首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glioblastoma (GBM) continues to show a poor prognosis despite advances in diagnostic and therapeutic approaches. The discovery of reliable prognostic indicators may significantly improve treatment outcome of GBM. In this study, we aimed to explore the function of verbascoside (VB) in GBM and its effects on GBM cell biological processes via let-7g-5p and HMGA2. Differentially expressed GBM-related microRNAs (miRNAs) were initially screened. Different concentrations of VB were applied to U87 and U251 GBM cells, and 50 µmol/L of VB was selected for subsequent experiments. Cells were transfected with let-7g-5p inhibitor or mimic, and overexpression of HMGA2 or siRNA against HMGA2 was induced, followed by treatment with VB. The regulatory relationships between VB, let-7g-5p, HMGA2 and Wnt/β-catenin signalling pathway were determined. The results showed that HMGA2 was a direct target gene of let-7g-5p. VB treatment or let-7g-5p overexpression inhibited HMGA2 expression and the activation of Wnt/β-catenin signalling pathway, which further inhibited cell viability, invasion, migration, tumour growth and promoted GBM cell apoptosis and autophagy. On the contrary, HMGA2 overexpression promoted cell viability, invasion, migration, tumour growth while inhibiting GBM cell apoptosis and autophagy. We demonstrated that VB inhibits cell viability and promotes cell autophagy in GBM cells by up-regulating let-7g-5p and down-regulating HMGA2 via Wnt/β-catenin signalling blockade.  相似文献   

2.
3.
Propofol is one of the most extensively used intravenous anaesthetic agents, which has been found to improve the surgical intervention outcome of several types of cancer, including hepatocellular carcinoma (HCC). Additionally, in vitro and in vivo experiments have also indicated that propofol affects the biological behaviour of HCC. However, the underlying mechanisms of the surgical resection of HCC with propofol have not been fully understood. In the present study, we aimed to investigate the underlying mechanism of propofol inhibition of the growth and invasion of HCC cells. Our results showed that treatment with propofol suppressed the proliferation, invasion and migration of HCC in vitro. The subcutaneous xenograft tumour and orthotopic xenograft tumour experiments in nude mice showed that propofol significantly decreased tumour volumes, growth rates and the liver orthotopic xenograft tumour in vivo. Furthermore, the underlying mechanism investigations of the suppressive effects of propofol on HCC cells revealed that propofol treatment upregulated the expression levels of the candidate tumour suppressor miR-219-5p. Silencing of propofol-induced miR-219-5p using anti-miR-219-5p abrogated the inhibitory effects on the proliferation, migration and invasion of HCC cells exerted by propofol treatment. Additionally, we demonstrated that propofol reversed the epithelial-mesenchymal transition of Huh7 and SMMC7721 cells via miR-219-5p induction. The molecular mechanism behind these findings is that propofol-induced miR-219-5p inhibits HCC cell progression by targeting glypican-3 and subsequently results in the inhibition of Wnt/β-catenin signalling. Taken together, our study provides new insights into the advantages of the surgical intervention of HCC with propofol anaesthetization.  相似文献   

4.
《Genomics》2023,115(5):110684
This study aims to elucidate the effect of ARHGAP9 on lung adenocarcinoma (LUAD) metastasis, and preliminarily explore its molecular mechanism. As a result, we found that ARHGAP9 was downregulated and correlated with poor prognosis of LUAD. ARHGAP9 knockdown promoted LUAD cell proliferation, migration and invasion, inhibited cell apoptosis and reduced G0G1 cell cycle arrest, in contrast to the results of ARHGAP9 overexpression. Further RNA sequencing analysis demonstrated that ARHGAP9 knockdown in H1299 cells significantly reduced DKK2 (dickkopf related protein 2) expression. Silencing ARHGAP9 in H1299 cells while overexpressing DKK2, DKK2 reversed the promoted effects of ARHGAP9 knockdown on LUAD cell proliferation, migration and invasion. Meanwhile, the activity of Wnt/β-catenin signaling pathway was also reduced. Taken together, these data indicated that ARHGAP9 knockdown promoted LUAD metastasis by activating Wnt/β-catenin signaling pathway via suppressing DKK2. This may provide a new strategy for LUAD treatment.  相似文献   

