首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interleukin-18 (IL-18) is a novel proinflammatory cytokine found in serum and joints of patients with rheumatoid arthritis (RA). We studied a novel role for IL-18 in mediating cell adhesion, a vital component of the inflammation found in RA and other inflammatory diseases. We examined the expression of cellular cell adhesion molecules E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells and RA synovial fibroblasts using flow cytometry. Adhesion of the monocyte-like cell line HL-60 to endothelial cells was determined by immunofluorescence. IL-18 significantly enhanced ICAM-1 and VCAM-1 expression on endothelial cells and RA synovial fibroblasts. In addition, IL-18 induced E-selectin expression on endothelial cells and promoted the adhesion of HL-60 cells to IL-18-stimulated endothelial cells. Neutralizing anti-VCAM-1 and anti-E-selectin could completely inhibit HL-60 adherence to endothelial cells. IL-18-induced adhesion molecule expression appears to be mediated through nuclear factor kappa B (NF kappa B) and phosphatidyl-inositol 3 kinase (PI 3-kinase) since addition of inhibitors to either NF kappa B (pyrrolidine dithiocarbamate and N-acetyl-l-cysteine) or PI 3-kinase (LY294002) inhibited RA synovial fibroblast VCAM-1 expression by 50 to 60%. Addition of both inhibitors resulted in inhibition of VCAM-1 expression by 85%. In conclusion, the ability of IL-18 to induce adhesion molecule expression on endothelial cells and RA synovial fibroblasts indicates that IL-18 may contribute to RA joint inflammation by enhancing the recruitment of leukocytes into the joint. IL-18 requires NF kappa B as well as PI 3-kinase to induce VCAM-1 on RA synovial fibroblasts, suggesting that there may be two distinct pathways in IL-18-induced adhesion molecule expression.  相似文献   

2.
3.
Diabetes mellitus is associated with an increased prevalence of endothelial dysfunction and development of atherosclerotic vascular diseases. We demonstrate here that hyperglycemia results in the expression of adhesion molecules on endothelial cells in vitro. Incubation of human umbilical vein endothelial cells (HUVEC) in a culture medium with 11.0 mM, 16.5 mM and 22.0 mM glucose concentrations induced the expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and endothelial-leukocyte adhesion molecule-1 (ELAM-1). This effect was detectable after 24 h incubation of HUVEC with a high glucose concentration. The effect of high glucose concentration on TNF-alpha induced expression of ELAM-1, VCAM-1 and ICAM-1 was negligible, if at all. These results show that even a short-term exposure of endothelial cells (ECs) to high glucose concentration leads to their activation associated with increased expression of adhesion molecules such as ELAM-1, VCAM-1 and ICAM-1.  相似文献   

4.
5.
The contribution of synovial cells to the pathogenesis of rheumatoid arthritis (RA) is only partly understood. Monoclonal antibody (mAb) 1D5 is one of very few mAb ever raised against RA synovial cells in order to study the biology of these cells. Studies on the expression pattern and structural features of the 1D5 Ag suggest that 1D5 recognizes human vascular cell adhesion molecule-1 (VCAM-1), which is an intercellular adhesion molecule. Vascular cell adhesion molecule-1 may be involved in a number of crucial intercellular interactions in RA.  相似文献   

6.
Apelin receptor (APJ) deficiency has been reported to be preventive against atherosclerosis. However, the mechanism of this effect remains unknown. In this study, quantitative real-time RT-PCR, Western blotting and ELISA analyses revealed a significant increase in the expression of intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) in human umbilical vein endothelial cells (HUVECs) treated with apelin. Inhibitors of cellular signal transduction molecules were used to demonstrate involvement of nuclear factor kappa-B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways in apelin–APJ-induced activation of adhesion molecules and chemokines. Inhibition of APJ expression by RNA interference abrogated apelin-induced expression of adhesion molecules and chemokines and apelin-stimulated cellular signal transduction in HUVECs. The apelin–APJ system in endothelial cells is involved in the expression of adhesion molecules and chemokines, which are important for the initiation of endothelial inflammation-related atherosclerosis. Therefore, apelin–APJ and the cell signaling pathways activated by this system in endothelial cells may represent targets for therapy of atherosclerosis.  相似文献   

7.
Intermittent hypoxia (IH), the key property of obstructive sleep apnea (OSA), is closely associated with endothelial dysfunction. Endothelial-cell-specific molecule-1 (ESM-1, Endocan) is a novel, reported molecule linked to endothelial dysfunction. The aim of this study is to evaluate the effect of IH on ESM-1 expression and the role of ESM-1 in endothelial dysfunction. We found that serum concentration of ESM-1, inter-cellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) is significantly higher in patients with OSA than healthy volunteers (p < 0.01). The expression of ESM-1, hypoxia-inducible factor-1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF) was significantly increased in human umbilical vein endothelial cells (HUVECs) by treated IH in a time-dependent manner. HIF-1α short hairpin RNA and vascular endothelial growth factor receptor (VEGFR) inhibitor inhibited the expression of ESM-1 in HUVECs. ICAM-1 and VCAM-1 expressions were significantly enhanced under IH status, accompanied by increased monocyte–endothelial cell adhesion rate ( p < 0.001). Accordingly, ESM-1 silencing decreased the expression of ICAM-1 and VCAM-1 in HUVECs, whereas ESM-1 treatment significantly enhanced ICAM-1 expression accompanied by increasing adhesion ability. ESM-1 is significantly upregulated by the HIF-1α/VEGF pathway under IH in endothelial cells, playing a critical role in enhancing adhesion between monocytes and endothelial cells, which might be a potential target for IH-induced endothelial dysfunction.  相似文献   

