首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alveolar type II cells express a high affinity receptor for pulmonary surfactant protein A (SP-A), and the interaction of SP-A with these cells leads to inhibition of surfactant lipid secretion. We have investigated the binding of native and modified forms of SP-A to isolated rat alveolar type II cells. Native and deglycosylated forms of SP-A readily competed with 125I-SP-A for cell surface binding. Alkylation of SP-A with excess iodoacetamide yielded forms of SP-A that did not inhibit surfactant lipid secretion and did not compete with 125I-SP-A for cell surface binding. Reductive methylation of SP-A with H2CO and NaCNBH3 yielded forms of SP-A with markedly reduced receptor binding activity that also exhibited significantly reduced capacity to inhibit lipid secretion. Modification of SP-A with cyclohexanedione reversibly altered cell surface binding and the activity of SP-A as an inhibitor of lipid secretion. Two monoclonal antibodies that block the function of SP-A as an inhibitor of lipid secretion completely prevented the high affinity binding of SP-A to type II cells. A monoclonal antibody that recognizes epitopes on SP-A but failed to block the inhibition of secretion also failed to completely attenuate high affinity binding to the receptor. Concanavalin A inhibits phospholipid secretion of type II cells by a mechanism that is reversed in the presence of excess alpha-methylmannoside. Concanavalin A did not block the high affinity binding of 125I-SP-A to the receptor. Neither the high affinity binding nor the inhibitor activity of SP-A was prevented by the presence of mannose or alpha-methylmannoside. The SP-A derived from humans with alveolar proteinosis is a potent inhibitor of surfactant lipid secretion but failed to completely displace 125I-SP-A binding from type II cells. From these data we conclude that: 1) cell surface binding activity of rat SP-A is directly related to its capacity to inhibit surfactant lipid secretion; 2) monoclonal antibodies directed against SP-A can be used to map binding domains for the receptor; 3) the lectin activity of SP-A against mannose ligands does not appear to be essential for cell surface binding; 4) concanavalin A does not compete with SP-A for receptor binding; and 5) the human SP-A derived from individuals with alveolar proteinosis exhibits different binding characteristics from rat SP-A.  相似文献   

2.
A glycoprotein of Mr 26-36,000 (SP-A) is an abundant phospholipid-associated protein in pulmonary surfactant. SP-A enhances phospholipid reuptake and inhibits secretion by Type II epithelial cells in vitro. We have used two electron microscopic cytochemical methods to demonstrate selective binding and uptake of SP-A by rat pulmonary Type II epithelial cells. Using an immunogold bridging technique, we showed that SP-A binding was selective for Type II cell surfaces. Binding was dose dependent and saturable, reaching maximal binding at approximately 10 ng/ml. On warming to 23 degrees C, SP-A binding sites were clustered in coated pits on the cell surface. To characterize the internalization and intracellular routing of SP-A, we used the biotinyl ligand-avidin-gold technique. Biotinyl SP-A was bound by rat Type II epithelial cells as described above. On warming, biotinyl SP-A was seen in association with coated vesicles and was subsequently located in endosomes and multivesicular bodies. Biotinyl SP-A-gold complexes were seen in close approximation to lamellar bodies 10-60 min after warming. Binding of biotinyl SP-A was inhibited by competition with unlabeled SP-A. These results support the concept that Type II epithelial cells bind and internalize SP-A by receptor-mediated endocytosis. This newly described uptake system may play a role in the recycling of surfactant components or mediate the actions of SP-A on surfactant phospholipid secretion.  相似文献   

