首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Silvoarable agroforestry (SAF) is the cultivation of trees and arable crops on the same parcel of land. SAF may contribute to modern diversified land use objectives in Europe, such as enhanced biodiversity and productivity, reduced leaching of nitrogen, protection against flooding and erosion, and attractiveness of the landscape. Long-term yield predictions are needed to assess long-term economic profitability of SAF.
2. A model for growth, resource sharing and productivity in agroforestry systems was developed to act as a tool in forecasts of yield, economic optimization of farming enterprises and exploration of policy options for land use in Europe. The model is called Yield-SAFE; from “YIeld Estimator for Long term Design of Silvoarable AgroForestry in Europe”. The model was developed with as few equations and parameters as possible to allow model parameterization under constrained availability of data from long-term experiments.
3. The model consists of seven state equations expressing the temporal dynamics of: (1) tree biomass; (2) tree leaf area; (3) number of shoots per tree; (4) crop biomass; (5) crop leaf area index; (6) heat sum; and (7) soil water content. The main outputs of the model are the growth dynamics and final yields of trees and crops. Daily inputs are temperature, radiation and precipitation. Planting densities, initial biomasses of tree and crop species, and soil parameters must be specified.
4. A parameterization of Yield-SAFE is generated, using published yield tables for tree growth and output from the comprehensive crop simulation model STICS. Analysis of tree and crop growth data from two poplar agroforestry stands in the United Kingdom demonstrates the validity of the modelling concept and calibration philosophy of Yield-SAFE. A sensitivity analysis is presented to elucidate which biological parameters most influence short and long-term productivity and land equivalent ratio.
5. The conceptual model, elaborated in Yield-SAFE, in combination with the outlined procedure for model calibration, offers a valid tool for exploratory land use studies.
Keywords: Agroforestry model; Competition; Parameter estimation; Resource use; Land use; Land equivalent ratio; Long-term yield prediction  相似文献   

2.
基于辐热积法模拟烤烟叶面积与烟叶干物质产量   总被引:6,自引:0,他引:6  
张明达  李蒙  胡雪琼  李晓燕  朱勇 《生态学报》2013,33(22):7108-7115
烟叶叶面积增长与干物质累积是烤烟产量形成的主要部分,对品质的形成也有影响。本研究根据气温和光照对烤烟叶片生长和干物质累积的影响,基于辐热积理论建立了适用于不同烟区的烤烟叶面积模型和干物质累积模型,分别使用独立的试验数据建模及对模型进行检验,再通过多年次烟叶干重试验数据对模型进行检验。结果表明,与传统的预测方法相比,用辐热积模型获得的叶面积模拟值与实测值间1:1线的决定系数(R2)和RMSE值为0.9634和0.1653 m2/株,预测精度比SLA法和GDD法分别提高了93%和82%。模型对叶干重模拟的RMSE值为27.1 g/m2,用历年玉溪试验数据检验的RE值为24.5%,说明模型的拟合度和可靠性较好。本研究所建立的模型能够利用气温、日照等常规气象观测数据,动态预测烤烟叶面积增长和干物质累积,且模型参数少,符合度好,实用性强,可以为烤烟生产中的产量预测提供理论依据和决策支持。  相似文献   

3.
We compare the biomass partitioning patterns and the nitrogen/phosphorus (N,P) stoichiometry of the current-year shoots of tree and herbaceous species and ask whether they scale in the same ways. Our analyses indicate that few statistically significant differences exist between the shoot biomass partitioning patterns of the two functional species-groups. In contrast, statistically significant N,P - stoichiometric differences exist between the two functional groups. Across all species, dry leaf mass scales nearly as the square of basal stem diameter and isometrically with respect to dry stem mass. However, total leaf N scales as the 1.37-power and as the 1.09-power of total leaf P across herbaceous and tree shoots, respectively. Therefore, tree shoots can be viewed as populations of herbs elevated by their older, woody herbaceous cohorts. However, tree leaf stoichiometry cannot be modelled in terms of herbaceous N,P - leaf stoichiometry.  相似文献   

