首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A form of cytochrome P-450 which comigrates with cytochrome P-450LM4 (molecular weight, 55 000) on SDS-polyacrylamide gel was purified from liver microsomes of cholestyramine-treated rabbits. This form of cytochrome P-450 catalyzed the 7 alpha-hydroxylation of cholesterol with an activity of 37.5 pmol/min per nmol cytochrome P-450 in the reconstituted enzyme system containing cytochrome P-450 and NADPH-cytochrome P-450 reductase. The substrate specificity of this form of cytochrome P-450 was compared with cytochrome P-450LM4 isolated from phenobarbital- and beta-naphthoflavone-treated rabbit liver microsomes. The latter two isoenzymes do not catalyze 7 alpha-hydroxylation of cholesterol, but are more active in O-deethylation of 7-ethoxycoumarin and p-nitrophenetole. Ouchterlony double diffusion revealed cross-reactivity between anti-P-450LM4 (phenobarbital) IgG and cytochrome P-450 isolated from cholestyramine- or beta-naphthoflavone-treated rabbit liver microsomes. A two-dimensional iodinated tryptic peptide fingerprint indicated only minor structural differences among these three cytochrome P-450LM4 preparations.  相似文献   

2.
The isozymes 2 and 4 of rabbit microsomal cytochrome P-450 (LM2, LM4) have been studied by resonance Raman spectroscopy. Based on high quality spectra, a vibrational assignment of the porphyrin modes in the frequency range between 100-1700 cm-1 is presented for different ferric states of cytochrome P-450 LM2 and LM4. The resonance Raman spectra are interpreted in terms of the spin and ligation state of the heme iron and of heme-protein interactions. While in cytochrome P-450 LM2 the six-coordinated low-spin configuration is predominantly occupied, in the isozyme LM4 the five-coordinated high-spin form is the most stable state. The different stability of these two spin configurations in LM2 and LM4 can be attributed to the structures of the active sites. In the low-spin form of the isozymes LM4 the protein matrix forces the heme into a more rigid conformation than in LM2. These steric constraints are removed upon dissociation of the sixth ligand leading to a more flexible structure of the active site in the high-spin form of the isozyme LM4. The vibrational modes of the vinyl groups were found to be characteristic markers for the specific structures of the heme pockets in both isozymes. They also respond sensitively to type-I substrate binding. While in cytochrome P-450 LM4 the occupation of the substrate-binding pocket induces conformational changes of the vinyl groups, as reflected by frequency shifts of the vinyl modes, in the LM2 isozyme the ground-state conformation of these substituents remain unaffected, suggesting that the more flexible heme pocket can accommodate substrates without imposing steric constraints on the porphyrin. The resonance Raman technique makes structural changes visible which are induced by substrate binding in addition and independent of the changes associated with the shift of the spin state equilibrium: the high-spin states in the substrate-bound and substrate-free enzyme are structurally different. The formation of the inactive form, P-420, involves a severe structural rearrangement in the heme binding pocket leading to drastic changes of the vinyl group conformations. The conformational differences of the active sites in cytochromes P-450 LM2 and LM4 observed in this work contribute to the understanding of the structural basis accounting for substrate and product specificity of cytochrome P-450 isozymes.  相似文献   

3.
S L Wagner  W L Dean  R D Gray 《Biochemistry》1987,26(8):2343-2348
Hydroxylation of acetanilide catalyzed by purified cytochrome P-450LM4 and NADPH-cytochrome P-450 reductase was reconstituted with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). The optimum rate of production of 4-hydroxyacetanilide was observed between 3 and 7 mM CHAPS and was about half that with 0.05 mM dilauroylglyceryl-3-phosphocholine (di-12-GPC). At higher detergent concentrations, hydroxylase activity decreased until at 15-20 mM CHAPS the system was inactive. The effect of CHAPS on the state of aggregation of P-450LM4 and on interaction between the cytochrome and P-450 reductase alone and under turnover conditions was investigated by ultracentrifugation. At 4 mM CHAPS, P-450LM4 was hexameric to heptameric (Mr 369,000). Neither reductase nor reductase plus acetanilide and NADPH altered the state of P-450LM4 aggregation, suggesting that a stable 1:1 P-450/reductase complex did not form under turnover conditions. Replacing CHAPS with 0.05 mM di-12-GPC resulted in formation of heterogeneous P-450 oligomers (Mr greater than 480,000). At CHAPS concentrations where substrate hydroxylation did not occur (15 and 22 mM), P-450LM4 was shown by sedimentation equilibrium measurements to be dimeric and monomeric, respectively. P-450 reductase was shown to reduce monomeric P-450LM4 in the presence of NADPH. Thus, the dependence of hydroxylase activity on [CHAPS] may be related to the state of aggregation of the cytochrome. An apparent correlation between P-450 aggregation state and NADPH-supported hydroxylation was also observed with phenobarbital-inducible P-450LM2 in the presence of detergents [Dean, W.L., & Gray, R.D. (1982) J. Biol. Chem. 257, 14679-14685; Wagner, S.L., Dean, W.L., & Gray, R.D. (1984) J. Biol. Chem. 259, 2390-2395].  相似文献   