5.
Hypoxia is a universal characteristic of solid tumor and involving cancer metastasis via epithelial-mesenchymal transition (EMT). Nobiletin (3′,4′,5,6,7,8-hexamethoxyflavone), a dietary polymethoxylated flavonoid found in citrus fruits, has been reported to have anticancer effects. However, the possible role of nobiletin in renal cell carcinoma (RCC) remains unclear. Thus, the aim of this study was to identify the effect of nobiletin on hypoxia-induced EMT in RCC cells. We found that nobiletin significantly inhibited the migration and invasion induced by hypoxia in RCC cells. In addition, nobiletin reversed the hypoxia-induced EMT process in RCC cells. Furthermore, nobiletin suppressed the activation of NF-κB and Wnt/β-catenin signaling pathways in hypoxia-stimulated RCC cells. In conclusion, these findings demonstrate that nobiletin inhibits hypoxia-induced EMT in human RCC cells via the inactivation of the NF-κB and Wnt/β-catenin signaling pathways.  相似文献   

6.
Wnt/β-catenin signalling regulates cell proliferation by modulating the cell cycle and is negatively regulated by conductin/axin2/axil. We show that conductin levels peak at G2/M followed by a rapid decline during return to G1. In line with this, Wnt/β-catenin target genes are low at G2/M and high at G1/S, and β-catenin phosphorylation oscillates during the cell cycle in a conductin-dependent manner. Conductin is degraded by the anaphase-promoting complex/cyclosome cofactor CDC20. Knockdown of CDC20 blocks Wnt signalling through conductin. CDC20-resistant conductin inhibits Wnt signalling and attenuates colony formation of colorectal cancer cells. We propose that CDC20-mediated degradation of conductin regulates Wnt/β-catenin signalling for maximal activity during G1/S.  相似文献   

7.
miR‐516a‐3p has been reported to play a suppressive role in several types of human tumours. However, the expression level, biological function and fundamental mechanisms of miR‐516a‐3p in breast cancer remain unclear. In the present study, we found that miR‐516a‐3p expression was down‐regulated and Pygopus2 (Pygo2) expression was up‐regulated in human breast cancer tissues and cells. Through analysing the clinicopathological characteristics, we demonstrated that low miR‐516a‐3p expression or positive Pygo2 expression was a predictor of poor prognosis for patients with breast cancer. The results of a dual luciferase reporter assay and Western blot analysis indicated that Pygo2 was a target gene of miR‐516a‐3p. Moreover, overexpression of miR‐516a‐3p inhibited cell growth, migration and invasion as well as epithelial‐mesenchymal transition (EMT) of breast cancer cells, whereas reduced miR‐516a‐3p expression promoted breast cancer cell growth, migration, invasion and EMT. Furthermore, we showed that miR‐516a‐3p suppressed cell proliferation, metastasis and EMT of breast cancer cells by inhibiting Pygo2 expression. We confirmed that miR‐516a‐3p exerted an anti‐tumour effect by inhibiting the activation of the Wnt/β‐catenin pathway. Finally, xenograft tumour models were used to show that miR‐516a‐3p inhibited breast cancer cell growth and EMT via suppressing the Pygo2/Wnt signalling pathway. Taken together, these results show that miR‐516a‐3p inhibits breast cancer cell growth, metastasis and EMT by blocking the Pygo2/ Wnt/β‐catenin pathway.  相似文献   