4.
HEUVELINK  E. 《Annals of botany》1999,83(4):413-422
A dynamic simulation model for tomato crop growth and development,TOMSIM, is evaluated. Potential crop growth and daily crop grossassimilation rate (Pgc,d) is computed by integration of leafassimilation rates over total crop leaf area throughout theday. Crop growth results fromPgc,dminus maintenance respirationrate (Rm), multiplied by the conversion efficiency. Dry matterdistribution is simulated, based on the sink strength of theplant organs, which is quantified by their potential growthrate. Within the plant, individual fruit trusses and vegetativeunits (three leaves and stem internodes between two trusses)are distinguished. Sink strength of a truss or a vegetativeunit is described as a function of its developmental stage.In this paper, emphasis is on the interactions between the twosubmodels of, respectively, dry matter production and dry matterdistribution. Sensitivity analysis showed that global radiation,CO2concentration, specific leaf area (SLA) and the developmentalstage of a vegetative unit at leaf pruning had a large influenceon crop growth rate, whereas temperature, number of fruits pertruss, sink strength of a vegetative unit and plant densitywere less important. Leaf area index (LAI) was very sensitiveto SLA and the developmental stage of a vegetative unit at leafpruning. Temperature did not influence the simulated Rm, asincreased respiration rate per unit of biomass at higher temperatureswas compensated by a decrease in biomass. The model was validatedfor four glasshouse experiments with plant density and fruitpruning treatments, and on data from two commercially growncrops. In general, measured and simulated crop growth ratesfrom 1 month after planting onwards agreed reasonably well,average overestimation being 12%. However, crop growth ratesin the first month after planting were overestimated by 52%on average. Final crop dry mass was overestimated by 0–31%,due to inaccurate simulation of LAI, resulting partly from inaccurateSLA prediction, which is especially important at low plant densityand in a young crop.Copyright 1999 Annals of Botany Company Crop growth, dry matter production, glasshouse, leaf area,Lycopersicon esculentum, partitioning, simulation model, tomato, TOMSIM.  相似文献   

5.
灌溉水稻生长发育和潜力产量的模拟模型   总被引:4,自引:0,他引:4  
本文提出的HDRICE模型是灌溉水稻生长的生理生态模型,它由相互衍接的水稻形态发育、干物质积累和叶面积发育三模块组成。形态发育模块用以模拟逐日温度和日长对水稻发育的影响,其参数可反映水稻品种的基本营养性、感温性和感光性;干物质积累模块用以模拟冠层CO_2同化、作物的维持呼吸和生长呼吸及干物质分配等过程;叶面积发育模块用以模拟叶面积指数的动态。本文还讨论了模型的输入参数和模型检验。模型可应用于模拟水稻的生长发育,预测水稻品种潜在产量及为取得潜在产量所必需的群体数量指标。  相似文献   

6.
If data are available which fulfil sufficiently the demands of statistics, and if physiologically plausible hypotheses can be formulated then it is possible to identify models by means of multiple regression analysis which simulate approximatively the behaviour of a crop within the range of the used data. A statistical as well as a physiological evaluation of the numerical results is necessary at every step of the calculation. The model consists of two equations describing the net assimilation rate and the distribution of the produced dry matter to leaves and roots. Some modification of the model are discussed, one of them with time-dependent parameters. The following influencing variables are taken into account: leaf area or leaf mass, global radiation, nitrogen content of the leaves, and water stress, the latter being calculated from available soil moisture and potential evaporation. One version of the model together with an algorithm of dynamic optimization was used to control the water status of sugar beet in field trials.  相似文献   

