首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Florida lancelets were raised in laboratory cultures from the egg to the juvenile stage. At frequent intervals during development, elongation of the embryonic and larval body was measured at room temperature (22.5°C) and at the approximate temperature of the natural environment (30°C). Development was slower at the lower temperature, with metamorphosis commencing during the fifth week as compared to the third week at the higher temperature. Scanning electron microscopy (SEM) was used to describe a frequently sampled series of hatched embryos, pre-metamorphic larvae, metamorphic larvae, and juveniles. The advent (and sometimes subsequent disappearance) of the following structures was determined from the SEM data: general epidermal ciliation, peroral pit, mouth, primary gill slits, ciliary tuft, external opening of the club-shaped gland, sense cells, anus, metapleural folds, and preoral cirri. Our SEM did not substantiate the claims of van Wijhe for a transitory larval mouth near the anteriovental end of the larvae. The general epidermal cilation, which is uniformly distributed in the embryos, becomes somewhat reduced in the pre-metamorphic larvae and then disappears almost entirely during metamorphosis. The epidermis includes two distinct sense cell types (I and II) and possibly a third type (the ventral pit cells, to which an adhesive role has alternatively been attributed). The anus first opens on the right-hand side and only later migrates across the mid-ventral line to assume a position on the left-hand side of the larva; this is contrary to the established view that the anus of the larval lancelets opens on the left-hand side and remains there.  相似文献   

2.
The Pitx homeobox gene family has important roles in vertebrate pituitary, eye, branchial arch, hindlimb and brain development, as well as a key function in regulating left-right asymmetry. Here we report the isolation of a Pitx gene, PitxA, from two lamprey species, Lampetra planeri and Petromyzon marinus. Molecular phylogenetics show PitxA is most closely related to the Pitx1 and Pitx2 genes of jawed vertebrates, however resolution in the trees is insufficient to determine if PitxA is orthologous to a specific jawed vertebrate gene. In situ hybridisation studies show lamprey PitxA is expressed in the developing nasohypohyseal system and stomodeal ectoderm from early development through to early ammocoette larvae. PitxA expression was also detected in several areas of the developing brain, in the developing optic system, in pharyngeal endoderm and endostyle and in the lateral somite. These results show some key aspects of Pitx gene expression in gnathostomes are primitive for all living vertebrates.  相似文献   

3.
A variety of TGF-beta-related ligands regulate the left-right asymmetry of vertebrates but the involvement of TGF-betas in left-right specification has not been reported. We assessed whether TGF-beta signaling is involved in the left-right specification of Xenopus post-gastrula embryos by microinjecting Xenopus TGF-beta5 protein into the left or right flank of neurula-tailbud embryos. Injection on the right side of neurulae caused left-right reversal of the internal organs in 93% of the embryos, while injection on the left side caused less than 5% left-right reversal. Expression of Xenopus nodal related-1 (Xnr-1 ), Xenopus antivin and Xenopus Pitx2, which are normally expressed on the left, was unaltered by the left-side injection. In contrast, right-side injection into neurulae induced the expression of these genes predominantly on the right side. Right-side injection into tailbud embryos caused bilateral expression of these handed genes. Time course analysis of asymmetric gene expression revealed that Xnr-1 could be induced by TGF-beta5 at late neurula stage, while antivin and Pitx2 could be induced by TGF-beta5 at the latertail bud stage. Injection of the antisense morpholino oligonucleotide against Xenopus TGF-beta5 into the left dorsal blastomere inhibited the normal left-handed expression of Xnr-1 and Pitx2, and caused the organ reversal in the injected embryos. These results suggest that normal left-right balance of endogenous TGF-beta5 signaling in the neurula embryo may be needed to determine the laterality of the asymmetric genes and to generate the correct left-right axis.  相似文献   

