首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When cells of Bacillus sp. strain GL1 were grown in a medium containing xanthan as a carbon source, alpha-mannosidase exhibiting activity toward p-nitrophenyl-alpha-D-mannopyranoside (pNP-alpha-D-Man) was produced intracellularly. The 350-kDa alpha-mannosidase purified from a cell extract of the bacterium was a trimer comprising three identical subunits, each with a molecular mass of 110 kDa. The enzyme hydrolyzed pNP-alpha-D-Man (Km = 0.49 mM) and D-mannosyl-(alpha-1,3)-D-glucose most efficiently at pH 7.5 to 9.0, indicating that the enzyme catalyzes the last step of the xanthan depolymerization pathway of Bacillus sp. strain GL1. The gene for alpha-mannosidase cloned most by using N-terminal amino acid sequence information contained an open reading frame (3,144 bp) capable of coding for a polypeptide with a molecular weight of 119,239. The deduced amino acid sequence showed homology with the amino acid sequences of alpha-mannosidases belonging to glycoside hydrolase family 38.  相似文献   

2.
A bacterium (strain A1) isolated from a ditch synthesized three types of intracellular alginate lyases: A1-I (molecular weight [M.W.] 60,000), A1-II-2 (M.W. 25,000) and A1-III (M.W. 38,000). The nucleotide sequence of the gene for A1-I lyase, which has been cloned in Escherichia coli DH1 was determined. The open reading frame of the gene encoded 622 amino acids with a calculated M.W. of 69,153. The N-terminal amino acid sequence of A1-I lyase purified from strain A1 or E. coli DH1 cells transformed with the A1-I lyase gene was consistent with the deduced sequence from 55His to 74Ala, indicating that the A1-I lyase was synthesized as a precursor with a M.W. of 69,153 and then processed to a mature form with a M.W. of 63,681. The N-terminal sequence of the first twenty amino acids of A1-III lyase was found to match that of A1-I lyase. The N-terminal sequence of the first twenty amino acids of A1-II-2 lyase was consistent with the deduced amino acid sequence from 414Ala to 433Val in the nucleotide sequence of the A1-I lyase gene. These results indicated that the A1-I lyase was further processed to generate A1-II-2 and A1-III lyase species.  相似文献   

3.
UDPgalactose: N-acetyl-D-glucosamine 4-beta-D-galactosyltransferase (EC 2.4.1.38) (GalT) is a Golgi-membrane-bound enzyme that participates in the biosynthesis of the oligosaccharide structures of glycoproteins and glycolipids. Synthetic DNA oligomers representing segments of the published partial cDNA sequence for bovine GalT were used as molecular probes to isolate from bovine-liver cDNA libraries overlapping cDNA clones that span 1728 nucleotides and potentially code for the entire polypeptide chain of bovine galactosyltransferase. The cDNA sequence for bovine GalT reveals a 1206-base-pair open reading frame that codes for 402 amino acids, including a presumptive N-terminal membrane anchoring domain of 20 hydrophobic amino acids. The colinearity between the cDNA sequence and 29 non-overlapping amino acid residues which were positively identified by N-terminal sequencing of two polypeptides isolated from the soluble form of the enzyme was consistent with the translation frame and confirmed the authenticity of the cDNA clones. The finding of an N-terminal hydrophobic segment which serves as the membrane anchor and signal sequence suggests that the C-terminal region of the GalT polypeptide is oriented within the lumen of the Golgi membranes. This conclusion is in agreement with previous biochemical studies which indicated that the 51-kDa and 42-kDa soluble forms of the enzyme which encompass the C-terminal 324 and 297 amino acid residues of the entire GalT polypeptide, respectively, include the catalytic site.  相似文献   

4.
We purified to homogeneity an enzyme from Citrobacter sp. strain KCTC 18061P capable of decolorizing triphenylmethane dyes. The native form of the enzyme was identified as a homodimer with a subunit molecular mass of about 31 kDa. It catalyzes the NADH-dependent reduction of triphenylmethane dyes, with remarkable substrate specificity related to dye structure. Maximal enzyme activity occurred at pH 9.0 and 60 degrees C. The enzymatic reaction product of the triphenylmethane dye crystal violet was identified as its leuco form by UV-visible spectral changes and thin-layer chromatography. A gene encoding this enzyme was isolated based on its N-terminal and internal amino acid sequences. The nucleotide sequence of the gene has a single open reading frame encoding 287 amino acids with a predicted molecular mass of 30,954 Da. Although the deduced amino acid sequence displays 99% identity to the hypothetical protein from Listeria monocytogenes strain 4b H7858, it shows no overall functional similarity to any known protein in the public databases. At the N terminus, the amino acid sequence has high homology to sequences of NAD(P)H-dependent enzymes containing the dinucleotide-binding motif GXXGXXG. The enzyme was heterologously expressed in Escherichia coli, and the purified recombinant enzyme showed characteristics similar to those of the native enzyme. This is the first report of a triphenylmethane reductase characterized from any organism.  相似文献   