4.
Surface enhanced resonance Raman (SERR) spectroscopy has been used to study the vibrational spectra of the heme of purified rabbit liver cytochrome P-450 LM2 which was adsorbed on colloidal silver suspensions or on a silver electrode. Bases on a comparison with the resonance Raman (RR) spectra of the 'solute' species the high sensitivity of the SERR technique is demonstrated. Two different features were chosen in order to determine the structural and functional integrity of the adsorbed P-450. Both, substrate-induced spin state changes on the oxidized P-450 and the effect of the thiolate ligand on the oxidation state marker band v4 in the reduced P-450 could be observed in the SERR spectra of the adsorbed as well as in the RR spectra of the dissolved enzyme. These findings indicate that the protein structure near the substrate binding site and the coordination by thiolate are not affected by the interaction with the metal surface. Both structural elements are crucial for the function of P-450. Thus the elementary processes of the enzymatic action of P-450 can be investigated by this highly sensitive version of RR spectroscopy.  相似文献   

5.
The zwitterionic detergent 3-(3-cholamidopropyl)-dimethylammonio-1-propanesulfonate (CHAPS) supports reconstituted cyclohexane hydroxylase activity of cytochrome P-450LM2 and NADPH-cytochrome reductase purified from phenobarbital-induced rabbit liver. Maximum activity (approximately 50% of that with phospholipid) was observed at 2 mM CHAPS. Inhibition took place at higher CHAPS, until at 20 mM CHAPS, no cyclohexane hydroxylase activity was observed. There was little denaturation of the two enzymes under these conditions. At 2 mM CHAPS, P-450LM2 was pentameric (Mr = 250,000) and reductase was dimeric (Mr = 139,500) by sedimentation equilibrium. P-450 was monomeric in 20 mM CHAPS. In addition, a stable complex between the two enzymes was not detected under conditions of maximum activity, even in the presence of saturating substrate. This confirms our previous conclusion that a stable complex between cytochrome P-450LM2 and NADPH-cytochrome P-450 reductase is not a prerequisite for reconstituted xenobiotic hydroxylation (Dean, W. L., and Gray, R. D. (1982) J. Biol. Chem. 257, 14679-14685). Difference spectra of ferric P-450LM2 revealed that below 5 mM CHAPS, the high spin form of the cytochrome was slightly stabilized, while higher CHAPS levels stabilized the low spin form. Monomeric P-450LM2 formed with 20 mM CHAPS catalyzed the hydroxylation of toluene by cumene hydroperoxide. Thus, the reason that monomeric cytochrome P-450LM2 was inactive in NADPH-supported hydroxylation may either be because the bound detergent blocked productive interaction of the cytochrome with reductase or the monomer may be intrinsically incapable of interaction with reductase.  相似文献   