8.
Dickkopf-related protein 4 (DKK4) is a member of the dickkopf family and an inhibitor of the Wnt/β-catenin signalling pathway. This review surveyed the single nucleotide polymorphisms (SNPs), copy number variations (CNVs), hypermethylation, regulation mechanism, correlation with clinicopathological parameters and chemotherapeutic resistance of DKK4. The signal pathways involved in DKK4 mainly include Wnt/β-catenin pathway and Wnt-JNK pathway independent β-catenin. DKK4 expression was upregulated in Renal Cell Carcinoma (RCC), Colorectal Cancer, Gastric Cancer (GC), Non-small Cell Lung Cancer (NSCLC) and Epithelial Ovarian Cancer (EOC), while downregulated in Hepatocellular Carcinoma (HCC). DKK4 is not only involved in tumour growth, invasion, migration and chemotherapy resistance, but also in osteoblastogenesis and secondary hair or meibomian gland formation. DKK4 has also been linked to schizophrenia.  相似文献   

9.
Gastric cancer is a common malignancy with high mortality. Long noncoding RNA (lncRNA) zinc finger antisense (ZFAS)1 is upregulated in gastric cancer specimens compared with the para-carcinoma tissues. The silencing of ZFAS1 inhibited the growth, proliferation, cell cycle progress, migration, invasion and epithelial-mesenchymal transition (EMT), and enhanced the sensitivity to cis-platinum or paclitaxel in SGC7901 cells, as evidenced by the expression changes of proliferating cell nuclear antigen, Cyclin D1, Cyclin E, Cyclin B1, E-cadherin, N-cadherin, vimentin, matrix metalloproteinase (MMP)-2 and MMP-14. The ZFAS1 also activated the Wnt/β-catenin signaling. Subsequently, the ZFAS1 knockdown-induced the inhibition of migration, invasion, EMT and resistance to chemotherapeutic reagens was reversed by the overexpression of β-catenin. In summary, the silencing of ZFAS1 inhibited the growth, proliferation, cell cycle progress, migration, invasion, EMT and chemotherapeutic tolerance by blocking the Wnt/β-catenin signaling in gastric cancer cells.  相似文献   

10.
Prostate cancer is the second most frequent malignancy in men worldwide, and its incidence is increasing. Therefore, it is urgently required to clarify the underlying mechanisms of prostate cancer. Although the long non-coding RNA LINC00115 was identified as an oncogene in several cancers, the expression and function of LINC00115 in prostate cancer have not been explored. Our results showed that LINC00115 was significantly up-regulated in prostate cancer tissues, which was significantly associated with a poor prognosis for prostate cancer patients. Functional studies showed that knockdown LINC00115 inhibited cell proliferation and invasion. In addition, LINC00115 served as a competing endogenous RNA (ceRNA) through sponging miR-212-5p to release Frizzled Family Receptor 5 (FZD5) expression. The expression of miR-212-5p was noticeably low in tumour tissues, and FZD5 expression level was down-regulated with the knockdown of LINC00115. Knockdown LINC00115 inhibited the Wnt/β‑catenin signalling pathway by inhibiting the expression of FZD5. Rescue experiments further showed that LINC00115 inhibits prostate cancer cell proliferation and invasion via targeting miR-212-5p/ FZD5/ Wnt/β-catenin axis. The present study provided clues that LINC00115 may be a promising novel therapeutic target for prostate cancer patients.  相似文献   

11.
Autophagy is an evolutionary conserved process mediating lysosomal degradation of cytoplasmic material. Its involvement in cancer progression is highly controversial, due to its dual role in both limiting tumoural transformation and in protecting established tumoral cells from unfavorable conditions. Little is known about the cross-talk between autophagy and intracellular signalling pathways, as well as about autophagy impact on signalling molecules turnover.An aberrantly activated Wnt/β-catenin signalling is responsible for tumour proliferation, invasion, and stemness maintenance. Here we show that autophagy negatively regulates Wnt/β-catenin signalling in glioblastoma multiforme (GBM) cells, through Dishevelled degradation. We also provide the first evidence that autophagy promotes β-catenin relocalisation within the cell, by inducing a decrease of the nuclear protein fraction. In particular, upon autophagy induction, β-catenin appears mainly localized in sub-membrane areas where it associates with N-cadherin to form epithelial-like cell-cell adhesion structures.Our data indicate, for the first time, that autophagy induction results in Wnt signalling attenuation and in β-catenin relocalisation within the GBM cell. These findings further support the idea that autophagy modulation could represent a potential therapeutical strategy to contrast GBM progression.  相似文献   