7.
Vegetative crops of chrysanthemum were grown for 5 or 6 weekperiods in daylit assimilation chambers. Crop responses to differentradiation levels and temperatures were analysed into effectson dry matter partitioning, specific leaf area, leaf photosynthesisand canopy light interception. The percentage of newly formed dry matter partitioned to theleaves was almost constant, although with increasing radiationor decreasing temperature, a greater percentage of dry matterwas partitioned to stem tissue at the expense of root tissue.There was a positive correlation between the percentage of drymatter in shoot material and the overall carbon: dry matterratio. Canopy photosynthesis was analysed assuming identical behaviourfor all leaves in the crop. Leaf photochemical efficiency wasonly slightly affected by crop environment. The rate of grossphotosynthesis per unit leaf area at light saturation, PA (max),increased with increasing radiation integral, but the same parameterexpressed per unit leaf dry matter, Pw (max) was almost unaffectedby growth radiation. In contrast, PA (max) was hardly affectedby temperature but Pw (max) increased with increasing growthtemperature. This was because specific leaf area decreased withdecreasing temperature and increased with decreasing radiation.There was a positive correlation between canopy respirationintegral and photosynthesis integral, and despite a four-foldchange in crop mass during the experiments, the maintenancecomponent of canopy respiration remained small and constant. Canopy extinction coefficient showed no consistent variationwith radiation integral but was negatively correlated with temperature.This decrease in the efficiency of the canopy at interceptingradiation exactly cancelled the increase in specific carbonassimilation rate that occurred with increasing growth temperature,giving a growth rate depending solely on the incident lightlevel. Chrysanthemum, dry matter partitioning, photosynthesis, specific leaf area  相似文献   

8.
Dry Matter Production in a Tomato Crop: Measurements and Simulation   总被引:8,自引:1,他引:8  
Heuvelink  E. 《Annals of botany》1995,75(4):369-379
Simulation of dry matter production by the explanatory glasshousecrop growth model SUKAM (Gijzen, 1992, Simulation Monographs),based on SUCROS87 (Spitters, Van Keulen and Van Kraalingen,1989, Simulation and systems management in crop protection),was validated for tomato. In the model, assimilation rates arecalculated separately for shaded and sunlit leaf area at differentcumulative leaf area in the canopy, taking into account thedifferent interception of direct and diffuse components of light.Daily crop gross assimilation rate (Pgd) is computed by integrationof these rates over total crop leaf area and over the day. Leafphotochemical efficiency and potential gross assimilation rateat saturating light depend on temperature and CO2 concentrationand are approximated as being identical in the whole canopy.Crop growth results from Pgd minus maintenance respiration rate(Rm; dependent on temperature and crop dry weight), multipliedby the conversion efficiency (carbohydrates to structural drymatter; Cf). Growth experiments (periodic destructive harvest) with differentplanting dates and plant densities and two data-sets from commerciallygrown crops, were used for model validation. Hourly averagesfor global radiation outside the glasshouse, glasshouse temperatureand CO2 concentration, together with measured leaf area index,dry matter distribution (for calculation of Cf) and organ dryweights (for calculation of Rm) were the inputs to the model. Dry matter production (both level and dynamic behaviour) wassimulated reasonably well for most experiments, but final drymatter production was under-estimated by about 27% for the commerciallygrown crops. At low irradiance and with large crop dry weight,growth rate was under-estimated, probably as a result of over-estimationof Rm. This could almost completely explain the large under-estimationfor the commercially grown crops, which had large dry weight.Final dry matter production was over-estimated by 7-11% if dailyaverages instead of hourly input of climatic data were used. It is concluded that SUKAM is a reliable model for simulatingdry matter production in a tomato crop, except for those situationswhere Rm has a large influence on crop growth rate (low irradianceand large crop dry weight). An improved estimate of Rm wouldtake into account the influence of metabolic activity. A preliminaryattempt to relate maintenance costs to relative growth rate(a measure for metabolic activity), showed promising results.Copyright1995, 1999 Academic Press Crop growth, dry matter production, glasshouse, maintenance respiration, metabolic activity, model, relative growth rate, respiration, simulation, tomato, model validation  相似文献   

