共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary One mutant of mitochondrial origin resistant to miconazole has been isolated and characterized in S. cerevisiae. The mutation is linked to the locus oli1, the structural gene for subunit 9 of ATPase on mitochondrial DNA. Miconazole inhibited the mitochondrial ATPase of the wild type while the enzyme of the resistant mutant was insensitive to this effect. Levels of ATP decreased to one-third of the control in the wild type in the presence of miconazole, while they were unaffected in the mutant.Abbreviations MNNG
N-methyl-N-nitrosoguanidine
- Mic s/Mic r
phenotypic sensitivity/resistance to miconazole
- M
1
R
mitochondrial locus conferring miconazole resistance
- rho +/rho -
grand/cytoplasmic petite
- rho o
cytoplasmic petite deleted of all mitochondrial DNA
- w +
mitochondrial locus conferring polarity of recombination 相似文献
2.
Iron is fundamental to many biological processes, but is also detrimental as it fosters the synthesis of destructive oxygen radicals. Recent experiments have increased our knowledge of the critical process of regulation of mitochondrial iron metabolism. A number of genes directly involved in iron homeostasis in this organelle have been identified. Intriguingly, a minor Hsp70 molecular chaperone of the mitochondrial matrix has been implicated as a player in this process as well. 相似文献
3.
The present study was undertaken to determine the effect of cadmium (Cd) on the antioxidant status of the yeast Saccharomyces cerevisiae. S. cerevisiae serves as a good eukaryotic model system for the study of the molecular mechanisms of oxidative stress. We investigated the adaptative response of S. cerevisiae exposed to Cd. Yeast cells could tolerate up to 100 microM Cd and an inhibition in the growth and viability was observed. Exposure of yeast cells to Cd showed an increase in malondialdehyde and glutathione. The activities of catalase, superoxide dismutase and glutathione peroxidase were also high in Cd-exposed cells. The incorporation of Cd led to significant increase in iron, zinc and inversely the calcium, copper levels were reduced. The results suggest that antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumably, these enzymes are essential for counteracting the pro-oxidant effects of Cd. 相似文献
6.
A gene (ORFB) from Streptomyces antibioticus (an oleandomycin producer) encoding a large, multifunctional polyketide synthase (PKS) was cloned and sequenced. Its product shows an internal duplication and a close similarity to the third subunit of the PKS involved in erythromycin biosynthesis by Saccharopolyspora erythraea, showing the equivalent nine active site domains in the same order along the polypeptide. An unusual feature of this ORF is the GC content of most of the sequence, which is surprisingly low, for a Streptomyces gene; the large number of codons with T in the third position is particularly striking. The last 800 by of the gene stand out as being normal in their GC content, this region corresponding almost exactly to the thioesterase domain of the gene and suggesting that this domain was a late addition to the PKS. Based on the high degree of similarity between the ORFB product and the third subunit of the erythromycin PKS and the occurrence nearby of a gene conferring oleandomycin resistance, it is possible that this gene might be involved in the biosynthesis of the oleandomycin lactone ring. 相似文献
7.
Free radicals or reactive oxygen species (ROS) are relatively short-lived and are difficult to measure directly; so indirect methods have been explored for measuring these transient species. One technique that has been developed using Escherichia coli and Saccharomyces cerevisiae systems, relies on a connection between elevated superoxide levels and the build-up of a high-spin form of iron (Fe(III)) that is detectable by electron paramagnetic resonance (EPR) spectroscopy at g?=?4.3. This form of iron is referred to as "free" iron. EPR signals at g?=?4.3 are commonly encountered in biological samples owing to mononuclear high-spin (S?=?5/2) Fe(III) ions in sites of low symmetry. Unincorporated iron in this study refers to this high-spin Fe(III) that is captured by desferrioxamine which is detected by EPR at g value of 4.3. Previously, we published an adaptation of Fe(III) EPR methodology that was developed for Caenorhabditis elegans, a multi-cellular organism. In the current study, we have systematically characterized various factors that modulate this unincorporated iron pool. Our results demonstrate that the unincorporated iron as monitored by Fe(III) EPR at g?=?4.3 increased under conditions that were known to elevate steady-state ROS levels in vivo, including: paraquat treatment, hydrogen peroxide exposure, heat shock treatment, or exposure to higher growth temperature. Besides the exogenous inducers of oxidative stress, physiological aging, which is associated with elevated ROS and ROS-mediated macromolecular damage, also caused a build-up of this iron. In addition, increased iron availability increased the unincorporated iron pool as well as generalized oxidative stress. Overall, unincorporated iron increased under conditions of oxidative stress with no change in total iron levels. However, when total iron levels increased in vivo, an increase in both the pool of unincorporated iron and oxidative stress was observed suggesting that the status of the unincorporated iron pool is linked to oxidative stress and iron levels. 相似文献
9.