6.
Procedures are described for the isolation of two forms of rabbit liver microsomal liver microsomal cytochrome P-450 (P-450LM) in homogeneous state. They are designated by their relative electrophoretic mobilities on polyacrylamide gel in the presence of sodium dodecyl sulfate as P-450LM2 and P-450LM4. P-450LM2, which was isolated from phenobarbital-induced animals, has a subunit molecular weight of 48,700. The best preparations contain 20 nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. P-450LM4, which is induced by beta-naphthoflavone but is also present in phenobarbital-induced and untreated animals, was isolated from all three sources and found to have a subunit molecular weight of 55,300. The best preparations contain 17nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. Some of the purified preparations of the cytochromes, although electrophoretically homogeneous, contain apoenzyme due to heme loss during purification. The purified proteins contain no detectable NADPH-cytochrome P-450 reductase, cytochrome b5, or NADH-cytochrome b5 reductase, and only low levels of phospholipid (about 1 molecule per subunit). Amino acid analysis indicated that P-450LM2 and P-450LM4 are similar in composition, but the latter protein has about 60 additional residues. The COOH-terminal amino acid of P-450LM2 is arginine, as shown by carboxypeptidase treatment, whereas that of P-450LM4 is lysine. NH2-terminal amino acid residues could not be detected. Carbohydrate analysis indicated that both cytochromes contain 1 residue of glucosamine and 2 of mannose per polypeptide subunit. The optical spectra of the oxidized and reduced cytochromes and carbon monoxide complexes were determined. Oxidized P-450LM2 has maxima at 568, 535, and 418 nm characteristic of a low spin hemeprotein, and P450LM4 from beta-naphthoflavone-induced, phenobarbital-induced, or control microsomes has maxima at 645 and 394 nm, characteristic of the high spin state. The spectrum of -450lm4 becomes similar to that of P-450LM2 at high protein concentrations or upon the addition of detergent (Renex), whereas the spectrum of P-450LM2 is unaffected by the protein concentration or the presence of detergent. Electron paramagnetic resonance spectrometry of the purified cytochromes indicated that oxidized -450lm2 is in the low spin state, whereas P-450LM4 is largely, but not entirely, in the high spin state.  相似文献   

7.
Recent investigations in this laboratory on the mechanism of action of liver microsomal cytochrome P-450 (P-450 LM) and its interaction with other components of the hydroxylation system are presented. Two electrophoretically homogeneous forms of the cytochrome, phenobarbital-inducible P-450 LM2 and 5,6-benzoflavone-inducible P-450 LM4, so designated according to their relative electrophoretic mobilities, were used in these studies. Phosphatidylcholine is required in the reconstituted enzyme system for rapid electron transfer from NADPH to P-450 LM, catalyzed by NADPH-cytochrome P-450 reductase, as well as for maximal hydroxylation activity with either molecular oxygen or a peroxy compound serving as oxygen donor to the substrate. The phospholipid facilitates the binding of both substrate and reductase to P-450 LM and apparently causes a structural change in the cytochrome as shown by an increase in alpha-helical content, determined by circular dichroic spectrometry. P-450LM3 and LM4 are one-electron acceptors under anaerobic conditions, in accord with previous potentiometric titrations and product yield data, but in disagreement with previous titrations with reducing agents. The cause for the discrepancy between the present and earlier results is not yet fully understood. Stopped flow spectrophotometry was employed to detect intermediates in the reaction of peroxy compounds with P-450LM2. With m-chloroperbenzoic acid the intermediate formed has absorption maxima at 375, 425, and 540 nm in the absolute spectrum and at 370, 436, and 540 nm in the difference spectrum (intermediate minus oxidized form). A study of the magnitude of the spectral change at various peracid concentrations indicated that with this oxidant the reaction shows a dependence resembling a binding curve. These and other experiments with various oxidants, including cumente hydroperoxide, suggest a reversible two-step mechanism according to the reaction: P-450 LM + oxidant equilibrium C equilibrium D, where C may be an enzyme-oxidant complex and D is a spectral intermediate of unknown structure. A scheme is proposed for the mechanism of action of P-450 LM based on these and earlier studies, including evidence from deuterium isotope experiments for the formation of a substrate carbon radical prior to oxygen transfer.  相似文献   