9.
油菜绿色面积指数动态模拟模型   总被引:2,自引:0,他引:2       下载免费PDF全文
准确模拟绿色面积指数是作物生长模拟模型可靠预测作物生长和产量的关键。该研究的目的是以生理生态过程为基础,构建油菜(Brassica napus)叶面积指数和角果面积指数变化动态的模拟模型。油菜叶面积指数模型综合考虑了库或源限制下的叶面积增长模式,其中库限制下叶面积指数的增长呈指数方程,且受到温度、水分和氮素因子的影响;源限制下叶面积指数增长用比叶面积法来模拟。油菜角果面积指数由比角果面积和角果干物重来决定。比叶面积和比角果面积均为生理发育时间的函数。利用不同类型品种的播期试验及氮肥试验资料分别对模型进行了校正和检验,结果表明模型能较好地模拟不同条件下油菜叶面积指数和角果面积指数。  相似文献   

10.
Field studies that address the production of lignocellulosic biomass as a source of renewable energy provide critical data for the development of bioenergy crop models. A literature survey revealed that 14 models have been used for simulating bioenergy crops including herbaceous and woody bioenergy crops, and for crassulacean acid metabolism (CAM) crops. These models simulate field‐scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro‐BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane at regional scales (Agro‐IBIS and LPJmL). Although it lacks the complexity of other bioenergy crop models, the environmental productivity index (EPI) is the only model used to estimate biomass production of CAM (Agave and Opuntia) plants. Except for the EPI model, all models include representations of leaf area dynamics, phenology, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few models simulate soil water, nutrient, and carbon cycle dynamics, making them especially useful for assessing the environmental consequences (e.g., erosion and nutrient losses) associated with the large‐scale deployment of bioenergy crops. The rapid increase in use of models for energy crop simulation is encouraging; however, detailed information on the influence of climate, soils, and crop management practices on biomass production is scarce. Thus considerable work remains regarding the parameterization and validation of process‐based models for bioenergy crops; generation and distribution of high‐quality field data for model development and validation; and implementation of an integrated framework for efficient, high‐resolution simulations of biomass production for use in planning sustainable bioenergy systems.  相似文献   

11.
The chlorophyll content and partitioning of assimilate of bean ( Phaseolus vulgaris L. 'Pinto') plants were determined 6 days after treatment of the second internode (I2 with 5 μg of brassinosteroid (BR), a growth-promoting steroidal lactone. Plants were grown for 6 days under equal levels (90 μmol s-1 m-2) of photosynthetic photon flux density (PPFD) provided by cool white fluorescent (CWF) or incandescent (INC) lamps and equal levels of far-red (28 W m-2, 700–800 nm) radiation provided by the same INC or far-red (FR) fluorescent lamps. Brassinosteroid treatment had no appreciable effect on total biomass production but caused a decrease of 15–20% dry matter distribution in the upper portion of the shoot, a small (4%) but constant increase in dry matter in l2 and a large (11–16%) increase in dry matter in the lower portion of the shoot (especially I1). Treatment with BR increased assimilate accumulation in the primary leaves, especially under INC and FR lamps, and reduced dry matter in the trifoliate leaves. BR also caused a 16–21% reduction in total leaf area and even a greater reduction in area of the trifoliate leaves, but significantly increased specific leaf weight of the primary leaves and the first trifoliate leaf and the amount of dry matter in the lateral shoots under all radiation sources. In comparison to controls, BR treatment increased dry matter accumulation in the treated internode 3.3x under CWF and 1.6x under INC or FR. BR treatment also increased chlorophyll content in the primary leaves under all radiation sources and in the trifoliate leaves under CWF and INC lamps. These findings suggest a possible mobilization role of BR and establish the importance of adequate PPFD (and photosynthate) for maximum swelling and splitting response to brassinosteroid.  相似文献   