5.
J Laredo  V L Wolff  P S Lovett 《Gene》1988,73(1):209-214
Gene cat-86 is chloramphenicol (Cm)-inducible and specifies Cm acetyltransferase, CAT-86. The gene was previously cloned from the DNA of a strain of Bacillus pumilus. In the present study we report the construction of a constitutively expressed version of cat-86 that permits high-level expression of the gene on a plasmid in B. subtilis. A method is described that allows very rapid purification of CAT-86 protein to homogeneity. The sequence of 13 N-terminal amino acids of purified CAT-86, as well as the 26.6-kDa size of the subunit protein, agree with predictions made based on the nucleotide sequence of the gene. The Mr of the native enzyme suggests that CAT-86 is a trimer consisting of three identical protein subunits. Our studies demonstrate that cat-86 provides a convenient system for analyzing relationships between a gene and a multimeric enzyme in the B. subtilis background.  相似文献   

6.
An iron-only hydrogenase was partially purified and characterized from Desulfovibrio fructosovorans wild-type strain. The enzyme exhibits a molecular mass of 56 kDa and is composed of two distinct subunits HydA and HydB (46 and 13 kDa, respectively). The N-terminal amino acid sequences of the two subunits of the enzyme were determined with the aim of designing degenerate oligonucleotides. Direct and inverse polymerase chain reaction techniques were used to clone the hydrogenase encoding genes. A 9-nucleotide region located 75 bp upstream from the translational start codon of the D. fructosovorans hydA gene was found to be highly conserved. The analysis of the deduced amino acid sequence of these genes showed the presence of a signal sequence located in the small subunit, exhibiting the consensus sequence which is likely to be involved in the specific export mechanism of hydrogenases. Two ferredoxin-like motives involved in the coordination of [4Fe-4S] clusters were identified in the N-terminal domain of the large subunit. The amino acid sequence of the [Fe] hydrogenase from D. fructosovorans was compared with the amino acid sequences from eight other hydrogenases (cytoplasmic and periplasmic). These enzymes share an overall 18% identity and 28% similarity. The identity reached 73% and 69% when the D. fructosovorans hydrogenase sequence was compared with the hydrogenase sequences from Desulfovibrio vulgaris Hildenborough and Desulfovibrio vulgaris oxamicus Monticello, respectively.  相似文献   

7.
The activity of dye-linked d-proline dehydrogenase was found in the crude extract of a hyperthermophilic archaeon, Pyrobaculum islandicum JCM 9189. The dye-linked d-proline dehydrogenase was a membrane associated enzyme and was solubilized from the membrane fractions by treatment with Tween 20. The solubilized enzyme was purified 34-fold in the presence of 0.1% Tween 20 by four sequential chromatographies. The enzyme has a molecular mass of about 145 kDa and consisted of homotetrameric subunits with a molecular mass of about 42 kDa. The N-terminal amino acid sequence of the subunit was MKVAIVGGGIIGLFTAYHLRQQGADVVI. The enzyme retained its full activity both after incubation at 80 degrees C for 10 min and after incubation in the range of pH 4.0-10.0 at 50 degrees C for 10 min. The enzyme-catalyzed dehydrogenation of several d-amino acids was carried out using 2,6-dichloroindophenol as an electron acceptor, and d-proline was the most preferred substrate among the d-amino acids. The Michaelis constants for d-proline and 2,6-dichloroindophenol were determined to be 4.2 and 0.14 mm, respectively. Delta(1)-Pyrroline-2-carboxylate was identified as the reaction product from d-proline by thin layer chromatography. The prosthetic group of the enzyme was identified to be FAD by high-performance liquid chromatography. The gene encoding the enzyme was cloned and expressed in Escherichia coli. The nucleotide sequence of the dye-linked d-proline dehydrogenase gene was determined and encoded a peptide of 363 amino acids with a calculated molecular weight of 40,341. The amino acid sequence of the Pb. islandicum enzyme showed the highest similarity (38%) with that of the probable oxidoreductase in Sulfolobus solfataricus, but low similarity with those of d-alanine dehydrogenases from the mesophiles so far reported. This shows that the membrane-bound d-proline dehydrogenase from Pb. islandicum is a novel FAD-dependent amino acid dehydrogenase.  相似文献   

