CYP450-mediated bio-activation to generate reactive metabolites and, consequently, oxidative stress. The present study aimed to evaluate the possible protective role of withaferin A against bromobenzene-induced liver and kidney damage in mice. Withaferin A (10 mg/kg) was administered orally to the mice for 8 days before intragastric intubation of bromobenzene (10 mmol/kg). As results of this experiment, the levels of liver and kidney functional markers, lipid peroxidation, and cytokines (TNF-α and IL-1β) presented an increase and there was a decrease in anti-oxidant activity in the bromobenzene-treated group of mice. Pre-treatment with withaferin A not only significantly decreased the levels of liver and kidney functional markers and cytokines but also reduced oxidative stress, as evidenced by improved anti-oxidant status. In addition, the mitochondrial dysfunction shown through the decrease in the activities of mitochondrial enzymes and imbalance in the Bax/Bcl-2 expression in the livers and kidneys of bromobenzene-treated mice was effectively prevented by pre-administration of withaferin A. These results validated our conviction that bromobenzene caused liver and kidney damage via mitochondrial pathway and withaferin A provided significant protection against it. Thus, withaferin A may have possible usage in clinical liver and kidney diseases in which oxidative stress and mitochondrial dysfunction may be existent.  相似文献   

16.
We present here a definitive metabonomic analysis in order to detect novel biomarker and metabolite information, implicating specific putative protein targets in the toxicological mechanism of bromobenzene-induced centrilobular hepatic necrosis. Male Han-Wistar rats were dosed with bromobenzene (1.5 g/kg, n = 25) and blood plasma, urine and liver samples were collected for NMR and magic angle spinning (MAS) NMR spectroscopy at various time-points postdose, with histopathology and clinical pathology performed in parallel. Liver samples were analyzed by 600 MHz 1H MAS NMR techniques and the resultant spectra were correlated to sequential 1H NMR measurements in urine and blood plasma using pattern recognition methods. 1D 1H NMR spectra were data-reduced and analyzed using principal components analysis (PCA) to show the time-dependent biochemical variations induced by bromobenzene toxicity. In addition to a holistic view of the effect of hepatic toxicity on the metabolome, a number of putative protein targets of bromobenzene and its metabolites were identified including those enzymes of the glutathione cycle, exemplified by the presence of a novel biomarker, 5-oxoproline, in liver tissue, blood plasma, and urine. As such, this work establishes the importance of metabonomics technology in resolving the mechanistic complexity of drug toxicity as well as the benefits of frontloading this approach in drug safety evaluation and biomarker discovery.  相似文献   

17.
Urinary metabolites of bromobenzene in rats were examined. Isomeric bromo(methylthio)benzenes were identified by gas chromatographic and mass spectral comparison with authentic samples. The presence of solvent-unextractable precursors which produce the methylthio metabolites upon alkali-treatment was also revealed. The amounts of bromo(methylthio)benzenes and their precursors were not increased when rats were given a higher amount of bromobenzene or pretreated with diethyl maleate. These results suggest that the known covalent binding of bromobenzene to liver tissue is not responsible for the formation of these metabolites.  相似文献   

18.
Gossypol is a polyphenolic secondary metabolite produced by cotton plants, which is toxic to many organisms. Gossypol's aldehyde groups are especially reactive, forming Schiff bases with amino acids of proteins and cross-linking them, inhibiting enzyme activities and contributing to toxicity. Very little is known about gossypol's mode of action and its detoxification in cotton-feeding insects that can tolerate certain concentrations of this compound. Here, we tested the toxicity of gossypol and a gossypol derivative lacking free aldehyde groups (SB-gossypol) toward Helicoverpa armigera and Heliothis virescens, two important pests on cotton plants. Larval feeding studies with these two species on artificial diet supplemented with gossypol or SB-gossypol revealed no detectable toxicity of gossypol, when the aldehyde groups were absent. A cytochrome P450 enzyme, CYP6AE14, is upregulated in H. armigera feeding on gossypol, and has been claimed to directly detoxify gossypol. However, using in vitro assays with heterologously expressed CYP6AE14, no metabolites of gossypol were detected, and further studies suggest that gossypol is not a direct substrate of CYP6AE14. Furthermore, larvae feeding on many other plant toxins also upregulate CYP6AE14. Our data demonstrate that the aldehyde groups are critical for the toxicity of gossypol when ingested by H. armigera and H. virescens larvae, and suggest that CYP6AE14 is not directly involved in gossypol metabolism, but may play a role in the general stress response of H. armigera larvae toward plant toxins.  相似文献   

19.
Metabolic activation of inert chemicals to electrophilic intermediates has been correlated with the incidence and severity of cytotoxicity. The current studies have identified several proteins adducted by reactive metabolites of the lung toxicant, naphthalene. Proteins isolated from microsomal incubations of (14)C-naphthalene were separated by 2-DE, proteins were blotted to PVDF membranes and radioactive proteins were localized by storage phosphor analysis. Adducted proteins were isolated from complimentary gels and identified by peptide mass mapping. A total of 18 adducted proteins were identified including: protein disulfide isomerase precursor, ER-60 protease, alpha actin, mouse urinary proteins, and cytochrome b5 reductase. In supernatant fractions, protein disulfide isomerase, heat shock protein 70, and alpha-actin were key proteins to which reactive naphthalene metabolites were bound. All of the proteins adducted, with the exception of cytochrome b5 reductase were sulfhydryl rich. Although several of the proteins found to be adducted in these studies have also been shown to be adducted by other electrophiles, several others have not been reported as common targets of reactive metabolites. These studies provide a basis for both in situ and in vivo work designed to follow the fate and formation of reactive metabolite protein adducts.  相似文献   

20.
Short-chain halogenated aliphatics, such as chlorinated ethenes, constitute a large group of priority pollutants. This paper gives an overview on the chemical and physical properties of chlorinated aliphatics that are critical in determining their toxicological characteristics and recalcitrance to biodegradation. The toxic effects and principle metabolic pathways of halogenated ethenes in mammals are briefly discussed. Furthermore, the bacterial degradation of halogenated compounds is reviewed and it is described how product toxicity may explain why most chlorinated ethenes are only degraded cometabolically under aerobic conditions. The cometabolic degradation of chlorinated ethenes by oxygenase-producing microorganisms has been extensively studied. The physiology and bioremediation potential of methanotrophs has been well characterized and an overview of the available data on these organisms is presented. The sensitivity of methanotrophs to product toxicity is a major limitation for the transformation of chlorinated ethenes by these organisms. Most toxic effects arise from the inability to detoxify the reactive chlorinated epoxyethanes occurring as primary metabolites. Therefore, the last part of this review focuses on the metabolic reactions and enzymes that are involved in the detoxification of epoxides in mammals. A key role is played by glutathione S-transferases. Furthermore, an overview is presented on the current knowledge about bacterial enzymes involved in the metabolism of epoxides. Such enzymes might be useful for detoxifying chlorinated ethene epoxides and an example of a glutathione S-transferase with activity for dichloroepoxyethane is highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号