4.
Pitx2 is expressed in developing visceral organs on the left side and is implicated in left-right (LR) asymmetric organogenesis. The asymmetric expression of Pitx2 is controlled by an intronic enhancer (ASE) that contains multiple Foxh1-binding sites and an Nkx2-binding site. These binding sites are essential and sufficient for asymmetric enhancer activity and are evolutionarily conserved among vertebrates. We now show that mice that lack the ASE of Pitx2 (Pitx2(Delta)(ASE/)(Delta)(ASE) mice) fail to manifest left-sided Pitx2 expression and exhibit laterality defects in most visceral organs, although the position of the stomach and heart looping remain unaffected. Asymmetric Pitx2 expression in some domains, such as the common cardinal vein, was found to be induced by Nodal signaling but to be independent of the ASE of Pitx2. Expression of Pitx2 appears to be repressed in a large portion of the heart ventricle and atrioventricular canal of wild-type mice by a negative feedback mechanism at a time when the gene is still expressed in its other domains. Rescue of the early phase of asymmetric Pitx2 expression in the left lateral plate of Pitx2(Delta)(ASE/)(Delta)(ASE) embryos was not sufficient to restore normal organogenesis, suggesting that continuous expression of Pitx2 in the lineage of the left lateral plate is required for situs-specific organogenesis.  相似文献   

5.
The asymmetric positioning of internal organs on the left or right side of the body is highly conserved in vertebrates and relies on a Nodal signaling pathway acting on the left side of the embryo. Whether the same pathway also regulates left-right asymmetry in invertebrates and what is the evolutionary origin of the mechanisms controlling left-right determination are not known. Here, we show that nodal regulates left-right asymmetry in the sea urchin but that, intriguingly, its expression is reversed compared to vertebrates. Nodal signals emitted from the right side of the larva prevent the right coelomic pouch from forming the imaginal rudiment. Inhibition of Nodal signaling after gastrulation causes formation of an ectopic rudiment on the right side, leading to twinned urchins after metamorphosis. In contrast, ectopic activation of the pathway prevents formation of the rudiment. Our results show that the mechanisms responsible for left-right determination are conserved within basal deuterostomes.  相似文献   

6.
7.
The left-right asymmetry of the vertebrate heart is evident in the topology of the heart loop, and in the dissimilar morphology of the left and right chambers. How left-right asymmetric gene expression patterns influence the development of these features is not understood, since the individual roles of the left and right sides of the embryo in heart looping or chamber morphogenesis have not been specifically defined. To this end, we have constructed a bilateral heart-specific fate map of the left and right contributions to the developing heart in the Xenopus embryo. Both the left and right sides contribute to the conoventricular segment of the heart loop; however, the left side contributes to the inner curvature and ventral face of the loop while the right side contributes to the outer curvature and dorsal aspect. In contrast, the left atrium is derived mainly from the original left side of the embryo, while the right atrium is derived primarily from the right side. A comparison of our fate map with the domain of expression of the left-right gene, Pitx2, in the left lateral plate mesoderm, reveals that this Pitx2-expressing region is fated to form the inner curvature of the heart loop, the left atrioventricular canal, and the dorsal aspect of the left atrium. We discuss the implications of these results for the role of left-right asymmetric gene expression in heart looping and chamber morphogenesis.  相似文献   

8.
9.
All vertebrates have directional asymmetries in the organization of their internal organs. In jawed vertebrates, development of asymmetry is controlled by a conserved molecular pathway that includes Pitx2, which is expressed by lateral plate mesoderm cells on the left side of the embryo. Pitx2 is a member of the Pitx homeobox gene family, the expression of which also marks stomodeal ectoderm and the adenohypophysis. Here we report the characterization of Pitx genes from Branchiostoma floridae (an amphioxus) and Ciona intestinalis (a urochordate), representatives of two basal chordate lineages and successively deeper outgroups to the vertebrates. Expression of B. floridae Pitx is similar to that reported from B. belcheri, a different amphioxus species. Expression of the Ciona Pitx ortholog in the embryonic primordial pharynx and adult neural complex leads us to propose the Ciona primordial pharynx and ciliated funnel are homologous to the adenohypophyseal placode and adenohypophysis, respectively. Additionally, in both species we identify asymmetrical left-sided expression of Pitx genes during embryonic development. This shows that asymmetrical Pitx gene expression, and by inference directional asymmetry, evolved before the radiation of living chordates and should be considered a chordate character.  相似文献   