12.
Adrenal cortical carcinomas (ACC) are rare but aggressive tumours associated with poor prognosis. The two most frequent alterations in ACC in patients are overexpression of the growth factor IGF2 and constitutive activation of Wnt/β-catenin signalling. Using a transgenic mouse model, we have previously shown that constitutive active β-catenin is a bona fide adrenal oncogene. However, although all these mice developed benign adrenal hyperplasia, malignant progression was infrequent, suggesting that secondary genetic events were required for aggressive tumour development. In the present paper, we have tested IGF2 oncogenic properties by developing two distinct transgenic mouse models of Igf2 overexpression in the adrenal cortex. Our analysis shows that despite overexpression levels ranging from 7 (basal) to 87 (ACTH-induced) fold, Igf2 has no tumour initiating potential in the adrenal cortex. However, it induces aberrant accumulation of Gli1 and Pod1-positive progenitor cells, in a hedgehog-independent manner. We have also tested the hypothesis that Igf2 may cooperate with Wnt signalling by mating Igf2 overexpressing lines with mice that express constitutive active β-catenin in the adrenal cortex. We show that the combination of both alterations has no effect on tumour phenotype at stages when β-catenin-induced tumours are benign. However, there is a mild promoting effect at later stages, characterised by increased Weiss score and proliferation. Formation of malignant tumours is nonetheless a rare event, even when Igf2 expression is further increased by ACTH treatment. Altogether these experiments suggest that the growth factor IGF2 is a mild contributor to malignant adrenocortical tumourigenesis.  相似文献   

13.
为研究飞燕草素对乳腺癌MDA-MB-231细胞Wnt/β-catenin信号通路的影响。免疫组化检测裸鼠乳腺肿瘤组织和肺组织转移瘤Ki-67及乳腺肿瘤组织蛋白水解酶超家族基质金属蛋白酶-7(matrix metallopeptidase 7,MMP-7)的表达水平;Western blot检测移植瘤Wnt/β-catenin通路β-联蛋白(β-catenin)、磷酸糖原合成酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)及通路下游细胞周期相关蛋白cyclinD1、原癌基因c-myc和MMP-7的蛋白水平表达,体内外实验发现飞燕草素不仅能抑制裸鼠异种移植瘤生长及乳腺癌肿瘤组织和肺组织转移瘤Ki-67表达还可以明显降低乳腺癌MDA-MB-231细胞Wnt/β-catenin信号通路β-catenin和p-GSK-3β下游靶基因c-myc、cyclin D1和MMP-7蛋白的表达。本研究证实飞燕草素能通过抑制Wnt/β-catenin信号通路,发挥抑制乳腺癌的作用。  相似文献   

14.
KCTD11 has been reported to be a potential tumour suppressor in several tumour types. However, the expression of KCTD11 and its role has not been reported in human non-small cell lung cancer (NSCLC). Whether its potential molecular mechanism is related to its BTB domain is also unknown. The expression of KCTD11 in 139 NSCLC tissue samples was detected by immunohistochemistry, and its correlation with clinicopathological factors was analysed. The effect of KCTD11 on the biological behaviour of lung cancer cells was verified in vitro and in vivo. Its effect on the epithelial-mesenchymal transition(EMT)process and the Wnt/β-catenin and Hippo/YAP pathways were observed by Western blot, dual-luciferase assay, RT-qPCR, immunofluorescence and immunoprecipitation. KCTD11 is under-expressed in lung cancer tissues and cells and was negatively correlated with the degree of differentiation, tumour-node-metastasis (TNM) stage and lymph node metastasis. Low KCTD11 expression was associated with poor prognosis. KCTD11 overexpression inhibited the proliferation and migration of lung cancer cells. Further studies indicated that KCTD11 inhibited the Wnt pathway, activated the Hippo pathway and inhibited EMT processes by inhibiting the nuclear translocation of β-catenin and YAP. KCTD11 lost its stimulatory effect on the Hippo pathway after knock down of β-catenin. These findings confirm that KCTD11 inhibits β-catenin and YAP nuclear translocation as well as the malignant phenotype of lung cancer cells by interacting with β-catenin. This provides an important experimental basis for the interaction between KCTD11, β-catenin and YAP, further revealing the link between the Wnt and Hippo pathways.  相似文献   

