首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An important aspect of the catalytic mechanism of microsomal glutathione transferase (MGST1) is the activation of the thiol of bound glutathione (GSH). GSH binding to MGST1 as measured by thiolate anion formation, proton release, and Meisenheimer complex formation is a slow process that can be described by a rapid binding step (K(GSH)d = 47 +/- 7 mM) of the peptide followed by slow deprotonation (k2 = 0.42 +/- 0.03 s(-1). Release of the GSH thiolate anion is very slow (apparent first-order rate k(-2) = 0.0006 +/- 0.00002 s(-)(1)) and thus explains the overall tight binding of GSH. It has been known for some time that the turnover (kcat) of MGST1 does not correlate well with the chemical reactivity of the electrophilic substrate. The steady-state kinetic parameters determined for GSH and 1-chloro-2,4-dinitrobenzene (CDNB) are consistent with thiolate anion formation (k2) being largely rate-determining in enzyme turnover (kcat = 0.26 +/- 0.07 s(-1). Thus, the chemical step of thiolate addition is not rate-limiting and can be studied as a burst of product formation on reaction of halo-nitroarene electrophiles with the E.GS- complex. The saturation behavior of the concentration dependence of the product burst with CDNB indicates that the reaction occurs in a two-step process that is characterized by rapid equilibrium binding ( = 0.53 +/- 0.08 mM) to the E.GS- complex and a relatively fast chemical reaction with the thiolate (k3 = 500 +/- 40 s(-1). In a series of substrate analogues, it is observed that log k3 is linearly related (rho value 3.5 +/- 0.3) to second substrate reactivity as described by Hammett sigma- values demonstrating a strong dependence on chemical reactivity that is similar to the nonenzymatic reaction (rho = 3.4). Microsomal glutathione transferase 1 displays the unusual property of being activated by sulfhydryl reagents. When the enzyme is activated by N-ethylmaleimide, the rate of thiolate anion formation is greatly enhanced, demonstrating for the first time the specific step that is activated. This result explains earlier observations that the enzyme is activated only with more reactive substrates. Taken together, the observations show that the kinetic mechanism of MGST1 can be described by slow GSH binding/thiolate formation followed by a chemical step that depends on the reactivity of the electrophilic substrate. As the chemical reactivity of the electrophile becomes lower the rate-determining step shifts from thiolate formation to the chemical reaction.  相似文献   

2.
An arginine residue in loop 4 connecting beta strand 4 and alpha-helix 4 is conserved in glycoside hydrolase family 10 (GH10) xylanases. The arginine residues, Arg(204) in xylanase A from Bacillus halodurans C-125 (XynA) and Arg(196) in xylanase B from Clostridium stercorarium F9 (XynB), were replaced by glutamic acid, lysine, or glutamine residues (XynA R204E, K and Q, and XynB R196E, K and Q). The pH-k(cat)/K(m) and the pH-k(cat) relationships of these mutant enzymes were measured. The pK(e2) and pK(es2) values calculated from these curves were 8.59 and 8.29 (R204E), 8.59 and 8.10 (R204K), 8.61 and 8.19 (R204Q), 7.42 and 7.19 (R196E), 7.49 and 7.18 (R196K), and 7.86 and 7.38 (R196Q) respectively. Only the pK(es2) value of arginine derivatives was less than those of the wild types (8.49 and 9.39 [XynA] and 7.62 and 7.82 [XynB]). These results suggest that the conserved arginine residue in GH10 xylanases increases the pK(a) value of the proton donor Glu during substrate binding. The arginine residue is considered to clamp the proton donor and subsite +1 to prevent structural change during substrate binding.  相似文献   