10.
A low-to-medium power transmission electron microscopy survey of the larval head of amphioxus was used to re-examine the position and constituent cell types of the mucus-secreting organs involved in feeding. Previously unreported features include cells with fibril-filled paraciliary processes in the recessed (pit) portion of the preoral organ, which probably assist in generating the mucus string produced by this structure, and the cell responsible for driving the current through the club-shaped gland, which appears to depend on a mechanism analogous to Archimedes' screw. Pharyngeal structures are dramatically repositioned during larval growth and metamorphosis. Mapping these changes shows that they are most easily explained if the positioning of the mouth is not directly controlled by the mechanism used to pattern the rest of the ventral pharynx. This accords with the predictions of the dorsoventral inversion hypothesis, which requires that an originally dorsal mouth in the inverted chordate ancestor be secondarily shifted to the ventral surface. It is argued here, on this basis, that the repositioning of the larval mouth in amphioxus, from the left side to the ventral midline, represents a partial recapitulation of past evolutionary events.  相似文献   

11.
The embryonic midline in vertebrates has been implicated in left-right development, but the mechanisms by which it regulates left-right asymmetric gene expression and organ morphogenesis are unknown. Zebrafish embryos have three domains of left-right asymmetric gene expression that are useful predictors of organ situs. cyclops (nodal), lefty1 and pitx2 are expressed in the left diencephalon; cyclops, lefty2 and pitx2 are expressed in the left heart field; and cyclops and pitx2 are expressed in the left gut primordium. Distinct alterations of these expression patterns in zebrafish midline mutants identify four phenotypic classes that have different degrees of discordance among the brain, heart and gut. These classes help identify two midline domains and several genetic pathways that regulate left-right development. A cyclops-dependent midline domain, associated with the prechordal plate, regulates brain asymmetry but is dispensable for normal heart and gut left-right development. A second midline domain, associated with the anterior notochord, is dependent on no tail, floating head and momo function and is essential for restricting asymmetric gene expression to the left side. Mutants in spadetail or chordino give discordant gene expression among the brain, heart and gut. one-eyed pinhead and schmalspur are necessary for asymmetric gene expression and may mediate signaling from midline domains to lateral tissues. The different phenotypic classes help clarify the apparent disparity of mechanisms proposed to explain left-right development in different vertebrates.  相似文献   

12.
Here we report on spawning and development of the Bahama lancelet, Asymmetron lucayanum. Ripe adults collected in Bimini spawned the same evening when placed in the dark for 90 minutes. The developmental morphology is described from whole mounts and histological sections. A comparison between development in Asymmetron and the better known cephalochordate genus Branchiostoma reveals similarities during the early embryonic stages but deviations by the late embryonic and early larval stages. Thus, the initial positions of the mouth, first gill slit, and anus differ between the two genera. Even more strikingly, Hatschek's right and left diverticula, which arise by enterocoely at the anterior end of the pharynx in Branchiostoma, never form during Asymmetron development. In Branchiostoma, these diverticula become the rostral coelom and preoral pit. In Asymmetron, by contrast, homologs of the rostral coelom and preoral pit form by schizocoely within an anterior cell cluster of unproven (but likely endodermal) origin. Proposing evolutionary scenarios to account for developmental differences between Asymmetron and Branchiostoma is currently hampered by uncertainty over which genus is basal in the cephalochordates. A better understanding of developmental diversity within the cephalochordates will require phylogenetic analyses based on nuclear genes and the genome sequence of an Asymmetron species.  相似文献   