8.
The signaling pathways that couple adiponectin receptors to functional, particularly inflammatory, responses have remained elusive. We report here that globular adiponectin induces endothelial cell activation, as measured by the expression of adhesion proteins such as vascular adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), E-selectin and MCP-1, through the sphingosine kinase (SKase) signaling pathway. Treatment of human umbilical vein endothelial cells with globular adiponectin resulted in NF-kappaB activation and increased mRNA levels of VCAM-1, ICAM-1, E-selectin and MCP-1. Sphingosine 1-phosphate (S1P), but not ceramide or sphingosine, was a potent stimulator of adhesion protein expression. As S1P is generated from sphingosine by SKase, we treated cells with siRNA for SKase to silence the effects of S1P in the endothelial cells. Treatment with SKase siRNA inhibited globular adiponectin-induced NF-kappaB activation and markedly decreased the globular adiponectin-induced mRNA levels of adhesion protein. Thus, we demonstrated that the SKase pathway, through the generation of S1P, is critically involved in mediating globular adiponectin-induced endothelial cell activation.  相似文献   

9.
A major sequela of immunotherapy with interleukin 2 (IL-2) is development of a vascular leak syndrome. The pathogenesis of this toxic effect is not known. We have examined pre- and post-treatment skin biopsies from 14 patients undergoing systemic administration of IL-2 for evidence of endothelial cell activation. Specifically, we have used the immunoperoxidase technique to detect the expression of three different activation antigens: endothelial-leukocyte adhesion molecule 1, detected with monoclonal antibody H4/18; intercellular adhesion molecule 1, detected with antibody RR1/1; and histocompatibility leukocyte antigen-DQ, detected with antibody Leu 10. Each of these antigens may be induced on cultured endothelial cells by various cytokines (although not by IL-2) and is expressed during endothelial cell activation in vivo at sites of delayed hypersensitivity and other immune responses. Pretreatment biopsies from each patient showed no endothelial expression of endothelial-leukocyte adhesion molecule 1 and only weak to moderate expression of intercellular adhesion molecule 1 and histocompatibility leukocyte antigen-DQ (except for one specimen unreactive with Leu 10). After 5 days of treatment, every patient showed marked endothelial expression of all three antigens (except for the same patient who remained unreactive with Leu 10). Endothelial-leukocyte adhesion molecule-1 expression was confined to postcapillary venular endothelium whereas intercellular adhesion molecule-1 and Leu 10 also were expressed on stromal cells and mononuclear cells. Thus, we conclude that i.v. administration of IL-2 leads to endothelial cell activation. Because IL-2 fails to induce the same antigens on cultured endothelial cells, we infer that IL-2 acts in vivo by inducing the production of other cytokines (e.g., interleukin 1, tumor necrosis factor, lymphotoxin, and interferon-gamma). Finally, since endothelial cell activation at sites of cell-mediated immune responses is well known to result in vascular leakiness to macromolecules, we propose that the vascular leak syndrome accompanying IL-2 therapy may arise from widespread inappropriate endothelial cell activation.  相似文献   

10.
11.
Adhesion and transendothelial migration of leukocytes into the vascular wall is a crucial step in atherogenesis. Expression of cell adhesion molecules by endothelial cells plays a leading role in this process. We investigated the effect of simvastatin, an inhibitor of HMG-CoA reductase administered to reduce plasma levels of LDL-cholesterol, on the expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) by human umbilical vein endothelial cells (HUVEC) stimulated with tumor necrosis factor alpha (TNFalpha). We found the expression to be significantly inhibited by the drug in a time and concentration-dependent manner and to a greater extent in the case of VCAM-1 as compared with ICAM-1. In TNFalpha-stimulated HUVEC, simvastatin decreased VCAM-1 and ICAM-1 mRNA levels, inhibited TNFalpha-induced activation of nuclear factor kappaB (NF-kappaB) and enhanced expression of peroxisome proliferator-activated receptor alpha (PPARalpha). These effects were associated with reduction of adherence of monocytes and lymphocytes to HUVEC. The present findings suggest that the benefits of statins in vascular disease may include the inhibition of expression of VCAM-1 and ICAM-1 through effects on NF-kappaB.  相似文献   