12.
Many crop models relate the allocation of dry matter between shoots and roots exclusively to the crop development stage. Such models may not take into account the effects of changes in environment on allocation, unless the allocation parameters are altered. In this paper a crop model with a dynamic allocation parameter for dry matter between shoots and roots is described. The basis of the model is that a plant allocates dry matter such that its growth is maximized. Consequently, the demand and supply of carbon, nitrogen, and water is maintained in balance. This model supports the hypothesis that a functional equilibrium exists between shoots and roots.This paper explains the mathematical computation procedure of the crop model. Moreover, an analysis was made of the ability of a crop model to simulate plant dry matter production and allocation of dry matter between plant organs. The model was tested using data from a greenhouse experiment in which spring wheat (Triticum aestivum L.) was grown under different soil moisture and nitrogen (N) levels.Generally, the model simulations agreed well with data recorded for total plant dry matter. For validation data the coefficient of determination (r2) between simulated and measured shoot dry weight was 0.96. For the validation treatments r2 was slightly lower, 0.94. In addition to dry matter production the model succeeded satisfactorily in simulating the dry weight of different plant organs. The response of simulated root to shoot ratio to the level of soil moisture was mainly in accordance with the measured data. In contrast, the simulated ratio seemed to be insensitive to the changes in the levels soil N concentration used in the experiment.The data used in the present study were not extensive, and more data are needed to validate the model. However, the results showed that the model responses to the changes in soil N and water level were realistic and mostly agreed with the data. Thus, we suggest that the model and the method employed to allocate dry matter between roots and shoots are useful when modelling the growth of crops under N and water limited conditions.  相似文献   

13.
Himken  M.  Lammel  J.  Neukirchen  D.  Czypionka-Krause  U.  Olfs  H.-W. 《Plant and Soil》1997,189(1):117-126
There is increasing interest in cultivation of Miscanthus as a source of renewable energy in Europe, but there is little information on its nutrient requirements. Our aim was to determine the nutrient requirement of an established Miscanthus crop through a detailed study of nutrient uptake and nutrient remobilization between plant parts during growth and senescence. Therefore dry matter of rhizomes and shoots as well as N, P, K and Mg concentration under three N fertilizer rates (0, 90, and 180 kg N ha-1) were measured in field trials in 1992/93 and at one rate of 100 kg N h-1 in 1994/95.Maximum aboveground biomass in an established Miscanthus crop ranged between 25-30 t dry matter ha-1 in the September of both trial years. Due to senescence and leaf fall there was a 30% loss in dry matter between September and harvest in March. N fertilization had no effect on crop yield at harvest. Concentrations of N, P, K and Mg in shoots were at a maximum at the beginning of the growing period in May and decreased thereafter while concentrations in rhizomes stayed fairly constant throughout the year and were not affected by N fertilization.Nutrient mobilization from rhizomes to shoots - defined as the maximum change in nutrient content in rhizomes from the beginning of the growth period measured in 1992/93 was 55 kg N ha-1, 8 kg P ha-1, 39 kg K ha-1 and 11 kg Mg ha-1. This is equivalent to 21 N, 36 P, 14 K and 27 Mg of the maximum nutrient content of the shoots. Nutrient remobilization from shoots to rhizomes defined as the increase in nutrient content of rhizomes between September and March measured in 1994/95 was 101 kg N ha-1, 9 kg P ha-1, 81 kg K ha-1 and 8 kg Mg ha-1 equivalent to 46 N, 50 P, 30 K and 27 Mg of nutrient content of shoots in September. Results showed that nutrient remobilization within the plant needs to be considered when calculating nutrient balances and fertilizer recommendations.  相似文献   

14.
基于辐射和温度热效应的温室水果黄瓜叶面积模型   总被引:23,自引:0,他引:23       下载免费PDF全文
依据温室黄瓜(Cucumis sativus)叶片生长与温度和辐射的关系,构建了适合我国种植技术的黄瓜叶面积模拟模型,并利用不同品种、播期的试验资料对模型进行了检验。结果表明,该模型比传统的积温法和比叶面积法更准确地模拟温室水果黄瓜的叶面积。该模型对黄瓜叶面积指数的模拟结果与1∶1直线之间的决定系数R2和回归估计标准误差RMSE分别为0.879 2和0.398 0,比用积温法和比叶面积法模拟叶面积指数的精度分别提高了37%和74%。  相似文献   