3.
Gu Y  Guo J  Pal A  Pan SS  Zimniak P  Singh SV  Ji X 《Biochemistry》2004,43(50):15673-15679
The crystal structure of human class alpha glutathione (GSH) S-transferase A3-3 (hGSTA3-3) in complex with GSH was determined at 2.4 A. Despite considerable amino acid sequence identity with other human class alpha GSTs (e.g., hGSTA1-1), hGSTA3-3 is unique due to its exceptionally high steroid double bond isomerase activity for the transformation of Delta(5)-androstene-3,17-dione (Delta(5)-AD) to Delta(4)-androstene-3,17-dione. A comparative analysis of the active centers of hGSTA1-1 and hGSTA3-3 reveals that residues in positions 12 and 208 may contribute to their disparate isomerase activity toward Delta(5)-AD. Substitution of these two residues of hGSTA3-3 with the corresponding residues in hGSTA1-1 followed by kinetic characterization of the wild-type and the mutant enzymes supported this prediction. On the basis of our model of the hGSTA3-3.GSH.Delta(5)-AD ternary complex and available biochemical data, we propose that the thiolate group of deprotonated GSH (GS(-)) serves as a base to initiate the reaction by accepting a proton from the steroid and the nonionized hydroxyl group of catalytic residue Y9 (HO-Y9) functions as part of a proton-conducting wire to transfer a proton back to the steroid. Residue R15 may function to stabilize the deprotonated thiolate group of GSH (GS(-)), and a GSH-bound water molecule may donate a hydrogen bond to the 3-keto group of Delta(5)-AD and thus help the thiolate of GS(-) to initiate the proton transfer and the subsequent stabilization of the reaction intermediate.  相似文献   

4.
Microsomal glutathione transferase 1 (MGST1) displays the unique ability to be activated, up to 30-fold, by the reaction with sulfhydryl reagents, e.g., N-ethylmaleimide. Analysis of glutathione (GSH) thiolate formation, which occurs upon mixing activated MGST1 with GSH, reveals biphasic kinetics, where the rapid phase dominated at higher GSH concentrations. The kinetic behavior suggests a two-step mechanism consisting of a rapid GSH-binding step (K(D)(GSH) approximately 10 mM), followed by slower formation of thiolate (k(2) approximately 10 s(-1)). The release rate (or protonation of the enzyme GSH thiolate complex) of GS(-) was slow (k(-2) = 0.016 s(-1)), consistent with overall tight binding of GSH. Electrophilic second substrates react rapidly with the E*GS(-) complex, and again, a two-step mechanism is suggested. In comparison to the unactivated enzyme [Morgenstern et al. (2001) Biochemistry 40, 3378-3384], the mechanisms of GSH thiolate formation and electrophile interaction are similar; however, thiolate anion formation is enhanced 30-fold in the activated enzyme, contributing to an increased k(cat) (3.6 s(-1)). Interestingly, in the activated enzyme, thiolate formation and proton release from the enzyme are not strictly coupled, because proton release (as well as k(cat)) was found to be approximately 4 times slower than GSH thiolate formation in an unbuffered system. Solvent kinetic isotope effect measurements demonstrated a 2-fold decrease in the rate constant (k(2)) for thiolate formation and k(cat) (in the reaction with 1-chloro-2,4-dinitrobenzene) for both unactivated and activated MGST1. This indicates that thiolate formation contributes to k(cat) for the activated enzyme, as suggested previously for unactivated MGST1. The stoichiometry of thiolate formation, proton release, and burst kinetics suggested utilization of one GSH molecule per enzyme trimer.  相似文献   

5.
The glutathione S-transferase enzymes (GSTs) have a tyrosine or serine residue at their active site that hydrogen bonds to and stabilizes the thiolate anion of glutathione, GS(-). The importance of this hydrogen bond is obvious, in light of the enhanced nucleophilicity of GS(-) versus the protonated thiol. Several A-class GSTs contain a C-terminal segment that undergoes a ligand-dependent local folding reaction. Here, we demonstrate the effects of the Y9F substitution on binding affinity for glutathione conjugates and on rates of the order-disorder transition of the C terminus in rat GST A1-1. The equilibrium binding affinity of the glutathione conjugate, GS-NBD (NBD-Cl, 7-chloro-4-nitrobenzo-2-oxa-1, 3-diazole), was decreased from 4.09 microm to 0.641 microm upon substitution of Tyr-9 with Phe. This result was supported by isothermal titration calorimetry, with K(d) values of 1.51 microm and 0.391 microm for wild type and Y9F, respectively. The increase in binding affinity for the mutant is associated with dramatic decreases in rates for the C-terminal order-disorder transition, based on a stopped-flow kinetic analysis. The same effects were observed, qualitatively, for a second GSH conjugate, GS-ethacrynic acid. Apparently, the phenolic hydroxyl group of Tyr-9 is critical for orchestrating C-terminal dynamics and efficient product release, in addition to its role in lowering the pK(a) of GSH.  相似文献   