8.
Stopped flow studies were undertaken to examine the kinetics of reduction of 5,6-benzoflavone-inducible P-450 LM4 by NADPH in the presence of NADPH-cytochrome P-450 reductase and phospholipid under anaerobic CO at 25 degrees C. The reaction exhibited biphasic kinetics irrespective of NADPH concentration or of the molar ratio of reductase to P-450 LM4. The apparent first order rate constants for the fast and slow phases were determined to be 0.9 to 1.0 and 0.25 s-1, respectively. With the reductase and P-450 LM4 present in equimolar amounts, the total amount of P-450 LM4 reduced increased linearly with NADPH concentration; the titration gave a stoichiometry of 2 mol of NADPH per mol of reductase-cytochrome complex. The NADPH concentration had no appreciable effect on the magnitude of the first order rate constants for the fast and slow phases. The kinetics obtained in the presence of benzphetamine were essentially indistinguishable from those seen in the absence of this substrate, while the amount of P-450 LM4 reduced in the fast phase, but not the rate constant for this phase, decreased when phospholipid was omitted from the reaction mixture. Nearly maximal rates of NADPH oxidation by P-450 LM2 OR LM4 were obtained with a molar ratio of reductase to P-450 LM of 1.0. Benzphetamine enhanced the oxidation of NADPH by P-450 LM2 but had no effect on the activity of P-450 LM4. Rates of NADPH oxidation in the presence of P-450 LM2 and LM4 decreased by 80 and 40%, respectively, when phospholipid was omitted from the reconstituted enzyme system. These studies provide evidence for the formation of a catalytically functional 1:1 complex between the reductase and P-450 LM4, and indicate that P-450 LM2 and LM4 differ in their dependence on phospholipid.  相似文献   

9.
Polyclonal antibodies raised against purified trout cytochromes P-450 (P-450) LM2 (anti-LM2) and LM4b (anti-LM4b) were used in Western blot analyses with digestive gland microsomes from control and beta-naphthoflavone (BNF)-treated gumboot chitons Cryptochiton stelleri. An increase and decrease in staining intensity subsequent to treatment with anti-LM4b and anti-LM2, respectively, was observed in digestive gland microsomes from BNF-treated chiton. Thus, there appears to be at least two forms of P-450 in microsomes from the digestive gland of Cryptochiton; one of which is induced by BNF and perhaps is involved in benzo(a)pyrene (BP) biotransformation, and another form which is inhibited by BNF.  相似文献   

10.
Cytochrome P-450-dependent prostaglandin omega-hydroxylation is induced over 100-fold during late gestation in rabbit pulmonary microsomes (Powell, W.S. (1978) J. Biol. Chem. 253, 6711-6716). Purification of cytochromes P-450 from lung microsomes of pregnant rabbits yielded three fractions. Two of these fractions correspond to rabbit lung P-450I (LM2) and P-450II (LM5), which together constitute 70-97% of total cytochrome P-450 in lung microsomes from nonpregnant rabbits. The third form, which we designate rabbit cytochrome P-450PG-omega, regioselectively hydroxylates prostaglandins at the omega-position in reconstituted systems with a turnover of 1-5 min-1. Titration with purified pig liver cytochrome b5, demonstrated a 4-fold maximum stimulation at a cytochrome b5 to a P-450 molar ratio of 1-2. Rabbit lung P-450PG-omega formed a typical type I binding spectrum upon the addition of prostaglandin E1 with a calculated K8 of 1 microM, which agreed reasonably well with the kinetically calculated Km of 3 microM. Cytochrome P-450PG-omega was isolated as a low-spin isozyme with a lambda max (450 nm) in the CO-difference spectrum distinguishable from P-450I (451 nm) and P-450II (449 nm). Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis demonstrated that although purified P-450PG-omega had a relatively low specific content (12.1 nmol mg-1), it appeared homogeneous with a calculated minimum Mr of 56,000, intermediate between rabbit LM4 and LM6. When lung microsomes from pregnant and nonpregnant rabbit were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a protein band, with a Mr identical to P-450PG-omega, was observed in the pregnant rabbit, whereas this band appeared to be very faint or absent in microsomes from the nonpregnant rabbit. Purification of cytochromes P-450 from nonpregnant rabbit lung yielded only P-450I and P-450II. P-450PG-omega appears to be a novel rabbit P-450, possessing high activity towards omega-hydroxylation of prostaglandins, and is greatly induced during pregnancy in rabbit lung.  相似文献   

11.
To understand the different behaviour of cytochrome P-450 systems in kinetics as well as in the demethylase activity, sedimentation and molecular weight experiments have been carried out with the following results: 1) Sedimentation coefficients of solubilized P-450 and P-450 LM2 fractions amount to 24 +/- 4 [S] and 12.8 +/- 1.2 [S], respectively. Molecular weights were determined to be 1.0 +/- 0.2 . 10(6) and 3.0 +/- 0.5 . 10(5) Dalton. 2) Triton N-101 provokes splitting of the associated structure both of solubilized P-450 and P-450 LM2; this effect is reversible. 3) The dissociation depends not only on the absolute concentration of Triton but rather on the Triton P-450 ratio. The dissociation curves of solubilized P-450 and P-450 LM2 are similar in shape and in the Triton/P-450 ratio dependence. 4) In the presence of small concentrations of Triton a more complicated dissociation behaviour was observed with broad integral distribution of the sedimentation coefficients. 5) The ionic detergent cholate splits the associated structure of P-450 LM2 at considerably higher concentrations in comparison with Triton-N 101. 6) Addition of reductase causes a decrease of sedimentation coefficients and molecular weights of solubilized P-450. The same effect in P-450 LM2 could be observed only in the presence of phospholipids.  相似文献   