8.
9.
The glpK gene, which codes for Escherichia coli K-12 glycerol kinase (EC 2.1.7.30, ATP:glycerol 3-phosphotransferase), has been cloned into the HindIII site of pBR322. The gene was contained in a 2.8-kilobase DNA fragment which was obtained from a lambda transducing bacteriophage, lambda dglpK100 (Conrad, C.A., Stearns, G.W., III, Prater, W.E., Rheiner, J.A., and Johnson, J.R. (1984) Mol. Gen. Genet. 195, 376-378). The DNA sequence of 2 kilobases of the cloned HindIII fragment was obtained using the dideoxynucleotide method. The start of the open reading frame for the glpK gene was identified from the N-terminal sequence of the first 22 amino acid residues of the purified enzyme, which was determined by automated Edman degradation. The open reading frame codes for a protein of 502 amino acids and a molecular weight of 56,106 which is in good agreement with the value previously determined by sedimentation equilibrium. The primary structure of the protein as deduced from the gene sequence was corroborated by the isolation and sequencing of four tryptic peptides, which were found to occur at the following amino acid locations: 173-177, 203-211, 279-281, 464-468. The N-terminal sequence of the purified enzyme shows that the enzyme undergoes post-translational processing. Restriction digestion as well as DNA sequencing of the supercoiled plasmid shows that the HindIII fragment is inserted into pBR322 such that the glpK gene is transcribed in a counterclockwise direction. Examination of the upstream DNA sequence reveals two possible promoters of essentially the same efficiency: the P1 promoter of pBR322 and a hybrid promoter which contains both bacterial and pBR322 DNA sequences.  相似文献   

10.
NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae is composed of two nonidentical subunits, designated IDH1 (Mr approximately 40,000) and IDH2 (Mr approximately 39,000). We have isolated and characterized a yeast genomic clone containing the IDH2 gene. The amino acid sequence deduced from the gene indicates that IDH2 is synthesized as a precursor of 369 amino acids (Mr 39,694) and is processed upon mitochondrial import to yield a mature protein of 354 amino acids (Mr 37,755). Amino acid sequence comparison between S. cerevisiae IDH2 and S. cerevisiae NADP(+)-dependent isocitrate dehydrogenase shows no significant sequence identity, whereas comparison of IDH2 and Escherichia coli NADP(+)-dependent isocitrate dehydrogenase reveals a 33% sequence identity. To confirm the identity of the IDH2 gene and examine the relationship between IDH1 and IDH2, the IDH2 gene was disrupted by genomic replacement in a haploid yeast strain. The disruption strain expressed no detectable IDH2, as determined by Western blot analysis, and was found to lack NAD(+)-dependent isocitrate dehydrogenase activity, indicating that IDH2 is essential for a functional enzyme. Overexpression of IDH2, however, did not result in increased NAD(+)-dependent isocitrate dehydrogenase activity, suggesting that both IDH1 and IDH2 subunits are required for catalytic activity. The disruption strain was unable to utilize acetate as a carbon source and exhibited a 2-fold slower growth rate than wild type strains on glycerol or lactate. This growth phenotype is consistent with NAD(+)-dependent isocitrate dehydrogenase performing an essential role in the oxidative function of the citric acid cycle.  相似文献   

11.
A single catalase enzyme was produced by the anaerobic bacterium Bacteroides fragilis when cultures at late log phase were shifted to aerobic conditions. In anaerobic conditions, catalase activity was detected in stationary-phase cultures, indicating that not only oxygen exposure but also starvation may affect the production of this antioxidant enzyme. The purified enzyme showed a peroxidatic activity when pyrogallol was used as an electron donor. It is a hemoprotein containing one heme molecule per holomer and has an estimated molecular weight of 124,000 to 130,000. The catalase gene was cloned by screening a B. fragilis library for complementation of catalase activity in an Escherichia coli catalase mutant (katE katG) strain. The cloned gene, designated katB, encoded a catalase enzyme with electrophoretic mobility identical to that of the purified protein from the B. fragilis parental strain. The nucleotide sequence of katB revealed a 1,461-bp open reading frame for a protein with 486 amino acids and a predicted molecular weight of 55,905. This result was very close to the 60,000 Da determined by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified catalase and indicates that the native enzyme is composed of two identical subunits. The N-terminal amino acid sequence of the purified catalase obtained by Edman degradation confirmed that it is a product of katB. The amino acid sequence of KatB showed high similarity to Haemophilus influenzae HktE (71.6% identity, 66% nucleotide identity), as well as to gram-positive bacterial and mammalian catalases. No similarities to bacterial catalase-peroxidase-type enzymes were found. The active-site residues, proximal and distal hemebinding ligands, and NADPH-binding residues of the bovine liver catalase-type enzyme were highly conserved in B. fragilis KatB.  相似文献   