6.
Human DJ-1, a disease-associated protein that protects cells from oxidative stress, contains an oxidation-sensitive cysteine (C106) that is essential for its cytoprotective activity. The origin of C106 reactivity is obscure, due in part to the absence of an experimentally determined p K a value for this residue. We have used atomic-resolution X-ray crystallography and UV spectroscopy to show that C106 has a depressed p K a of 5.4 +/- 0.1 and that the C106 thiolate accepts a hydrogen bond from a protonated glutamic acid side chain (E18). X-ray crystal structures and cysteine p K a analysis of several site-directed substitutions at residue 18 demonstrate that the protonated carboxylic acid side chain of E18 is required for the maximal stabilization of the C106 thiolate. A nearby arginine residue (R48) participates in a guanidinium stacking interaction with R28 from the other monomer in the DJ-1 dimer and elevates the p K a of C106 by binding an anion that electrostatically suppresses thiol ionization. Our results show that the ionizable residues (E18, R48, and R28) surrounding C106 affect its p K a in a way that is contrary to expectations based on the typical ionization behavior of glutamic acid and arginine. Lastly, a search of the Protein Data Bank (PDB) produces several candidate hydrogen-bonded aspartic/glutamic acid-cysteine interactions, which we propose are particularly common in the DJ-1 superfamily.  相似文献   

7.
GSTs (glutathione transferases) are a family of enzymes that primarily catalyse nucleophilic addition of the thiol of GSH (reduced glutathione) to a variety of hydrophobic electrophiles in the cellular detoxification of cytotoxic and genotoxic compounds. GSTks (Kappa class GSTs) are a distinct class because of their unique cellular localization, function and structure. In the present paper we report the crystal structures of hGSTk (human GSTk) in apo-form and in complex with GTX (S-hexylglutathione) and steady-state kinetic studies, revealing insights into the catalytic mechanism of hGSTk and other GSTks. Substrate binding induces a conformational change of the active site from an 'open' conformation in the apo-form to a 'closed' conformation in the GTX-bound complex, facilitating formations of the G site (GSH-binding site) and the H site (hydrophobic substrate-binding site). The conserved Ser(16) at the G site functions as the catalytic residue in the deprotonation of the thiol group and the conserved Asp(69), Ser(200), Asp(201) and Arg(202) form a network of interactions with γ-glutamyl carboxylate to stabilize the thiolate anion. The H site is a large hydrophobic pocket with conformational flexibility to allow the binding of different hydrophobic substrates. The kinetic mechanism of hGSTk conforms to a rapid equilibrium random sequential Bi Bi model.  相似文献   

8.
The maleylpyruvate isomerase NagL from Ralstonia sp. strain U2, which has been structurally characterized previously, catalyzes the isomerization of maleylpyruvate to fumarylpyruvate. It belongs to the class zeta glutathione S-transferases (GSTZs), part of the cytosolic GST family (cGSTs). In this study, site-directed mutagenesis was conducted to probe the functions of 13 putative active site residues. Steady-state kinetic information for mutants in the reduced glutathione (GSH) binding site, suggested that (a) Gln64 and Asp102 interact directly with the glutamyl moiety of glutathione, (b) Gln49 and Gln64 are involved in a potential electron-sharing network that influences the ionization of the GSH thiol. The information also suggests that (c) His38, Asn108 and Arg109 interact with the GSH glycine moiety, (d) His104 has a role in the ionization of the GSH sulfur and the stabilization of the maleyl terminal carboxyl group in the reaction intermediate and (e) Arg110 influences the electron distribution in the active site and therefore the ionization of the GSH thiolate. Kinetic data for mutants altered in the substrate-binding site imply that (a) Arg8 and Arg176 are critical for maleylpyruvate orientation and enolization, and (b) Arg109 (exclusive to NagL) participates in kcat regulation. Surprisingly, the T11A mutant had a decreased GSH Km value, whereas little impact on maleylpyruvate kinetics was observed, suggesting that this residue plays an important role in GSH binding. An evolutionary trend in this residue appears to have developed not only in prokaryotic and eukaryotic GSTZs, but also among the wider class of cGSTs.  相似文献   