3.
Surfactant proteins A and D (SP-A and SP-D) are structurally related members of the collectin family found in the alveolar compartment of the lung. SP-A binds dipalmitoylphosphatidylcholine (DPPC) and galactosylceramide (GalCer), induces liposome aggregation, and regulates the uptake and secretion of surfactant lipids by alveolar type II cells in vitro. SP-D binds phosphatidylinositol (PI) and glucosylceramide. The purpose of this study was to identify a critical stretch of primary sequence in the SP-A region Cys(204)-Phe(228) and the SP-D region Cys(331)-Phe(355) that is involved in protein-specific lipid and type II cell interactions. Chimeras ad1 and ad2 were constructed with rat SP-A/SP-D splice junctions at Cys(218)/Gly(346) and Lys(203)/Cys(331), respectively. Chimera ad1 but not ad2 retained DPPC liposome binding activity. Both chimeras retained significant binding to GalCer liposomes. Chimera ad1 did not bind to PI, whereas chimera ad2 acquired a significant PI binding. Both chimeras failed to induce liposome aggregation and to interact with alveolar type II cells. In addition, monoclonal antibody 1D6 that blocks specific SP-A functions did not recognize either chimera. From these results, we conclude that (1) the SP-A region Leu(219)-Phe(228) is required for liposome aggregation and interaction with alveolar type II cells, (2) the SP-A region Cys(204)-Cys(218) is required for DPPC binding, (3) the SP-D region Cys(331)-Phe(355) is essential for minimal PI binding, and (4) the epitope for mAb 1D6 is located at the region contiguous to the SP-A region Leu(219)-Phe(228).  相似文献   

4.
Using immunogold labeling of fixed, cryosubstituted tissue sections, we compared the distribution of lysozyme, an oxidant-sensitive lamellar body protein, with that of surfactant protein A (SP-A) in rat Type II cells, extracellular surfactant forms, and alveolar macrophages. Morphometric analysis of gold particle distribution revealed that lysozyme and SP-A were present throughout the secretory and endosomal pathways of Type II cells, with prominent localization of lysozyme in the peripheral compartment of lamellar bodies. All extracellular surfactant forms were labeled for both proteins with preferential labeling of tubular myelin and unilamellar vesicles. Labeling of tubular myelin for SP-A was striking when compared with that of lamellar bodies and other extracellular surfactant forms. Lamellar body-like forms and multilamellar structures were uniformly labeled for lysozyme, suggesting that this protein is rapidly redistributed within these forms after secretion of lysozyme-laden lamellar bodies. By contrast, increased labeling for SP-A was observed over peripheral membranes of lamellar body-like forms and multilamellar structures, apparently reflecting progressive SP-A enrichment of these membranes during tubular myelin formation. The results indicate that lysozyme is an integral component of the lamellar body peripheral compartment and secreted surfactant membranes, and support the concept that lysozyme may participate in the structural organization of lung surfactant.  相似文献   

5.
We have recently described a putative receptor for lung surfactant protein-A (SP-A) on rat type II pneumocytes. The receptor, P63, is a 63-kDa type II transmembrane protein. Coincubation of type II cells with P63 antibody (Ab) reversed the inhibitory effect of SP-A on secretagogue-stimulated surfactant secretion from type II cells. To further characterize SP-A interactions with P63, we expressed recombinant P63 protein in Escherichia coli and generated antibodies to P63. Immunogold electron microscopy confirmed endoplasmic reticulum and plasma membrane localization of P63 in type II cells with prominent labeling of microvilli. Binding characteristics of iodinated SP-A to type II cells in the presence of P63 Ab were determined. Binding (4 degrees C, 1 h) of (125)I-SP-A to type II cells demonstrated both specific (calcium-dependent) and nonspecific (calcium-independent) components. Ab to P63 protein blocked the specific binding of (125)I-SP-A to type II cells and did not change the nonspecific SP-A association. A549 cells, a pneumocyte model cell line, expressed substantial levels of P63 and demonstrated specific binding of (125)I-SP-A that was inhibited by the P63 Ab. The secretagogue (cAMP)-stimulated increase in calcium-dependent binding of SP-A to type II cells was blocked by the presence of P63 Ab. Transfection of type II cells with small interfering RNA to P63 reduced P63 protein expression, attenuated P63-specific SP-A binding, and reversed the ability of SP-A to prevent surfactant secretion from the cells. Our results further substantiate the role of P63 as an SP-A receptor protein localized on the surface of lung type II cells.  相似文献   