12.
Treatment of rats with ethanol or rabbits with either imidazole or pyrazole, agents known to induce the ethanol-inducible form of liver microsomal cytochrome P-450 (P-450 LMeb), caused, compared to controls, 3-25-fold enhanced rates of CCl4-dependent lipid peroxidation or chloroform production in isolated liver microsomes. No significant differences were seen when the rate of CCl4-dependent lipid peroxidation was expressed relative to the amount of P-450 LMeb in the various types of microsomal preparations. In reconstituted membranous systems, this type of P-450 was a 100-fold more effective catalyst of CCl4 metabolism than either of the cytochromes P-450 LM2 or P-450 LM4. It is proposed that the induction of this isozyme provides the explanation on a molecular level for the synergism seen of ethanol on CCl4-dependent hepatotoxicity.  相似文献   

13.
The effect of flavone and 7,8-benzoflavone on the metabolism of benzo[a]pyrene to fluorescent phenols by five cytochrome P-450 isozymes obtained from rabbit liver microsomes was determined. Benzo[a]pyrene metabolism was stimulated more than 5-fold by the addition of 600 microM flavone to a reconstituted monooxygenase system consisting of NADPH, cytochrome P-450 reductase, dilauroylphosphatidylcholine, and cytochrome P-450LM3c or cytochrome P-450LM4. In contrast, an inhibitory effect of flavone on benzo[a]pyrene metabolism was observed when cytochrome P-450LM2, cytochrome P-450LM3b, or cytochrome P-450LM6 was used in the reconstituted system. 7,8-Benzoflavone (50-100 microM) stimulated benzo[a]pyrene metabolism by the reconstituted monooxygenase system about 10-fold when cytochrome P-450LM3c was used, but benzo[a]pyrene hydroxylation was strongly inhibited when 7,8-benzoflavone was added to the cytochrome P-450LM6-dependent system. Smaller effects of 7,8-benzoflavone were observed on the metabolism of benzo[a]pyrene by the cytochrome P-450LM2-, cytochrome P-450LM3b-, and cytochrome P-450LM4-dependent monooxygenase systems. These results demonstrate that the activating and inhibiting effects of flavone and 7,8-benzoflavone on benzo[a]pyrene metabolism depend on the type of cytochrome P-450 used in the reconstituted monooxygenase system.  相似文献   

14.
A new form of cytochrome P-450 has been purified from untreated male rabbit liver microsomes. This form was designated P-450 LM2b on the basis of its electrophoretic mobility on SDS polyacrylamide gel, where it migrates as a polypeptide of apparent molecular weight of 50,250. This hemoprotein exhibits a maximum at 448.5 nm in the Soret band of the CO-Ferrous state spectrum. On the basis of its molecular, spectral, enzymologic and immunologic data, P-450 LM2b was shown to be distinct from the other P-450 forms, already characterized in rabbit liver microsomes. However P-450 LM2b and P-450 LM3b appear to be immunologically related proteins.  相似文献   

15.
A cDNA library was constructed from liver mRNA of a beta-naphthoflavone-induced rabbit. Two clones pLM4-1 and pLM6-1 containing 2.2-kbp inserts that hybridized at low stringincy with a mouse P1 P-450 probe were selected. The clone pLM4-1 was fully sequenced and found to contain a full-length cDNA coding for cytochrome P-450 LM4. Partial sequence and restriction mapping made it possible to identify pLM6-1 as coding for the major part of cytochrome P-450 LM6. Cloned LM4-1 cDNA was reformed by deletion of the 5' and 3' non-coding regions before insertion into yeast expression vectors PYe DP1/10. A similar operation was performed on pLM6-1 cDNA after replacement of the missing N-terminus-coding sequences by homologous sequences form the pLM4-1 clone resulting in a chimeric cytochrome P-450 coding sequence. Expression of cloned rabbit cytochrome P-450 into transformed yeast was optimized by studying the effect of the nature of the DNA sequence just preceding the initiation codon on the level of cytochrome P-450 production. Yeast synthesized cytochromes P-450 were characterized by immunoblotting, spectra and catalytic activity determinations. Cloned cytochrome P-450 LM4 was found by all criteria to be identical to the authentic rabbit one. The chimeric cytochrome P-450 that contains the 143 N-terminal amino acids of cytochrome P-450 LM4 and the remaining 375 amino acids of cytochrome P-450 LM6 was found to exhibit most of the authentic cytochrome P-450 LM6 catalytic properties. Enzymatic and evolutionary implications of these results are discussed.  相似文献   