15.
Crop growth largely depends on radiation. Radiation is the main impetus for photosynthesis and movement of photosynthates from source to sink. Therefore, identification of the optimum sowing windows and suitable cultivars for efficient utilization of radiation is of prime importance. A field study was conducted in red clay soil during 2014 and 2015 Kharif season and the treatments consisted of three genotypes and three sowing windows by using randomized complete block design with three replications. The effect of genotypes and sowing windows was found significant with respect to number of trifoliate leaves, leaf area ratio, dry matter production, grain numbers, pod length, test weight, grain yield, and stover yield of guar during 2014 as compared to 2015 sown crop. Statistically significant plant height, number of trifoliate leaves, number of branches, leaf area ratio, absolute growth rate, leaf area index, dry matter, grain number, pod length, grain yield, stover yield and a higher cumulative radiation interception were recorded with 15th August sown crop as compared to other sowing windows. The plant height, number of trifoliate leaves, number of branches, leaf area ratio, absolute growth rate, leaf area index, dry matter, grain number, pod length, grain yield, stover yield and maximum cumulative interception of radiation were significant with RGC-1003 as compared to RGC-936 and HG-365. It is observed that the incident PAR to dry matter accumulation conversion efficiency was varied with cultivars and different sowing windows which ranges from 0.74 g MJ−1 to 0.79 g MJ−1.  相似文献   

16.
This work aims to predict time courses of leaf area index (LAI) based on dry matter partitioning into the leaves and on specific leaf area of newly formed leaf biomass (SLA(n)) for year-round cut chrysanthemum crops. In five glasshouse experiments, each consisting of several plant densities and planted throughout the year, periodic destructive measurements were conducted to develop empirical models for partitioning and for SLA(n). Dry matter partitioning into leaves, calculated as incremental leaf dry mass divided by incremental shoot dry mass between two destructive harvests, could be described accurately (R(2 )= 0.93) by a Gompertz function of relative time, R(t). R(t) is 0 at planting date, 1 at the start of short-days, and 2 at final harvest. SLA(n), calculated as the slope of a linear regression between periodic measurements of leaf dry mass (LDM) and LAI, showed a significant linear increase with the inverse of the daily incident photosynthetically active radiation (incident PAR, MJ m(-2 )d(-1)), averaged over the whole growing period, the average glasshouse temperature and plant density (R(2 )= 0.74). The models were validated by two independent experiments and with data from three commercial growers, each with four planting dates. Measured shoot dry mass increase, initial LAI and LDM, plant density, daily temperature and incident PAR were input into the model. Dynamics of LDM and LAI were predicted accurately by the model, although in the last part of the cultivation LAI was often overestimated. The slope of the linear regression of simulated against measured LDM varied between 0.95 and 1.09. For LAI this slope varied between 1.01 and 1.12. The models presented in this study are important for the development of a photosynthesis-driven crop growth model for cut chrysanthemum crops.  相似文献   