9.
The hGSTM3 subunit, which is preferentially expressed in germ-line cells, has the greatest sequence divergence among the human mu class glutathione S-transferases. To determine a structural basis for the catalytic differences between hGSTM3-3 and other mu class enzymes, chimeric proteins were designed by modular interchange of the divergent C-terminal domains of hGSTM3 and hGSTM5 subunits. Replacement of 24 residues of the C-terminal segment of either subunit produced chimeric enzymes with catalytic properties that reflected those of the wild-type enzyme from which the C-terminus had been derived. Deletion of the tripeptide C-terminal extension found only in the hGSTM3 subunit had no effect on catalysis. The crystal structure determined for a ligand-free hGSTM3 subunit indicates that an Asn212 residue of the C-terminal domain is near a hydrophobic cluster of side chains formed in part by Ile13, Leu16, Leu114, Ile115, Tyr119, Ile211, and Trp218. Accordingly, a series of point mutations were introduced into the hGSTM3 subunit, and it was indeed determined that a Y119F mutation considerably enhanced the turnover rate of the enzyme for nucleophilic aromatic substitution reactions. A more striking effect was observed for a double mutant (Y119F/N212F) which had a k(cat)/K(m)(CDNB) value of 7.6 x 10(5) s(-)(1) M(-)(1) as compared to 4.9 x 10(3) s(-)(1) M(-)(1) for the wild-type hGSTM3-3 enzyme. The presence of a polar Asn212 in place of a Phe residue found in the cognate position of other mu class glutathione S-transferases, therefore, has a marked influence on catalysis by hGSTM3-3.  相似文献   

10.
The four residues of human glutathione S-transferase P1-1 whose counterparts were indicated by X-ray crystallography to reside in the GSH-binding site of pig glutathione S-transferase P1-1 were individually replaced with threonine or alanine by site-directed mutagenesis to obtain mutants R13T, K44T, Q51A, and Q64A. The kinetic parameters, susceptibilities to an inhibitor, S-hexyl-GSH, and affinities for GSH-Sepharose of the latter were compared with those of the wild-type enzyme, and pKa of the thiol group of GSH bound in R13T was shown to be equivalent to that in the wild type. From the results, Lys44, Gln51, and Gln64 were deduced to contribute to the binding of GSH. On the other hand, Arg13 seems to be essential for the enzymatic activity as mainly involved in the construction of a proper structure of the active site.  相似文献   

11.
An active site His107 residue distinguishes human glutathione S-transferase hGSTM1-1 from other mammalian Mu-class GSTs. The crystal structure of hGSTM1a-1a with bound glutathione (GSH) was solved to 1.9 A resolution, and site-directed mutagenesis supports the conclusion that a proton transfer occurs in which bound water at the catalytic site acts as a primary proton acceptor from the GSH thiol group to transfer the proton to His107. The structure of the second substrate-binding site (H-site) was determined from hGSTM1a-1a complexed with 1-glutathionyl-2,4-dinitrobenzene (GS-DNB) formed by a reaction in the crystal between GSH and 1-chloro-2,4-dinitrobenzene (CDNB). In that structure, the GSH-binding site (G-site) is occupied by the GSH moiety of the product in the same configuration as that of the enzyme-GSH complex, and the dinitrobenzene ring is anchored between the side chains of Tyr6, Leu12, His107, Met108, and Tyr115. This orientation suggested a distinct transition state that was substantiated from the structure of hGSTM1a-1a complexed with transition state analogue 1-S-(glutathionyl)-2,4,6-trinitrocyclohexadienate (Meisenheimer complex). Kinetic data for GSTM1a-1a indicate that kcat(CDNB) for the reaction is more than 3 times greater than kcat(FDNB), even though the nonenzymatic second-order rate constant is more than 50-fold greater for 1-fluoro-2,4-dinitrobenzene (FDNB), and the product is the same for both substrates. In addition, Km(FDNB) is about 20 times less than Km(CDNB). The results are consistent with a mechanism in which the formation of the transition state is rate-limiting in the nucleophilic aromatic substitution reactions. Data obtained with active-site mutants support transition states in which Tyr115, Tyr6, and His107 side chains are involved in the stabilization of the Meisenheimer complex via interactions with the ortho nitro group of CDNB or FDNB and provide insight into the means by which GSTs adapt to accommodate different substrates.  相似文献   