16.
The inactivation of five dithionite reduced soluble cytochrome P-450 isoforms has been studied. The inactivation of microsomal rabbit liver isoform LM2 and bacterial linalool cytochrome P-450 is followed by its conversion into cytochrome P-420. Microsomal rabbit liver isoform LM4, bacterial camphor and p-cymene cytochromes P-450 were not inactivated under these conditions. The inactivation of linalool cytochrome P-450 and LM2 isoform is a first order reaction; the rate constants for linalool cytochrome P-450 and LM2 are 0.3 and 0.1 min-1, respectively. In the case of linalool cytochrome P-450 its carboxycomplex (Fe2+-CO) is inactivated, while in the case of LM2 the inactivation affects its oxycomplex (Fe2+-O2). The amino acid residues of linalool cytochrome P-450 are probably modified due to a direct electron transfer in its carboxycomplex. The amino acid residues of LM2 isoform are modified, presumably due to oxidation by oxygen active species which are released during the oxycomplex decay.  相似文献   

17.
Sedimentation equilibrium and sedimentation velocity measurements were carried out on cytochrome P-450LM2 from phenobarbital-treated rabbit liver and on cytochrome P-450LM4 from 5,6-benzoflavone-treated rabbit liver in the presence of the nonionic detergent 1-O-n-octyl-β-D-glucopyranoside. P-450LM2 was monomeric with a molecular weight of 48,800 and a Stokes radius of 3.1 nm in 7 g/l detergent and P-450LM4 was monomeric with a molecular weight of 49,800 and a Stokes radius of 2.6 nm at 5 g/l detergent. Both particles were spherical in shape under these conditions. Neither cytochrome was irreversibly denatured at these detergent concentrations as indicated by the ability to form substantial amounts (>60%) of the CO adduct with an absorption maximum at 451 nm (P-450LM2) or 448 nm (P-450LM4) when diluted into detergent-free buffer containing CO and sodium dithionite.  相似文献   

18.
Rat liver microsomal NADPH-cytochrome P-450 reductase was prepared free of detectable amounts of FMN by a new procedure based on the exchange of this flavin into apoflavodoxin. The resulting FMN-free reductase binds NADP in the oxidized state with the same affinity (Kd = 5 microM) and stoichiometry (1:1 molar ratio) as does the native enzyme. Both the native and FMN-free reductase catalyze rapid reduction of ferricyanide, but the ability to reduce th 5,6-benzoflavone-inducible form of the liver microsomal cytochrome P-450 (P-450LM4) is lost upon removal of FMN. The FMN-free enzyme was reconstituted with artificial flavins which, in the free state, have oxidation-reduction potentials ranging from -152 to -290 mV, including 5-carba-5-deaza-FMN and several FMN analogs with a halogen or sulfur substituent on the dimethylbenzene portion of the ring system. Enzyme reconstituted with 5-carba-5-deaza-FMN has catalytic properties which are not significantly different from those of the FMN-free reductase, and is unable to reduce P-450LM4. On the other hand, the ability to reduce P-450LM4 and the other FMN-dependent activities of the native reductase are restored by substitution of several other analogs for FMN, but the kinetics of P-450LM4 reduction, studied under anaerobic conditions by stopped flow spectrophotometry, are significantly altered. The oxidation-reduction behavior of enzyme reconstituted with 7-nor-7-Br-FMN is substantially different from that of the native enzyme, and less thermodynamic stabilization of the semiquinone is observed with this flavin analog. In contrast, the oxidation-reduction properties of enzyme containing 8-nor-8-mercapto-FMN are similar to those of the native enzyme, but the spectral properties are significantly different. As shown in a stopped flow experiment, reduction of this FMN analog precedes reduction of P-450LM4 when a complex of the flavoprotein and P-450LM4 is allowed to react with NADPH. Our experiments support a sequence of electron transfer in this enzyme system as follows: NADPH leads to FAD leads to FMN leads to P-450. We propose that the enzyme cycles between a le- and a 3e-reduced state during turnover and that electrons are donated to acceptors via the reaction, FMNH2 leads to FMNH ..  相似文献   