15.
Human SLFN5 inhibits invasions of IFNα-sensitive renal clear-cell carcinoma and melanoma cells. However, whether this inhibition is confined to these IFNα-sensitive cancers is unclear. Here we show that SLFN5 expressions on both mRNA and protein levels are significantly higher in non/low-invasive cancer cell lines (breast cancer cell line MCF7, colorectal cancer cell line HCT116 and lung cancer cell line A549) than in highly-invasive cancer cell lines (fibrosarcoma cell line HT1080 and renal clear cell cancer cell line 786-0). SLFN5 knockdown in non/low-invasive cancer cell lines enhanced MT1-MMP expression and increased migration and invasion in vitro, and in vivo. Furthermore, SLFN5 overexpression in HT1080 and 786-0 inhibited MT1-MMP expression and repressed migration and invasion. MT1-MMP is instrumental in SLFN5-controlled inhibition of cancer cell migration and invasion, as shown by MT1-MMP-knockdown and -overexpression analyses. SLFN5 knockdown activated AKT/GSK-3β/β-catenin pathway by promotion AKT phosphorylation and subsequent GSK-3β phosphorylation, further β-catenin translocation into nucleus as un-phosphorylated protein at Ser33, 37 and 45 and Thr41 sites. This is the first study to report that SLFN5 inhibits cancer migration and invasiveness in several common cancer cell lines by repressing MT1-MMP expression via the AKT/GSK-3β/β-catenin signalling pathway, suggesting that SLFN5 plays wide inhibitory roles in various cancers.  相似文献   

16.
Renal cell carcinoma (RCC) is the most common primary malignancy of the kidney and one of the most lethal genitourinary malignancies. Clear-cell renal cell carcinoma (ccRCC) has an extremely poor prognosis because of a high potential for tumor growth, vascular invasion, metastasis and recurrence. Unfortunately, the mechanism of RCC growth and metastasis is not well understood. In this report, we for the first time demonstrated ubiquitin protein ligase E3C (UBE3C) as a driving factor for RCC growth and metastasis. UBE3C expression was increased in ccRCC tissues compared with adjacent normal tissues. ccRCC patients with high UBE3C protein expression in tumors were associated with significantly worse postoperative survival. Knockdown of UBE3C expression in ACHN cells inhibited cell proliferation, migrations and invasiveness in vitro while overexpression of UBE3C in 786-O cells exerted the opposite effects. UBE3C up-regulated β-catenin protein levels and promoted β-catenin nuclear accumulation, leading to the activation of the Wnt/β-catenin signal pathway in RCC cells. Collectively, these observations suggest that UBE3C plays an important role in RCC development and progression, and UBE3C may be a novel target for prevention and treatment of ccRCC.  相似文献   