17.
Photosynthetic area index (PAI), radiation interception (I) and dry matter partitioning between shoots and roots were measured for Miscanthus sinensis‘Giganteus' grown from micro-propagated transplants on a fertile peaty loam soil in eastern England. In the establishment year, Miscanthus plants produced 35 and 70 shoots plant-1 at densities of 4.0 and 1.8 plants m-2 respectively. At the higher density, there were 140 shoots m-2 with the largest reaching a height of 1.8 m; these canopies attained a maximum PAI of 5.45, intercepting 94% of incident radiation. Leaf lamina contributed c. 90% of total photosynthetic area with stems contributing the remainder. At the lower density, maximum PAI and I values were 2.88 and 86% respectively. PAI was related to I by calculating attenuation coefficients (k); these indicated that Miscanthus canopies were more effective at intercepting radiation per unit PAI at the lower density (k= -0.31) compared with the higher density (k= -0.20). Radiation interception was related to dry matter accumulated by calculating conversion efficiencies (e). At 4 plants m-2, × for shoot dry matter production was 1.17g MJ-1. Miscanthus partitioned a relatively large amount of total dry matter into below-ground biomass. By plant senescence, c. 30% of total dry matter had been partitioned into root and rhizome; rhizome biomass contributed 80% of below-ground dry matter, × increased to 1.62 g MJ-1 when calculated on a total dry matter basis (shoot + root + rhizome). Total dry matter production was increased 68% by a 2.2-fold increase in plant density.  相似文献   

18.
Evaluation of the thermal heat requirement of Brassica spp. across agro-ecological regions is required in order to understand the further effects of climate change. Spatio-temporal changes in hydrothermal regimes are likely to affect the physiological growth pattern of the crop, which in turn will affect economic yields and crop quality. Such information is helpful in developing crop simulation models to describe the differential thermal regimes that prevail at different phenophases of the crop. Thus, the current lack of quantitative information on the thermal heat requirement of Brassica crops under debranched microenvironments prompted the present study, which set out to examine the response of biophysical parameters [leaf area index (LAI), dry biomass production, seed yield and oil content] to modified microenvironments. Following 2 years of field experiments on Typic Ustocrepts soils under semi-arid climatic conditions, it was concluded that the Brassica crop is significantly responsive to microenvironment modification. A highly significant and curvilinear relationship was observed between LAI and dry biomass production with accumulated heat units, with thermal accumulation explaining ≥80% of the variation in LAI and dry biomass production. It was further observed that the economic seed yield and oil content, which are a function of the prevailing weather conditions, were significantly responsive to the heat units accumulated from sowing to 50% physiological maturity. Linear regression analysis showed that growing degree days (GDD) could indicate 60–70% variation in seed yield and oil content, probably because of the significant response to differential thermal microenvironments. The present study illustrates the statistically strong and significant response of biophysical parameters of Brassica spp. to microenvironment modification in semi-arid regions of northern India.  相似文献   

19.
Foliage composition, photosynthetic area index (PAI) and radiation interception were measured for crop canopies of leafless (var. Filby), semi-leafless (var. BS3) and leafed (var. Birte) peas (Pisum sativum). Tendrils and petioles contributed more than 60% of total leaf area for leafless peas but less than 30% for semileafless and leafed pea canopies. PAI was related to radiation interception by calculating attenuation coefficients which indicated that leafless peas intercepted more radiation per unit PAI than either semi-leafless or leafed peas. Data interpretation, however, was complicated because of difficulties in estimating the tendril and petiole surface area contribution to PAI. Radiation interception was related to dry matter accumulation by calculating photosynthetic efficiencies. Leafless and semi-leafless peas converted intercepted radiation into dry matter as efficiently as leafed peas. Under conditions of moisture stress, leafed and leafless peas both intercepted radiation more effectively but converted it into dry matter with reduced photosynthetic efficiency.  相似文献   

20.
鼎湖山森林生态系统演替过程中的能量生态特征   总被引:16,自引:9,他引:16  
任海  彭少麟 《生态学报》1999,19(6):817-822
以时空替代的方法,将灌草丛、针叶林、针阔叶混交林和季风常绿阔叶林等4个处于同一空间下的群落当作同一样落演替进程中的4个阶段,研究了鼎湖山南亚热带森林演替过程中的能量生态特征。结果表明,鼎湖山南亚热带森林群落演替过程中,其垂直层次、叶面积指数、冠层对太阳辐射能的截获量、叶生物量、总生物量、总初级生产力、总呼吸量、净初级生产力、枯树木现存量和年输入量、昆虫啃食量、群落的能量现存量等随演替的进程而增加,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号