13.
14.
15.
The proprotein convertases (PCs) comprise a family of subtilisin-like endoproteases that activate precursor proteins (including, prohormones, growth factors, and adhesion molecules) during their transit through secretory pathways or at the cell surface. To explore the evolution of the PC gene family in chordates, we made a phylogenetic analysis of PC genes found in databases, with special attention to three PC genes of the cephalochordate amphioxus, the closest living invertebrate relative to the vertebrates. Since some vertebrate PC genes are essential for early development, we investigated the expression pattern of the C isoform of the amphioxus PC6 gene (aPC6C). In amphioxus embryos and larvae, aPC6C is expressed at places where epithelia fuse. Several kinds of fusions occur: ectoderm-to-ectoderm during neurulation; mesoderm-to-ectoderm during formation of the preoral ciliated pit; and endoderm-to-ectoderm during formation of the mouth, pharyngeal slits, anus, and external opening of the club-shaped gland. Presumably, at all these sites, aPC6C is activating proteins favoring association between previously disjunct cell populations.  相似文献   

16.
During vertebrate embryonic development, the organs of the chest and abdomen, heart, lung and gastrointestinal tract, acquire characteristic asymmetric positions with respect to the left-right body axis. In the beginning of the 20th century Hans Spemann and his co-workers described manipulations of amphibian embryos which resulted in inversion of organ laterality in a predictable manner. Hedwig Wilhelmi concluded from these experiments that determinants on the left side of the embryo specify laterality, and Meyer postulated that a mediator should transfer this positional information to the forming heart. In this review we discuss the classical experiments in the light of recent advances in the molecular understanding of left-right development, with a focus on the mediator role of the homeobox gene Pitx2.  相似文献   

17.
Pitx2, a bicoid-related homeobox gene, is involved in Rieger's syndrome and the left-right (L-R) asymmetrical pattern formation in body plan. In order to define the genomic structure and roles of Pitx2, we analyzed the genomic structure and generated Pitx2-deficient mice with the lacZ gene in the homeobox-containing exon of Pitx2. We were able to show that among three isoforms of Pitx2, Pitx2c shows asymmetrical expression whereas Pitx2a, Pitx2b and Pitx2c show symmetrical expression. In Pitx2(-)(/)(-) embryos there was an increase in mesodermal cells in the distal end of the left lateral body wall and an amnion continuous with the lateral body wall thickened in its mesodermal layer. These changes resulted in a failure of ventral body wall closure. In lung and heart in which Pitx2 is expressed asymmetrically, right pulmonary isomerism, atrioventricular canals with prominent swelling, and juxtaposition of the atrium were detected. The hearts failed to develop tricuspid and mitral valves and a common atrioventricular valve forms. Further, dysgenesis of the Pitx2(-)(/)(-) extraocular muscle and thickening of the mesothelial layer of cornea were observed in the ocular system where Pitx2 is expressed symmetrically, and these resulted in enophthalmos. The present study shows that Pitx2 expressed in various sites participates in morphogenesis through three types of actions: the involvement of asymmetric Pitx2 expression in the entire morphogenetic process of L-R asymmetric organs; the involvement of asymmetric Pitx2 expression in the regional morphogenesis of asymmetric organs; and finally the involvement of symmetric Pitx2 expression in the regional morphogenesis of symmetric organs.  相似文献   

18.
19.
Immunofluorescence was used to study the distribution of FMRFamide (Phe-Met-Arg-Phe-NH2) in premetamorphic larvae and adults of the lancelet, Branchiostoma lanceolatum. In the larvae, FMR-Famide-containing presumably neuronal perikarya and fibers were limited to the anterior third of the dorsal nerve cord. Throughout this region, most of the immunoreactive perikarya and fibers were located ventrolaterally and ventrally within the nerve cord; in addition, in the caudal part of the cerebral vesicle, some of the immunofluorescent cells projected cytoplasmic extensions across the slot-like neural canal. In adult lancelets, immunofluorescence was detected in cells of the Hatschek's pit (a probable homologue of the anterior hypophysis of vertebrates); however, no immunofluorescence was detected in the larval preoral pit, which is the ontogenetic precursor of Hatschek's pit. Moreover, the FMR-Famide-containing elements do not show immunoreactivity to other peptides of the FaRPs family such as pancreatic polypeptide (PP). The results suggest that FMRF-amide may be involved in neuroendocrine functions of lancelets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号