6.
Surfactant-associated protein A (SP-A) is a component of pulmonary surfactant that binds to a specific receptor (SPAR) on the surface of type II alveolar cells of the lung and regulates gene expression and surfactant secretion. Previously we have shown that activation of SPAR by SP-A binding initiates a signal through pathways that involve tyrosine phosphorylation, include IRS-1, and entail activation of phosphatidylinositol 3-kinase (PI3K). In other cell types, cytokines that activate the PI3K signaling pathway promote cell survival. Therefore we investigated whether there was an effect of SP-A on apoptosis as measured by DNA laddering, FACS analysis, TUNEL assay, and annexin V binding. SP-A protected primary cultures of rat type II alveolar cells against the apoptotic effects of etoposide and UV light and also protected the H441 human Clara lung tumor cell line against staurosporine-induced apoptosis. The protective effects of SP-A were abrogated by inhibition of either tyrosine-specific protein kinase activity or PI3K. SP-A/SPAR interaction thus initiates a signaling pathway that regulates apoptosis in type II cells. These findings may be important in understanding the pathogenesis of acute lung injury and pulmonary tumorigenesis and may suggest new therapeutic options.  相似文献   

7.
C1q, a subunit of the first component (C1) of the classical complement pathway, and the pulmonary surfactant protein SP-A are structurally homologous molecules, each having an extended collagen-like domain contiguous with a non-collagenous domain. It is the collagen-like region of C1q that binds to mononuclear phagocytes and mediates the enhancement of phagocytosis of opsonized particles by these cells. Because SP-A enhances the endocytosis of phospholipids by alveolar type II cells and alveolar macrophages, we examined whether these two molecules were functionally interchangeable. The phagocytosis of sheep erythrocytes opsonized with IgG or with IgM and complement was enhanced by the adherence of monocytes or macrophages, respectively, to SP-A. The enhanced response was dependent on the concentration of SP-A used for coating the surfaces, similar to that seen when monocytes were adhered to C1q-coated surfaces. Both the percentage of cells ingesting the opsonized targets and the number of targets ingested per cell increased with increasing concentrations of SP-A. No such enhancement was seen with cells adhered to albumin, iron-saturated transferrin, or uncoated surfaces. However, SP-A did not substitute for C1q in the formation of hemolytically active C1. C1q did not stimulate lipid uptake by alveolar type II cells or alveolar macrophages and had only a slight inhibitory effect on the binding of SP-A to alveolar type II cells. Thus, these results suggested that a function which requires interactions of both the collagenous and the non-collagenous regions (i.e. initiation of the classic complement cascade) could not be mimicked by a protein sharing structural macromolecular similarity but lacking sequence homology in the non-collagen-like region. However, SP-A could substitute for C1q in stimulating a function previously shown to be mediated by the collagen-like domains of the C1q molecule.  相似文献   

8.
9.
To determine whether small hydrophobic surfactant peptides (SP-B and SP-C) participate in recycling of pulmonary surfactant phospholipid, we determined the effect of these peptides on transfer of 3H- or 14C-labelled phosphatidylcholine from liposomes to isolated rat alveolar Type II cells and Chinese hamster lung fibroblasts. Both natural and synthetic SP-B and SP-C markedly stimulated phosphatidylcholine transfer to alveolar Type II cells and Chinese hamster lung fibroblasts in a dose- and time-dependent fashion. Effects of the peptides on phospholipid uptake were dose-dependent, but not saturable and occurred at both 4 and 37 degrees C. Uptake of labelled phospholipid into a lamellar body fraction prepared from Type II cells was augmented in the presence of SP-B. Neither SP-B nor SP-C augmented exchange of labelled plasma membrane phosphatidylcholine from isolated Type II cells or enhanced the release of surfactant phospholipid when compared to liposomes without SP-B or SP-C. Addition of native bovine SP-B and SP-C to the phospholipid vesicles perturbed the size and structure of the vesicles as determined by electron microscopy. To determine the structural elements responsible for the effect of the peptides on phospholipid uptake, fragments of SP-B were synthesized by solid-phase protein synthesis and their effects on phospholipid uptake assessed in Type II epithelial cells. SP-B (1-60) stimulated phospholipid uptake 7-fold. A smaller fragment of SP-B (15-60) was less active and the SP-B peptide (40-60) failed to augment phospholipid uptake significantly. Like SP-B and SP-C, surfactant-associated protein (SP-A) enhanced phospholipid uptake by Type II cells. However, SP-A failed to significantly stimulate phosphatidylcholine uptake by Chinese hamster lung fibroblasts. These studies demonstrate the independent activity of surfactant proteins SP-B and SP-C on the uptake of phospholipid by Type II epithelial cells and Chinese hamster lung fibroblasts in vitro.  相似文献   