19.
The hydroxyl radical-mediated oxidation of 5,5-dimethyl-1-pyrroline N-oxide, benzene, ketomethiolbutyric acid, deoxyribose, and ethanol, as well as superoxide anion and hydrogen peroxide formation was quantitated in reconstituted membrane vesicle systems containing purified rabbit liver microsomal NADPH-cytochrome P-450 reductase and cytochromes P-450 LM2, P-450 LMeb , or P-450 LM4, and in vesicle systems devoid of cytochrome P-450. The presence of cytochrome P-450 in the membranes resulted in 4-8-fold higher rates of O-2, H2O2, and hydroxyl radical production, indicating that the oxycytochrome P-450 complex constitutes the major source for superoxide anions liberated in the system, giving as a consequence hydrogen peroxide and also, subsequently, hydroxyl radicals formed in an iron-catalyzed Haber-Weiss reaction. Depletion of contaminating iron in the incubation systems resulted in small or negligible rates of cytochrome P-450-dependent ethanol oxidation. However, small amounts (1 microM) of chelated iron (e.g. Fe3+-EDTA) enhanced ethanol oxidation specifically when membranes containing the ethanol and benzene-inducible form of cytochrome P-450 (cytochrome P-450 LMeb ) were used. Introduction of the Fe-EDTA complex into P-450 LMeb -containing incubation systems caused a decrease in hydrogen peroxide formation and a concomitant 6-fold increase in acetaldehyde production; consequently, the rate of NADPH consumption was not affected. In iron-depleted systems containing cytochrome P-450 LM2 or cytochrome P-450 LMeb , an appropriate stoichiometry was attained between the NADPH consumed and the sum of hydrogen peroxide and acetaldehyde produced. Horseradish peroxidase and scavengers of hydroxyl radicals inhibited the cytochrome P-450 LMeb -dependent ethanol oxidation both in the presence and in the absence of Fe-EDTA. The results are not consistent with a specific mechanism for cytochrome P-450-dependent ethanol oxidation and indicate that hydroxyl radicals, formed in an iron-catalyzed Haber-Weiss reaction and in a Fenton reaction, constitute the active oxygen species. Cytochrome P-450-dependent ethanol oxidation under in vivo conditions would, according to this concept, require the presence of non-heme iron and endogenous iron chelators.  相似文献   

20.
A red-pigmented coryneform bacterium, identified as Rhodococcus rhodochrous strain 116, that grew on 2-ethoxyphenol and 4-methoxybenzoate as sole carbon and energy sources was isolated. Phylogenetic analysis based on the 16S rDNA sequences indicates that the strain clusters more closely to other rhodococci than to other gram-positive organisms with a high G + C content. Each of the abovementioned growth substrates was shown to induce a distinct cytochrome P-450: cytochrome P-450RR1 was induced by 2-ethoxyphenol, and cytochrome P-450RR2 was induced by 4-methoxybenzoate. A type I difference spectrum typical of substrate binding was induced in cytochrome P-450RR1 by both 2-ethoxyphenol (KS = 4.2 +/- 0.3 microM) and 2-methoxyphenol (KS = 2.0 +/- 0.1 microM), but not 4-methoxybenzoate or 4-ethoxybenzoate. Similarly, a type I difference spectrum was induced in cytochrome P-450RR2 by both 4-methoxybenzoate (KS = 2.1 +/- 0.1 microM) and 4-ethoxybenzoate (KS = 1.6 +/- 0.1 microM), but not 2-methoxyphenol or 2-ethoxyphenol. A purified polyclonal antiserum prepared against cytochrome P-450RR1 did not cross-react with cytochrome P-450RR2, indicating that the proteins are immunologically distinct. The cytochromes appear to catalyze the O-dealkylation of their respective substrates. The respective products of the O-dealkylation are further metabolized via ortho cleavage enzymes, whose expression is also regulated by the respective aromatic ethers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号