酿酒酵母细胞在生长过程中会不断受到内外环境的氧化攻击。活性氧族物质的累积能够损害细胞中的脂质、DNA和蛋白质,从而会影响细胞的正常功能,严重者将造成细胞死亡。为了对抗氧化胁迫,酵母细胞在不断地适应过程中,进化出了较为完整的保护机制,呈现出多水平多层次的应激应答反应。细胞在非酶水平、蛋白质水平和基因水平上协同作用,共同完成了活性氧族物质的清除和胁迫信号的传递应答。本文对酵母细胞在氧化胁迫环境下的应答调控做了简要综述。 相似文献
10.
PurposeHyperglycemia causes abnormal accumulation of methylglyoxal (MGO) and concomitant DNA, protein glycation. These pathophysiological changes further leads to diabetic complications. Yeast Saccharomyces cerevisiae is one of the best model to study MGO-induced glycation modifications. The aim of the present study was to investigate the effect of MGO on protein, DNA glycation, and oxidative stress markers using S. cerevisiae as a system. MethodsSaccharomyces cerevisiae cells were incubated with 8 mM of MGO for 4 h and 24 h. After incubation, protein and DNA samples were isolated from the lysed cells. The samples were analyzed for various glycation (fructosamine, β-amyloid, free amino group, free thiol group, and hyperchromic shift analysis) and oxidative stress markers (total antioxidant potential, catalase, glutathione, and lipid peroxidation). ResultsMGO (8 mM) acted as a potent glycating agent, causing protein and DNA glycation in treated yeast cells. The glycation markers fructosamine and β-amyloid were significantly elevated when incubated for 4 h as compared to 24 h. Oxidative stress in the glycated yeast cells alleviated cellular antioxidant capacity and reduced the cell viability. ConclusionMGO caused significant glycation modifications of proteins and DNA in yeast cells. It also triggered increase in intracellular oxidative stress. MGO-induced protein, DNA glycation, and oxidative stress in S. cerevisiae indicate the suitability of the yeast model to study various biochemical pathways involved in diabetic complications and even conformational pathologies. 相似文献
11.
Bacteria use tight-binding, ferric-specific chelators called siderophores to acquire iron from the environment and from the host during infection; animals use proteins such as transferrin and ferritin to transport and store iron. Recently, candidate compounds that could serve endogenously as mammalian siderophore equivalents have been identified and characterized through associations with siderocalin, the only mammalian siderophore-binding protein currently known. Siderocalin, an antibacterial protein, acts by sequestering iron away from infecting bacteria as siderophore complexes. Candidate endogenous siderophores include compounds that only effectively transport iron as ternary complexes with siderocalin, explaining pleiotropic activities in normal cellular processes and specific disease states. 相似文献
12.
Nitric oxide is known to be a messenger in animals and plants. It may act either as a pro-oxidant or antioxidant. In the present work, the yeast Saccharomyces cerevisiae was treated under aerobic conditions with the nitric oxide donor, sodium nitroprusside (SNP), at concentrations of 1, 5 and 10 mM. The activities of antioxidant enzymes as well as concentrations of protein carbonyls and cellular thiols were measured. Yeast incubation with SNP increased the activities of catalase and superoxide dismutase. Cycloheximide, an inhibitor of translation, blocked SNP-induced catalase activation, but not SOD activation. Incubation with SNP increased the activity of peroxisomal catalase, whereas cytosolic catalase was not affected. SNP treatment inactivated aconitase in a dose-dependent manner. Surprisingly, in cells incubated with 1 mM SNP, the levels of low-molecular weight thiols were significantly higher, whereas the concentrations of protein carbonyl groups were lower than those in untreated cells. The incubation of yeast cells either with decomposed SNP or with SNP under anaerobic conditions did not result in SOD and catalase activation. It is suggested, that under aerobic conditions, the SNP effects are connected with induction of mild oxidative/nitrosative stress. 相似文献
13.
We have recently reported that red blood cells (RBC) promote T cell growth and survival by inhibiting activation-induced T cell death. In the present study, we have examined parameters of oxidative stress and intracellular iron in activated T cells and correlated these data with the expression of ferritin, heme oxygenase-1 (HO-1), and the transferrin receptor CD71. T cells growing in the presence of RBC had reduced levels of reactive oxygen species (ROS) and oxidatively modified proteins, suggesting that RBC efficiently counteracted ROS production on the activated T cells. Flow cytometry and immunodetection demonstrated that T cells dividing in the presence of RBC had increased levels of intracellular ferritin rich in L-subunits and HO-1 along with a downmodulation in CD71 expression. Finally, using the fluorescent iron indicator calcein and flow cytometry analysis, we were able to show that a relative amount of the labile iron pool (LIP) was upregulated in T cells growing in the presence of RBC. These findings are consistent with a typical response to iron overload. However, neither heme compounds nor ferric iron reproduced the levels of expansion and survival of T cells induced by intact RBC. Altogether, these data suggest that RBC inhibit apoptosis of activated T cells by a combination of ROS scavenging and upregulation of cytoprotective proteins such as ferritin and HO-1, which may counteract a possible toxic effect of the increased intracellular free iron. 相似文献
14.