10.
H Chiba  H Sano  M Saitoh  H Sohma  D R Voelker  T Akino  Y Kuroki 《Biochemistry》1999,38(22):7321-7331
Pulmonary surfactant protein A (SP-A) and mannose-binding protein A (MBP-A) are collectins in the C-type lectin superfamily. These collectins exhibit unique lipid binding properties. SP-A binds to dipalmitoyl phosphatidylcholine (DPPC) and galactosylceramide (GalCer) and MBP-A binds to phosphatidylinositol (PI). SP-A also interacts with alveolar type II cells. Monoclonal antibodies (mAbs PE10 and PC6) that recognize human SP-A inhibit the interactions of SP-A with lipids and alveolar type II cells. We mapped the epitopes for anti-human SP-A mAbs by a phage display peptide library. Phage selected by mAbs displayed the consensus peptide sequences that are nearly identical to 184TPVNYTNWYRG194 of human SP-A. The synthetic peptide GTPVNYTNWYRG completely blocked the binding of mAbs to human SP-A. Chimeric proteins were generated in which the rat SP-A region Thr174-Gly194 or the human SP-A region Ser174-Gly194 was replaced with the MBP-A region Thr164-Asp184 (rat ama4 or hu ama4, respectively). The mAbs failed to bind hu ama4. Rat ama4 bound to an affinity matrix on mannose-sepharose but lost all of the SP-A functions except carbohydrate binding and Ca2+-independent GalCer binding. Strikingly, the rat ama4 chimera acquired the PI binding property that MBP-A exhibits. This study demonstrates that the amino acid residues 174-194 of SP-A and the corresponding region of MBP-A are critical for SP-A-type II cell interaction and Ca2+-dependent lipid binding of collectins.  相似文献   

11.
Pulmonary surfactant protein A (SP-A) has been shown to act as an opsonin in the phagocytosis of viruses by alveolar macrophages. To determine whether SP-A binds to viral proteins and which part of the SP-A molecule is involved in this interaction, binding studies were undertaken. SP-A was labeled with fluorescein isothiocyanate, and its binding to herpes simplex virus type 1-infected HEp-2 cells, as a model for virus-infected cells in general, was studied using flow cytometry. The binding of SP-A to virus-infected cells was saturable, reversible, and both time- and concentration-dependent, reaching a maximal level after 30 min at an SP-A concentration of 10 micrograms/ml. An approximately 4-fold increase in binding of SP-A to infected cells over control cells was observed. Yeast mannan, a mannose homopolysaccharide, did not influence the binding. However, heparin inhibited binding of SP-A in a concentration-dependent manner. In addition, heparin could also dissociate cell-bound SP-A, indicating that polyanionic oligosaccharides are involved in the binding of SP-A to virus-infected cells. Deglycosylated SP-A, obtained by digestion with N-glycosidase F, did not bind to infected cells. Heparin or deglycosylation of SP-A had no effect on the stimulation of alveolar macrophages by SP-A. It is concluded that the carbohydrate moiety of SP-A is involved in the recognition of viruses by SP-A and may play a role in the antiviral defenses of the lung.  相似文献   