12.
The atp operon of Ilyobacter tartaricus, strain DSM 2382, was completely sequenced using conventional and inverse polymerase chain reaction (i-PCR) techniques. It contains nine open reading frames that were attributed to eight structural genes of the F(1)F(o) ATP synthase and the atpI gene, which is not part of the enzyme complex. The initiation codons of all atp genes, except that of atpB coding for the a subunit, were identified by the corresponding N-terminal amino acid sequence. The hydrophobic a subunit was identified by MALDI mass spectrometry. The atp genes of I. tartaricus are arranged in one operon with the sequence atpIBEFHAGDC comprising 6,992 base pairs with a GC content of 38.1%. The F(1)F(o) ATP synthase of I. tartaricus has a calculated molecular mass of 510 kDa and includes 4,810 amino acids. The gene sequences and products reveal significant identities to atp genes of other Na(+)-translocating F(1)F(o) ATP synthases, especially in the F(o) subunits a and c which are directly involved in ion translocation.  相似文献   

13.
We purified to homogeneity an enzyme from Citrobacter sp. strain KCTC 18061P capable of decolorizing triphenylmethane dyes. The native form of the enzyme was identified as a homodimer with a subunit molecular mass of about 31 kDa. It catalyzes the NADH-dependent reduction of triphenylmethane dyes, with remarkable substrate specificity related to dye structure. Maximal enzyme activity occurred at pH 9.0 and 60°C. The enzymatic reaction product of the triphenylmethane dye crystal violet was identified as its leuco form by UV-visible spectral changes and thin-layer chromatography. A gene encoding this enzyme was isolated based on its N-terminal and internal amino acid sequences. The nucleotide sequence of the gene has a single open reading frame encoding 287 amino acids with a predicted molecular mass of 30,954 Da. Although the deduced amino acid sequence displays 99% identity to the hypothetical protein from Listeria monocytogenes strain 4b H7858, it shows no overall functional similarity to any known protein in the public databases. At the N terminus, the amino acid sequence has high homology to sequences of NAD(P)H-dependent enzymes containing the dinucleotide-binding motif GXXGXXG. The enzyme was heterologously expressed in Escherichia coli, and the purified recombinant enzyme showed characteristics similar to those of the native enzyme. This is the first report of a triphenylmethane reductase characterized from any organism.  相似文献   

14.
The enzyme chorismate synthase was purified in milligram quantities from an overproducing strain of Escherichia coli. The amino acid sequence was deduced from the nucleotide sequence of the aroC gene and confirmed by determining the N-terminal amino acid sequence of the purified enzyme. The complete polypeptide chain consists of 357 amino acid residues and has a calculated subunit Mr of 38,183. Cross-linking and gel-filtration experiments show that the enzyme is tetrameric. An improved purification of chorismate synthase from Neurospora crassa is also described. Cross-linking and gel-filtration experiments on the N. crassa enzyme show that it is also tetrameric with a subunit Mr of 50,000. It is proposed that the subunits of the N. crassa enzyme are larger because they contain a diaphorase domain that is absent from the E. coli enzyme.  相似文献   

15.
S L Li  S Norioka    F Sakiyama 《Journal of bacteriology》1990,172(11):6506-6511
Two bacteriolytic enzymes secreted by Achromobacter lyticus M497-1 were purified and identified as being very similar (considering their amino acid composition and N-terminal sequence) to alpha- and beta-lytic proteases from Lysobacter enzymogenes. A 1.8-kb EcoRI fragment containing the structural gene for beta-lytic protease was cloned from A. lyticus chromosomal DNA. The protein sequence deduced from the nucleotide sequence was identical to the known sequence of beta-lytic protease, except for six residues. The nucleotide sequence revealed that the mature enzyme is composed of 179 amino acid residues with an additional 195 amino acids at the amino-terminal end of the enzyme, which includes the signal peptide, thus indicating that the enzyme is synthesized as a precursor protein.  相似文献   