12.
Misquitta SA  Colman RF 《Biochemistry》2005,44(24):8608-8619
To study the communication between the two active sites of dimeric glutathione S-transferase A1-1, we used heterodimers containing one wild-type (WT) active site and one active site with a single mutation at either Tyr9, Arg15, or Arg131. Tyr9 and Arg15 are part of the active site of the same subunit, while Arg131 contributes to the active site of the opposite subunit. The V(max) values of Tyr9 and Arg15 mutant enzymes were less than 2% that of WT, indicating their importance in catalysis. In contrast, V(max) values of Arg131 mutant enzymes were about 50-90% of that of WT enzyme while K(m)(GSH) values were approximately 3-8 times that of WT, suggesting that Arg131 plays a role in glutathione binding. The mutant enzyme (with a His(6) tag) and the WT enzyme (without a His(6) tag) were used to construct heterodimers (WT-Y9F, WT-Y9T, WT-R15Q, WT-R131M, WT-R131Q, and WT-R131E) by incubation of a mixture of wild-type and mutant enzyme at pH 7.5 in buffer containing 1,6-hexanediol, followed by dialysis against buffer lacking the organic solvent. The resultant heterodimers were separated from the wild-type and mutant homodimers using chromatography on nickel-nitrilotriacetic acid agarose. The V(max) values of all heterodimers were lower than expected for independent active sites. Our experiments demonstrate that mutation of an amino acid residue in one active site affects the activity in the other active site. Modeling studies show that key amino acid residues and water molecules connect the two active sites. This connectivity is responsible for the cross-talk between the active sites.  相似文献   

13.
The structure of the flavin-dependent alkanesulfonate monooxygenase (SsuD) exists as a TIM-barrel structure with an insertion region located over the active site that contains a conserved arginine (Arg297) residue present in all SsuD homologues. Substitution of Arg297 with alanine (R297A SsuD) or lysine (R297K SsuD) was performed to determine the functional role of this conserved residue in SsuD catalysis. While the more conservative R297K SsuD possessed a lower k(cat)/K(m) value (0.04 ± 0.01 μM(-1) min(-1)) relative to wild-type (1.17 ± 0.22 μM(-1) min(-1)), there was no activity observed with the R297A SsuD variant. Each of the arginine variants had similar K(d) values for flavin binding as wild-type SsuD (0.32 ± 0.15 μM), but there was no measurable binding of octanesulfonate. The low levels of activity for the R297A and R297K SsuD variants correlated with the absence of any detectable C4a-(peroxy)flavin formation in stopped-flow kinetic studies. Single-turnover experiments were performed in the presence of SsuE to evaluate both the reductive and oxidative half-reaction. With wild-type SsuD a lag phase is observed following the reductive half-reaction by SsuE that represents flavin transfer or conformational changes associated with the binding of substrates. Evaluation of the Arg297 SsuD variants in the presence of SsuE showed no lag phase following reduction by SsuE, and the flavin was oxidized immediately following the reductive half-reaction. These results corresponded with a lack of detectable changes in the proteolytic susceptibility of R297A and R297K SsuD in the presence of reduced flavin and/or octanesulfonate, signifying the absence of a conformational change in these variants with the substitution of Arg297.  相似文献   