12.
Surfactant protein A (SP-A) binds to alveolar type II cells through a specific high-affinity cell membrane receptor, although the molecular nature of this receptor is unclear. In the present study, we have identified and characterized an SP-A cell surface binding protein by utilizing two chemical cross-linkers: profound sulfo-SBED protein-protein interaction reagent and dithiobis(succinimidylpropionate) (DSP). Sulfo-SBED-biotinylated SP-A was cross-linked to the plasma membranes isolated from rat type II cells, and the biotin label was transferred from SP-A to its receptor by reduction. The biotinylated SP-A-binding protein was identified on blots by using streptavidin-labeled horseradish peroxidase. By using DSP, we cross-linked SP-A to intact mouse type II cells and immunoprecipitated the SP-A-receptor complex using anti-SP-A antibody. Both of the cross-linking approaches showed a major band of 63 kDa under reduced conditions that was identified as the rat homolog of the human type II transmembrane protein p63 (CKAP4/ERGIC-63/CLIMP-63) by matrix-assisted laser desorption ionization and nanoelectrospray tandem mass spectrometry of tryptic fragments. Thereafter, we confirmed the presence of p63 protein in the cross-linked SP-A-receptor complex by immunoprobing with p63 antibody. Coimmunoprecipitation experiments and functional assays confirmed specific interaction between SP-A and p63. Antibody to p63 could block SP-A-mediated inhibition of ATP-stimulated phospholipid secretion. Both intracellular and membrane localized pools of p63 were detected on type II cells by immunofluorescence and immunobloting. p63 colocalized with SP-A in early endosomes. Thus p63 closely interacts with SP-A and may play a role in the trafficking or the biological function of the surfactant protein.  相似文献   

13.
14.
Binding specificity of the major surfactant protein SP-A from human and dog lung has been investigated. Radiobinding experiments have shown that both proteins bind in a Ca(2+)-dependent manner to galactose, mannose, fucose, and glucose linked to bovine serum albumin. These results are in accord with a previous study in which monosaccharides were linked to agarose (Haagsman, H. P., Hawgood, S., Sargeant, T., Buckley, D., White, R. T., Drickamer, K., and Benson, B. J. (1987) J. Biol. Chem. 262, 13877-13880). Chromatogram overlays in conjunction with in situ liquid secondary ion mass spectrometry (TLC-LSIMS) of several purified glycosphingolipids and neoglycolipids as well as binding assays with glycolipids immobilized on plastic wells, demonstrate recognition of galactose (human and dog SP-A), glucose, and lactose (human SP-A) in association with specific lipids. In addition, the occurrence of several neutral and acidic glycosphingolipids in human and rat extracellular surfactants and rat alveolar type II cells is described. Selected components among the neutral glycolipids are bound by radiolabeled human SP-A; these are identified by TLC-LSIMS as predominantly ceramide mono- and disaccharides (human surfactant) and ceramide tri- and tetrasaccharides (rat surfactant and type II cells). A recombinant carbohydrate recognition domain (CRD) of human SP-A inhibits the binding of human SP-A to galactosyl ceramide and to galactose- and mannose-bovine serum albumin, indicating that the CRD is directly involved in the binding of SP-A to these ligands. These results provide evidence for a novel type of binding specificity for proteins that have Ca(2+)-dependent CRDs and raise the possibility that glycosphingolipids are endogenous ligands for SP-A.  相似文献   