17.
Melanoma is a highly aggressive type of skin cancer. The development of diverse resistance mechanisms and severe adverse effects significantly limit the efficiency of current therapeutic approaches. Identification of the new therapeutic targets involved in the pathogenesis will benefit the development of novel therapeutic strategies. The deubiquitinase ubiquitin–specific protease-7, a potential target for cancer treatment, is deregulated in types of cancer, but its role in melanoma is still unclear. We investigated the role and the inhibitor P22077 of ubiquitin-specific protease-7 in melanoma treatment. We found that ubiquitin-specific protease-7 was overexpressed and correlated with poor prognosis in melanoma. Further, pharmacological inhibition of ubiquitin-specific protease-7 by P22077 can effectively inhibit proliferation, and induce cell cycle arrest and apoptosis via ROS accumulation–induced DNA damage in melanoma cells. Inhibition of ubiquitin-specific protease-7 by P22077 also inhibits melanoma tumour growth in vivo. Moreover, inhibition of ubiquitin-specific protease-7 prevented migration and invasion of melanoma cells in vitro and in vivo by decreasing the Wnt/β-catenin signalling pathway. Taken together, our study revealed that ubiquitin-specific protease-7 acted as an oncogene involved in melanoma cell proliferation and metastasis. Therefore, ubiquitin-specific protease-7 may serve as potential candidates for the treatment of melanoma.  相似文献   

18.
Pre-eclampsia is a common complication during pregnancy; however, the underlying mechanisms of the crosstalk between low-density lipoprotein receptor-related protein 6 (LRP6) and autophagy in trophoblast cells are still not fully explored. Messenger RNA (mRNA) and protein levels of LRP6, beclin 1, Unc-51-like autophagy activating kinase 1 (ULK1), p62, vimentin, matrix metallopeptidase-9 (MMP-9), β-catenin, c-Myc, and Rab7, as well as the ratio of LC3-II/LC3-I, were analysed by quantitative real-time polymerase chain reaction or Western blot analysis, respectively. An MTT assay was used to measure cell growth, and transwell and wound healing assays were carried out to evaluate the invasion and migration abilities of the trophoblasts used. An immunofluorescence assay was used to measure LC3. The mRFP-GFP-LC3 tandem fluorescence assay was applied to detect autophagic flow. LRP6 overexpression was achieved by constructing pcDNA3.1-LRP6 vectors. LRP6 was expressed at low levels in HTR-8/SVneo cells under hypoxia/reoxygenation (H/R) conditions. H/R inhibited the activation of autophagy. LRP6 overexpression promoted cell proliferation and activated autophagy, which led to the upregulation of beclin 1 and ULK1, as well as the ratio of LC3-II/LC3-I and the downregulation of p62. Furthermore, LRP6 overexpression elevated the migration and invasion abilities of the indicated cells and increased vimentin and MMP-9 expression levels. Furthermore, LRP6 upregulated Rab7 and activated autophagy through the Wnt/β-catenin pathway. The late autophagy inhibitor bafilomycin A1 (Baf-A1) and the Wnt/β-catenin pathway inhibitor PKF115-584 reversed the effects of LRP6 on trophoblast autophagy, migration and invasion. LRP6 promotes Rab7-mediated autophagy by activating the Wnt/β-catenin pathway, which leads to increasing migration and invasion of trophoblast cells. Our study paves a new avenue for clinical treatment, and LRP6 may serve as an essential target in pre-eclampsia.  相似文献   

19.
Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.  相似文献   

20.
The Ca2+-activated Cl? channel ANO1 is widely expressed in epithelial cells, and ANO1 upregulation is implicated in the oncogenesis of many epithelium-originated cancers. However, whether ANO1 plays a causal role in the tumorigenesis of colorectal cancer remains largely unknown. Here, we show that ANO1 channel protein is upregulated in human colorectal cancer tissue samples and its upregulation is correlated with the TNM staging, histological type, pathological differentiation and poor prognosis. Knockdown or pharmacological inhibition of ANO1 suppresses colorectal cancer cell proliferation and induces cell apoptosis. Furthermore, ANO1 knockdown inhibits the growth of subcutaneous xenograft tumors implanted with colorectal cancer HT-29 cells in nude mice. Mechanically, knockdown of endogenous ANO1 inactivates the Wnt/β-catenin signaling through downregulating critical components, such as Frizzled protein 1, β-catenin and upregulating GSK3β. Taken together, our results demonstrate that ANO1 upregulation is involved in the tumorigenesis of colorectal cancer, and inhibition of ANO1 upregulation or inactivating downstream Wnt/β-catenin signaling may have therapeutic potential for colorectal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号