12.
Tumour necrosis factor alpha (TNF-alpha) and interleukin 4 (IL-4) selectively synergise in inducing expression of the mononuclear cell adhesion receptor VCAM-1 (vascular cell adhesion molecule-1) on human umbilical vein endothelial cells (HUVEC), which results in increased adhesiveness of HUVEC for T lymphocytes. This process may be crucial for adherence of circulating lymphocytes prior to their passage from the blood into inflammatory tissues. IL-4 also amplifies production of interleukin 6 (IL-6) and monocyte chemotactic protein-(MCP-1) from TNF-alpha-activated HUVEC. In the present study we demonstrate that IL-4 enhances production of granulocyte-macrophage colony-stimulating factor (GM-CSF) from TNF-alpha-stimulated HUVEC. Moreover, using cultured adult saphenous vein and umbilical artery endothelial cells, we show identical effects of IL-4 on TNF-alpha-induced responses to those observed with endothelial cells of foetal origin. Additionally, we report here that TNF-alpha and interferon gamma (IFN-gamma) synergise in the induction of both the lymphocyte adhesion receptor VCAM-1, and the TNF-alpha-inducible neutrophil adhesion receptor intercellular adhesion molecule-1, on all three endothelial cell types studied. In contrast, we found that GM-CSF secretion by endothelial cells treated with IFN-gamma plus TNF-alpha was markedly decreased when compared to the response induced by TNF-alpha alone. These results suggest that the combined actions of several cytokines, acting sequentially or in concert, may exert differential effects on activation and accumulation of circulating lymphocytes at sites of inflammation.  相似文献   

13.
The objective of this study was to determine whether absence of endothelial nitric oxide synthase (eNOS) affects the expression of cell surface adhesion molecules in endothelial cells. Murine lung endothelial cells (MLECs) were prepared by immunomagnetic bead selection from wild-type and eNOS knockout mice. Wild-type cells expressed eNOS, but eNOS knockout cells did not. Expression of neuronal NOS and inducible NOS was not detectable in cells of either genotype. Upon stimulation, confluent wild-type MLECs produced significant amounts of NO compared with N-monomethyl-L-arginine-treated wild-type cells. eNOS knockout and wild-type cells showed no difference in the expression of E-selectin, P-selectin, intracellular adhesion molecule-1, and vascular cell adhesion molecule-1 as measured by flow cytometry on the surface of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31)-positive cells. Both eNOS knockout and wild-type cells displayed the characteristics of resting endothelium. Adhesion studies in a parallel plate laminar flow chamber showed no difference in leukocyte-endothelial cell interactions between the two genotypes. Cytokine treatment induced endothelial cell adhesion molecule expression and increased leukocyte-endothelial cell interactions in both genotypes. We conclude that in resting murine endothelial cells, absence of endothelial production of NO by itself does not initiate endothelial cell activation or promote leukocyte-endothelial cell interactions. We propose that eNOS derived NO does not chronically suppress endothelial cell activation in an autocrine fashion but serves to counterbalance signals that mediate activation. vascular biology; atherosclerosis; mouse models  相似文献   

14.
15.
16.
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/ref-1) is a multifunctional protein involved both in DNA base excision repair and redox regulation. In this study we evaluated the protective role of Tat-mediated APE1/ref-1 transduction on the tumor necrosis factor (TNF)-α-activated endothelial activation in cultured human umbilical vein endothelial cells. To construct Tat-APE1/ref-1 fusion protein, human full length of APE1/ref-1 was fused with Tat-protein transduction domain. Purified Tat-APE1/ref-1 fusion protein efficiently transduced cultured endothelial cells in a dose-dependent manner and reached maximum expression at 1 h after incubation. Transduced Tat-APE1/ref-1 showed inhibitory activity on the TNF-α-induced monocyte adhesion and vascular cell adhesion molecule-1 expression in cultured endothelial cells. These results suggest Tat-APE1/ref-1 might be useful to reduce vascular endothelial activation or vascular inflammatory disorders.  相似文献   

17.
18.
19.
Vascular endothelial dysfunction and inflammatory response are early events during initiation and progression of atherosclerosis. In vitro studies have described that CIT markedly upregulates expressions of ICAM-1 and VCAM-1 of endothelial cells, which result from NF-κB activation induced by CIT. In order to determine whether it plays a role in atherogenesis in vivo, we conducted the study to investigate the effects of CIT on atherosclerotic plaque development and inflammatory response in apolipoprotein E deficient (apoE-/-) mice. Five-week-old apoE-/- mice were fed high-fat diets and treated with CIT for 15 weeks, followed by assay of atherosclerotic lesions. Nitric oxide (NO), vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1) were detected in serum. Levels of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), VEGF, and ET-1 in plaque areas of artery walls were examined. NF-κB p65 expression and NF-κB activation in aorta also were assessed. CIT treatment significantly augmented atherosclerotic plaques and increased expressions of ICAM-1, VCAM-1, VEGF and ET-1 in aorta. Mechanistic studies showed that activation of NF-κB was significantly elevated by CIT treatment, indicating the effect of CIT on atherosclerosis may be regulated by activation of NF-κB.  相似文献   

20.
Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10–100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO (0.1–0.5 μM), a specific mitochondrial antioxidants, and cyclosporin A (1–5 μM), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam (1–50 μM), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号