16.
17.
beta-Xylosidase (1,4-beta-D-xylan xylohydrolase EC 3.2.1.37) and xylose isomerase (D-xylose ketol-isomerase EC 5.3.1.5) produced by Streptomyces sp. strain EC 10, were cell-bound enzymes induced by xylan, straw, and xylose. Enzyme production was subjected to a form of carbon catabolite repression by glycerol. beta-Xylosidase and xylose isomerase copurified strictly, and the preparation was found homogeneous by gel electrophoresis after successive chromatography on DEAE-Sephacel and gel filtration on Biogel A. Streptomyces sp. produced apparently a bifunctional beta-xylosidase-xylose isomerase enzyme. The molecular weight of the enzyme was measured to be 163,000 by gel filtration and 42,000 by SDS-PAGE, indicating that the enzyme behaved as a tetramer of identical subunits. The Streptomyces sp. beta-xylosidase was a typical glycosidase acting as an exoenzyme on xylooligosaccharides, and working optimally at pH 7.5 and 45 degrees C. The xylose isomerase optimal temperature was 70 degrees C and maximal activity was observed in a broad range pH (5-8). Enhanced saccharification of arabinoxylan caused by the addition of the enzyme to endoxylanase suggested a cooperative enzyme action. The first 35 amino acids of the N-terminal sequence of the enzyme showed strong analogies with N-terminal sequences of xylose isomerase produced by other microorganisms but not with other published N-terminal sequences of beta-xylosidases.  相似文献   

18.
A novel beta-transaminase gene was cloned from Mesorhizobium sp. strain LUK. By using N-terminal sequence and an internal protein sequence, a digoxigenin-labeled probe was made for nonradioactive hybridization, and a 2.5-kb gene fragment was obtained by colony hybridization of a cosmid library. Through Southern blotting and sequence analysis of the selected cosmid clone, the structural gene of the enzyme (1,335 bp) was identified, which encodes a protein of 47,244 Da with a theoretical pI of 6.2. The deduced amino acid sequence of the beta-transaminase showed the highest sequence similarity with glutamate-1-semialdehyde aminomutase of transaminase subgroup II. The beta-transaminase showed higher activities toward d-beta-aminocarboxylic acids such as 3-aminobutyric acid, 3-amino-5-methylhexanoic acid, and 3-amino-3-phenylpropionic acid. The beta-transaminase has an unusually broad specificity for amino acceptors such as pyruvate and alpha-ketoglutarate/oxaloacetate. The enantioselectivity of the enzyme suggested that the recognition mode of beta-aminocarboxylic acids in the active site is reversed relative to that of alpha-amino acids. After comparison of its primary structure with transaminase subgroup II enzymes, it was proposed that R43 interacts with the carboxylate group of the beta-aminocarboxylic acids and the carboxylate group on the side chain of dicarboxylic alpha-keto acids such as alpha-ketoglutarate and oxaloacetate. R404 is another conserved residue, which interacts with the alpha-carboxylate group of the alpha-amino acids and alpha-keto acids. The beta-transaminase was used for the asymmetric synthesis of enantiomerically pure beta-aminocarboxylic acids. (3S)-Amino-3-phenylpropionic acid was produced from the ketocarboxylic acid ester substrate by coupled reaction with a lipase using 3-aminobutyric acid as amino donor.  相似文献   

19.
A gene for alpha-acetolactate decarboxylase (ALDC) was cloned from Bacillus brevis in Escherichia coli and in Bacillus subtilis. The 1.3-kilobase-pair nucleotide sequence of the gene, aldB, encoding ALDC and its flanking regions was determined. An open reading frame of 285 amino acids included a typical N-terminal signal peptide of 24 or 27 amino acids. A B. subtilis strain harboring the aldB gene on a recombinant plasmid processed and secreted ALDC. In contrast, a similar enzyme from Enterobacter aerogenes is intracellular.  相似文献   

20.
The gene pcpC, encoding tetrachloro-p-hydroquinone (TeCH) reductive dehalogenase, was cloned from Flavobacterium sp. strain ATCC 39723 and sequenced. The gene was identified by hybridization with a degenerate oligonucleotide designed from the N-terminal sequence of the purified protein. An open reading frame of 747 nucleotides was found, which predicts a translational product of 248 amino acids having a molecular weight of 28,263, which agrees favorably with the sodium dodecyl sulfate-polyacrylamide gel electrophoresis-determined molecular weight of 30,000 reported for the purified protein. The predicted translational product of pcpC matched the N-terminal sequence of the purified protein exactly. From the nucleotide sequence, the protein appears to have a processed formylmethionyl. An Escherichia coli pcpC overexpression clone was shown to produce dichlorohydroquinone and trichlorohydroquinone from TeCH. Protein data base searches grouped the predicted translational sequence of pcpC with two previously reported plant glutathione S-transferases but less significantly with any of the mammalian glutathione S-transferases or the glutathione-utilizing, hydrolytic dechlorinating enzyme from Methylobacterium sp. strain DM4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号