15.
Lung surfactant protein A (SP-A) is the most abundant surfactant-associated protein present in the lung. A receptor for SP-A has been shown to be present on A549 alveolar type II cells and on other cell types, including alveolar macrophage. The SP-A receptor on A549 cells has been identified as the collectin receptor, or C1q receptor, which binds several structurally-related ligands. SP-A contains C-type lectin domains, but the role of carbohydrate binding by SP-A in physiological and pathological phenomena is not yet established. In this paper we report the binding of SP-A to pollen from Populus nigra italica (Lombardy Poplar), Poa pratensis (Kentucky blue grass),Secale cerale (cultivated rye) and Ambrosia elatior (short ragweed). Saturable and concentration dependent binding of SP-A to pollen grains was observed. Interaction of SP-A with pollen grains takes place through waterextractable components, in which the major species present, in Lombardy poplar pollen,are 57 kD and 7 kD (glyco)proteins. The binding of SP-A to pollen grains and their aqueous extracts was calcium ion dependent and was inhibited by mannose, and is therefore mediated by the lectin domain. Binding of SP-A to pollen grains was found to mediate adhesion of pollen grains to A549 cells. The results suggest that pollen grains or other carbohydrate-bearing particles (e. g. microorganisms) could potentially interact with different cell types via the collectin receptor (C1q Receptor) in the presence of SP-A.  相似文献   

16.
We investigated the cellular and subcellular distribution of surfactant protein D (SP-D) by immunogold labeling in lungs of adult rats that had been given bovine serum albumin coupled to 5-nm gold (BSAG) for 2 hr to visualize the endocytotic pathway. Specific gold labeling for SP-D was found in alveolar Type II cells, Clara cells, and alveolar macrophages. In Type II cells abundant labeling was observed in the endoplasmic reticulum, whereas the Golgi complex and multivesicular bodies were labeled to a limited extent only. Lamellar bodies did not seem to contain SP-D. Gold labeling in alveolar macrophages was restricted to structures containing endocytosed BSAG. In Clara cells labeling was found in the endoplasmic reticulum, the Golgi complex, and was most prominent in granules present in the apical domain of the cell. Double labeling experiments with anti-surfactant protein A (SP-A) showed that both SP-A and SP-D were present in the same granules. However, SP-A was distributed throughout the granule contents, whereas SP-D was confined to the periphery of the granule. The Clara cell granules are considered secretory granules and not lysosomes, because they were not labeled for the lysosomal markers cathepsin D and LGP120, and they did not contain endocytosed BSAG.  相似文献   

17.
Surfactant protein D (SP-D) is a member of the collectin subfamily of C-type lectins, pattern recognition proteins participating in the innate immune response. Gene-targeted mice deficient in SP-D develop abnormalities in surfactant homeostasis, hyperplasia of alveolar epithelial type II cells, and emphysema-like pathology. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is required for terminal differentiation and subsequent activation of alveolar macrophages, including the expression of matrix metalloproteinases and reactive oxygen species, factors thought to contribute to lung remodeling. Type II cells also express the GM-CSF receptor. Thus we hypothesized GM-CSF might mediate some or all of the cellular and structural abnormalities in the lungs of SP-D-deficient mice. To test this, SP-D (D-G+) and GM-CSF (D+G-) single knockout mice as well as double knockout mice deficient for both SP-D and GM-CSF (D-G-) were analyzed by design-based stereology. Compared with wild type, D-G+ as well as D+G- mice showed decreased alveolar numbers, increased alveolar sizes, and decreased alveolar epithelial surface areas. These emphysema-like changes were present to a greater extent in D-G- mice. D-G+ mice developed type II cell hyperplasia and hypertrophy with increased intracellular surfactant pools, whereas D+G- mice had smaller type II cells with decreased intracellular surfactant pools. In contrast to the emphysematous changes, the type II cell alterations were mostly corrected in D-G- mice. These results indicate that GM-CSF-dependent macrophage activity is not necessary for emphysema development in SP-D-deficient mice, but that type II cell metabolism and proliferation are, either directly or indirectly, regulated by GM-CSF in this model.  相似文献   