14.
人双专一性磷酸酶活性位点Cys^124附近精氨酸突变及功能   总被引:1,自引:0,他引:1  
为研究人双专一性磷酸酶活性位点Cys12 4 附近 3个带正电的精氨酸对酶催化功能的影响 ,用QuikChange定点突变方法获得 6个突变体 :R12 5L、R130 L、R130 K、R130 L/S131A、R158K和R158L。将含突变基因的重组质粒转化大肠杆菌菌株BL2 1(DE3) ,经IPTG诱导表达获得的目的蛋白质均以可溶形式存在。通过镍离子亲和层析纯化得到纯度大于 90 %的蛋白质。对人痘苗病毒H1相关磷酸酶 (VHR)及其突变体进行稳态动力学参数和竞争性抑制常数Ki 的测定 ,结果显示上述Arg130 和Arg158突变体的kcat/Km 值都较野生型有大幅度下降 ,而Ki 值有明显上升 ,表明 130和 15 8位的精氨酸是VHR活性所必需 ,而且可能与底物上带负电的磷酸基团结合有关。另外 ,单突变体R130 L和双突变体R130 L/S131A之间的kcat值相差很小 ,提示Arg130 单点突变后可能破坏了Ser131与Cys12 4 间的氢键。再者 ,R12 5L、R130 L和R158L突变体都降低了砷酸盐结合亲和性 ,暗示这 3个精氨酸残基侧链上的正电荷可能有助于底物与酶的结合。  相似文献   

15.
We investigated the epoxidase activity of a class mu glutathione S-transferase (cGSTM1-1), using 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) as substrate. Trp209 on the C-terminal tail, Arg107 on the alpha4 helix, Asp161 and Gln165 on the alpha6 helix of cGSTM1-1 were selected for mutagenesis and kinetic studies. A hydrophobic side-chain at residue 209 is needed for the epoxidase activity of cGSTM1-1. Replacing Trp209 with histidine, isoleucine or proline resulted in a fivefold to 28-fold decrease in the k(cat)(app) of the enzyme, while a modest 25 % decrease in the k(cat)(app) was observed for the W209F mutant. The rGSTM1-1 enzyme has serine at the correponding position. The k(cat)(app) of the S209W mutant is 2. 5-fold higher than that of the wild-type rGSTM1-1. A charged residue is needed at position 107 of cGSTM1-1. The K(m)(app)(GSH) of the R107L mutant is 38-fold lower than that of the wild-type enzyme. On the contrary, the R107E mutant has a K(m)(app)(GSH) and a k(cat)(app) that are 11-fold and 35 % lower than those of the wild-type cGSTM1-1. The substitutions of Gln165 with Glu or Leu have minimal effect on the affinity of the mutants towards GSH or EPNP. However, a discernible reduction in k(cat)(app) was observed. Asp161 is involved in maintaining the structural integrity of the enzyme. The K(m)(app)(GSH) of the D161L mutant is 616-fold higher than that of the wild-type enzyme. In the hydrogen/deuterium exchange experiments, this mutant has the highest level of deuteration among all the proteins tested.We also elucidated the structure of cGSTM1-1 co-crystallized with the glutathionyl-conjugated 1, 2-epoxy-3-(p-nitrophenoxy)propane (EPNP) at 2.8 A resolution. The product found in the active site was 1-hydroxy-2-(S-glutathionyl)-3-(p-nitrophenoxy)propane, instead of the conventional 2-hydroxy isomer. The EPNP moiety orients towards Arg107 and Gln165 in dimer AB, and protrudes into a hydrophobic region formed by the loop connecting beta1 and alpha1 and part of the C-terminal tail in dimer CD. The phenoxyl ring forms strong ring stacking with the Trp209 side-chain in dimer CD. We hypothesize that these two conformations represent the EPNP moiety close to the initial and final stages of the reaction mechanism, respectively.  相似文献   