Stress response and phosphorylation of heat shock proteins (HSPs) 60, 70 and 90 were studied in Trichinella nativa, T. nelsoni, T. pseudospiralis and T. spiralis larvae at 30-min intervals following exposure to 20, 100 and 200 mM H2O2. There was a time- and dose-dependent differential survival for the infective stage larvae (L1) of these four Trichinella species. Immunoblotting analysis revealed that constitutive Hsp60 and Hsp70, but not Hsp90, from test Trichinella species are constitutively phosphorylated on serine/threonine residues as they converted to forms with increased sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) mobility by treatment with alkaline phosphatase. After exposure to H2O2, while there was a time-related occurrence of the three HSPs with decreased SDS-PAGE mobility, these HSPs were insensitive to alkaline phosphatase except in the case of exposure to 20 mM H2O2 for Hsp60 from all Trichinella species and Hsp70 from T. spiralis and T. nelsoni. The synthesis of HSPs forms with decreased SDS-PAGE mobility is a susceptibility signal because the lower concentration of peroxide (20 mM) did not cause a decrease on HSPs SDS-PAGE mobility in T. spiralis and T. nelsoni, the two more resistant selected Trichinella species. 相似文献
15.
Sodium nitroprusside (SNP) and diethylenetriamine NONOate (DETA NONOate), were used as the source of exogenous NO to study the effect of NO upon germination of sorghum (Sorghum bicolor (L.) Moench) seeds through its possible interaction with iron. Modulation of cellular Fe status could be an important factor for the establishment of oxidative stress and the regulation of plant physiology. Fresh and dry weights of the embryonic axes were significantly increased in the presence of 0.1 mM SNP, as compared to control. Spin trapping EPR was used to assess the NO content in axes from control seeds after 24 h of imbibition (2.4+/-0.2 nmol NO g(-1) FW) and seeds exposed to 0.01, 0.1, and 1 mM SNP (3.1+/-0.3, 4.6+/-0.2, and 6.0+/-0.9 nmol NO g(-1) FW, respectively) and 1 mM DETA NONOate (6.2+/-0.6 nmol NO g(-1) FW). Incubation of seeds with 1 mM SNP protected against oxidative damage to lipids and maintained membrane integrity. The content of the deferoxamine-Fe (III) complex significantly increased in homogenates of axes excised from seeds incubated in the presence of 1 mM SNP or 1 mM DETA NONOate as compared to the control (19+/-2 nmol Fe g(-1) FW, 15.2+/-0.5 nmol Fe g(-1) FW, and 8+/-1 nmol Fe g(-1) FW, respectively), whereas total Fe content in the axes was not affected by the NO donor exposure. Data presented here provide experimental evidence to support the hypothesis that increased availability of NO drives not only protective effects to biomacromolecules, but to increasing the Fe availability for promoting cellular development as well. 相似文献
16.
The absence of the antioxidant enzyme Cu,Zn-superoxide dismutase (SOD1) is shown here to cause vacuolar fragmentation in Saccharomyces cerevisiae. Wild-type yeast have 1-3 large vacuoles whereas the sod1Delta yeast have as many as 50 smaller vacuoles. Evidence that this fragmentation is oxygen-mediated includes the findings that aerobically (but not anaerobically) grown sod1Delta yeast exhibit aberrant vacuoles and genetic suppressors of other oxygen-dependent sod1 null phenotypes rescue the vacuole defect. Surprisingly, iron also is implicated in the fragmentation process as iron addition exacerbates the sod1Delta vacuole defect while iron starvation ameliorates it. Because the vacuole is reported to be a site of iron storage and iron reacts avidly with reactive oxygen species to generate toxic side products, we propose that vacuole damage in sod1Delta cells arises from an elevation of iron-mediated oxidation within the vacuole or from elevated pools of "free" iron that may bind nonproductively to vacuolar ligands. Furthermore, additional pleiotropic phenotypes of sod1Delta cells (including increased sensitivity to pH, nutrient deprivation, and metals) may be secondary to vacuolar compromise. Our findings support the hypothesis that oxidative stress alters cellular iron homeostasis which in turn increases oxidative damage. Thus, our findings may have medical relevance as both oxidative stress and alterations in iron homeostasis have been implicated in diverse human disease processes. Our findings suggest that strategies to decrease intracellular iron may significantly reduce oxidatively induced cellular damage. 相似文献
|