18.
Type II cells and macrophages are the major cells involved in the alveolar clearance and catabolism of surfactant. We measured type II cell and macrophage contributions to the catabolism of saturated phosphatidylcholine and surfactant protein A (SP-A) in mice. We used intratracheally administered SP-A labeled with residualizing (125)I-dilactitol-tyramine, radiolabeled dipalmitoylphosphatidylcholine ([(3)H]DPPC), and its degradation-resistant analog [(14)C]DPPC-ether. At 15 min and 7, 19, 29, and 48 h after intratracheal injection, the mice were killed; alveolar lavage was then performed to recover macrophages and surfactant. Type II cells and macrophages not recovered by the lavage were subsequently isolated by enzymatic digestion of the lung. Radioactivity was measured in total lung, lavage fluid macrophages, alveolar washes, type II cells, and lung digest macrophages. Approximately equal amounts of (125)I-dilactitol-tyramine-SP-A and [(14)C]DPPC-ether associated with the macrophages (lavage fluid plus lung digest) and type II cells when corrected for the efficiency of type II cell isolation. Eighty percent of the macrophage-associated radiolabel was recovered from lung digest macrophages. We conclude that macrophages and type II cells contribute equally to saturated phosphatidylcholine and SP-A catabolism in mice.  相似文献   

19.
Alveolar type II cells secrete, internalize, and recycle pulmonary surfactant, a lipid and protein complex that increases alveolar compliance and participates in pulmonary host defense. Surfactant protein (SP) D, a collagenous C-type lectin, has recently been described as a modulator of surfactant homeostasis. Mice lacking SP-D accumulate surfactant in their alveoli and type II cell lamellar bodies, organelles adapted for recycling and secretion of surfactant. The goal of current study was to characterize the interaction of SP-D with rat type II cells. Type II cells bound SP-D in a concentration-, time-, temperature-, and calcium-dependent manner. However, SP-D binding did not alter type II cell surfactant lipid uptake. Type II cells internalized SP-D into lamellar bodies and degraded a fraction of the SP-D pool. Our results also indicated that SP-D binding sites on type II cells may differ from those on alveolar macrophages. We conclude that, in vitro, type II cells bind and recycle SP-D to lamellar bodies, but SP-D may not directly modulate surfactant uptake by type II cells.  相似文献   

20.
Pulmonary surfactant isolated from gene-targeted surfactant protein A null mice (SP-A(-/-)) is deficient in the surfactant aggregate tubular myelin and has surface tension-lowering activity that is easily inhibited by serum proteins in vitro. To further elucidate the role of SP-A and its collagen-like region in surfactant function, we used the human SP-C promoter to drive expression of rat SP-A (rSPA) or SP-A containing a deletion of the collagen-like domain (DeltaG8-P80) in the Clara cells and alveolar type II cells of SP-A(-/-) mice. The level of the SP-A in the alveolar wash of the SP-A(-/-,rSP-A) and SP-A(-/-,DeltaG8-P80) mice was 6.1-and 1.3-fold higher, respectively, than in the wild type controls. Tissue levels of saturated phosphatidylcholine were slightly reduced in the SP-A(-/-,rSP-A) mice compared with SP-A(-/-) littermates. Tubular myelin was present in the large surfactant aggregates isolated from the SP-A(-/-,rSP-A) lines but not in the SP-A(-/-,DeltaG8-P80) mice or SP-A(-/-) controls. The equilibrium and minimum surface tensions of surfactant from the SP-A(-/-,rSP-A) mice were similar to SP-A(-/-) controls, but both were markedly elevated in the SP-A(-/-,DeltaG8-P80) mice. There was no defect in the surface tension-lowering activity of surfactant from SP-A(+/+,DeltaG8-P80) mice, indicating that the inhibitory effect of DeltaG8-P80 on surface activity can be overcome by wild type levels of mouse SP-A. The surface activity of surfactant isolated from the SP-A(-/-,rSP-A) but not the SP-A(-/-,DeltaG8-P80) mice was more resistant than SP-A(-/-) littermate control animals to inhibition by serum proteins in vitro. Pressure volume relationships of lungs from the SP-A(-/-), SP-A(-/-,rSP-A), and SP-A(-/-,DeltaG8-P80) lines were very similar. These data indicate that expression of SP-A in the pulmonary epithelium of SP-A(-/-) animals restores tubular myelin formation and resistance of isolated surfactant to protein inhibition by a mechanism that is dependent on the collagen-like region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号