16.
Gerharz T  Reinelt S  Kaspar S  Scapozza L  Bott M 《Biochemistry》2003,42(19):5917-5924
The sensor kinase CitA and the response regulator CitB of Klebsiella pneumoniae form the paradigm of a subfamily of bacterial two-component regulatory systems that are capable of sensing tri- or dicarboxylates in the environment and then induce transporters for the uptake of these compounds. We recently showed that the separated periplasmic domain of CitA, termed CitAP (encompasses residues 45-176 supplemented with an N-terminal methionine residue and a C-terminal hexahistidine tag), is a highly specific citrate receptor with a K(d) of 5.5 microM at pH 7. To identify positively charged residues involved in binding the citrate anion, each of the arginine, lysine, and histidine residues in CitAP was exchanged for alanine, and the resulting 17 muteins were analyzed by isothermal titration calorimetry (ITC). In 12 cases, the K(d) for citrate was identical to that of wild-type CitAP or slightly changed (3.9-17.2 microM). In one case (R98A), the K(d) was 6-fold decreased (0.8 microM), whereas in four cases (R66A, H69A, R107A, and K109A) the K(d) was 38- to >300-fold increased (0.2 to >1 mM). The secondary structure of the latter five proteins in their apo-form as deduced from far-UV circular dichroism (CD) spectra did not differ from the apo-form of wild-type CitAP; however, all of them showed an increased thermostability. Citrate increased the melting point (T(m)) of wild-type CitAP and mutein R98A by 6.2 and 9.5 degrees C, respectively, but had no effect on the T(m) of the four proteins with disturbed binding. Three of the residues important for citrate binding (R66, H69, and R107) are highly conserved in the CitA subfamily of sensor kinases, indicating that they might be involved in ligand binding by many of these sensor kinases.  相似文献   

17.
Xu Y  Dewanti AR  Mitra B 《Biochemistry》2002,41(41):12313-12319
(S)-Mandelate dehydrogenase from Pseudomonas putida belongs to a FMN-dependent enzyme family that oxidizes (S)-alpha-hydroxyacids. Active site structures of three homologous enzymes, including MDH, show the presence of two conserved arginine residues in close juxtaposition (Arg165 and Arg277 in MDH). Arg277 has an important catalytic role; it stabilizes both the ground and transition states through its positive charge as well as a hydrogen bond [Lehoux, I. E., and Mitra, B. (2000) Biochemistry 39, 10055-10065]. In this study, we examined the role of Arg165 and the overall importance of the Arg165/Arg277 pair. Single mutants at Arg165 as well as double mutants at Arg165 and Arg277 were characterized. Our results show that Arg165 has a role similar to, but less critical than, that of Arg277. It stabilizes the transition state through its positive charge and the ground state through a charge-independent interaction, most likely, a hydrogen bond. Though the k(cat)s for the charge-conserved mutants, R165K and R277K, were only 3-5-fold lower than those of wild-type MDH (wtMDH), the k(cat) for R165K/R277K was approximately 350-fold lower. Thus, at least one arginine residue is required for the optimal substrate orientation and catalysis. Stopped-flow studies show that the FMN reduction step is completely rate-limiting for both wtMDH and the arginine mutants, with the possible exception of R165E. Substrate isotope effects indicate that the carbon-hydrogen bond-breaking step is only partially rate-limiting for wtMDH but fully rate-limiting for the mutants. pH profiles of R165M conclusively show that the pK(a) of 9.3 in free wtMDH does not belong to Arg165.  相似文献   

18.
《FEBS letters》1993,320(3):193-197
In the absence of a structure of the closed form of phosphoglycerate kinase we have modified by site directed mutagenesis several of the residues which, on the basis of the open form structure, are likely to be involved in substrate binding and catalysis. Here we report on the kinetic and anion activation properties of the yeast enzyme modified at positions 65, 121 and 168. In each case an arginine, thought to be involved in the binding of the sugar substrate's non-transferable phosphate group, has been replaced by lysine (same charge) and by methionine (no charge). Km values for 3-phosphoglycerate of all six mutant enzymes are only marginally higher than that of the wild-type enzyme. Removing the charge associated with two of the three arginine residues appears to influence (as judged by the measured Km's) the binding of ATP. Although binding affinity is not necessarily coupled to turnover the substitutions which have the greatest effect on the Km's do correlate with the reduction in enzymes maximum velocity. The one exception to this generalisation is the R65K mutant which, surprisingly, has a significantly higher kcat than the wild-type enzyme. In the open form structure of the pig muscle enzyme each of the three substituted arginines residues are seen to make two hydrogen bonds to the sugar substrate's non-transferable phosphate. From this it might be expected that anion activation would be similarly affected by the substitution of any one of these three residues. Although the interpretation of such effects are complicated by the fact that one of the mutants (R65M) unfolds at low salt concentrations, this appears not to be the case. Replacing Arg121 and Arg121 with methionine reduces the anion activation whereas a lysine in either of these two positions practically destroys the effect. With the substitutions at residue 65 the opposite is observed in that the lysine mutant shows anion activation whereas the methionine mutant does not.  相似文献   

19.
Two human Mu class glutathione transferases, hGST M1-1 and hGST M2-2, with high sequence identity (84%) exhibit a 100-fold difference in activities with the substrates aminochrome, 2-cyano-1,3-dimethyl-1-nitrosoguanidine (cyanoDMNG), and 1,2-dichloro-4-nitrobenzene (DCNB), hGST M2-2 being more efficient. A sequence alignment with the rat Mu class GST M3-3, an enzyme also showing high activities with aminochrome and DCNB, demonstrated an identical structural cluster of residues 164-168 in the alpha6-helices of rGST M3-3 and hGST M2-2, a motif unique among known sequences of human, rat, and mouse Mu class GSTs. A putative electrostatic network Arg107-Asp161-Arg165-Glu164(-Gln167) was identified based on the published three-dimensional structure of hGST M2-2. Corresponding variant residues of hGSTM1-1 (Leu165, Asp164, and Arg167) as well as the active site residue Ser209 were targeted for point mutations, introducing hGST M2-2 residues to the framework of hGST M1-1, to improve the activities with substrates characteristic of hGST M2-2. In addition, chimeric enzymes composed of hGST M1-1 and hGST M2-2 sequences were analyzed. The activity with 1-chloro-2,4-dinitrobenzene (CDNB) was retained in all mutant enzymes, proving that they were catalytically competent, but none of the point mutations improved the activities with hGST M2-2 characteristic substrates. The chimeric enzymes showed that the structural determinants of these activities reside in domain II and that residue Arg165 in hGST M2-2 appears to be important for the reactions with cyanoDMNG and DCNB. A mutant, which contained all the hGST M2-2 residues of the putative electrostatic network, was still lacking one order of magnitude of the activities with the characteristic substrates of wild-type hGST M2-2. It was concluded that a limited set of point mutations is not sufficient, but that indirect secondary structural affects also contribute to the hGST M2-2 characteristic activities with aminochrome, cyanoDMNG, and DCNB.  相似文献   

20.
The genomically encoded fosfomycin resistance protein from Pseudomonas aeruginosa (FosA(PA)) utilizes Mn(II) and K(+) to catalyze the addition of glutathione (GSH) to C1 of the antibiotic rendering it inactive. Although this protein has been structurally and kinetically characterized with respect to the substrate, fosfomycin, questions remain regarding how the enzyme binds the thiol substrate, GSH. Computational studies have revealed a potential GSH binding site in FosA(PA) that involves six electrostatic or hydrogen-bonding interactions with protein side-chains as well as six additional residues that contribute van der Waals interactions. A strategically placed tyrosine residue, Y39, appears to be involved in the ionization of GSH during catalysis. The Y39F mutant exhibits a 13-fold reduction of catalytic activity (k(cat)=14+/-2s(-1)), suggesting a role in the ionization of GSH. Mutation of five other residues (W34, Q36, S50, K90, and R93) implicated in ionic of hydrogen-bonding interactions resulted in enzymes with reduced catalytic efficiency, affinity for GSH, or both. The mutant enzymes were also found to be less effective resistant proteins in the biological context of Escherichia coli. The more conservative W34H mutant has native-like catalytic efficiency suggesting that the imidazole NH group can replace the indole group of W34 that is important for GSH binding. In the absence of co-crystal structural data with the thiol substrate, these results provide important insights into the role of GSH in catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号