首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents the results of a spectral (absorption and emission) and photophysical study of 6-aminocoumarin (6AC) in the solvents with which this molecule interacts only nonspecifically (n-alkanes, tetrachloromethane and 1-chloro-n-alkanes) and in nitriles. The strong effects of the solvents on the emission spectra, fluorescence quantum yield and lifetime of 6AC were observed. The results of the steady-state and time-resolved photophysical study suggest the presence of very fast nonradiative deactivation processes. It is concluded that besides fluorescence, the efficient S(1)-ICT → S(0) internal conversion in nonpolar aprotic solvents arises from vibronic interactions between close-lying S(1)-ICT(π,π*) and S(2)(n,π*) states. Moreover, unexpectedly efficient triplet state formation occurs. In nitriles the intermolecular hydrogen-bonding interactions with solvent molecules also facilitate the nonradiative decay process involving the S(1)-exciplex.  相似文献   

2.
Solvent effects on relaxation dynamics of a keto-carotenoid, siphonaxanthin, were investigated by means of the femtosecond time-resolved fluorescence spectroscopy. After excitation to the S2 state of siphonaxanthin, the S2-->1(n, pi*) internal conversion occurred with a time constant of 30-35 fs, followed by the 1(n, pi*)-->S1 internal conversion in 180-200 fs. Solvent dependence of the internal conversions was small, however intensities of the S1 fluorescence with its lifetime of longer than 10 ps were enhanced in methanol. These were explained by displacement of the potential surfaces and interaction through the hydrogen-bond between the C=O group of siphonaxanthin and solvents.  相似文献   

3.
The photophysical behaviour of a new pyrene derivative, 1-(4-N,N-dimethylaminophenylethynyl)pyrene (DMAPEPy), in various solvents has been studied. Due to the presence of an ethynyl link with a cylindrical pi cloud between the donor (N,N-dimethyl group) and the acceptor (pyrene), the molecule shows efficient intramolecular charge transfer, with a high extinction coefficient in all the solvents. There is significant solvatochromism in the fluorescence with a large increase in the Stokes' shift of around 125 nm between n-hexane and acetonitrile. The solvent-dependent spectral data show a good correlation with the Kamlet-Taft solvent polarity parameter (pi*). The plots of Stokes' shifts with E(T)(30) are linear for non-protic solvents and for protic solvents but with different slopes. The fluorescence quantum yields are high for non-polar solvents and decrease as the solvent polarity increases. Unlike the parent molecule pyrene, DMAPEPy shows a short lifetime, which is fairly insensitive to oxygen-induced quenching and is dependent on solvent polarity. The molecule shows high steady-state fluorescence anisotropy, which is very sensitive to the viscosity change of the medium.  相似文献   

4.
H Rottenberg 《Biochemistry》1992,31(39):9473-9481
Prodan [6-propionyl-2-(dimethylamine)naphthalene] is a hydrophobic fluorescent probe which is extremely sensitive to both the polarity and the hydrogen-bond donating capacity of the solvent. In binary mixtures of solvents, the hydrogen-bond donating effect on Prodan fluorescence saturates at relatively low concentrations of protic solvent while the polarity effect is proportional to the mixture's dielectric constant. The fluorescence emission maximum is approximately a linear function of the dielectric constant in both protic and aprotic solvents, and this allows estimation of the dielectric constant in both environments. In phospholipid bilayers and biological membranes, Prodan exhibits two distinct emission peaks: blue (430-445 nm) and green (470-505 nm). Temperature determines the relative intensity of the two peaks, but their wavelengths depend on the type of membrane and appear to reflect a specific membrane environment. In phospholipid vesicles, alcohols reduce the fluorescence intensity of the blue peak and produce a red-shift in the emission maximum of the green peak. Taking the partition coefficients of the alcohols into account, short-chain alcohols are much more effective than longer-chain alcohols in red-shifting the emission maximum of the green peak. Alcohols have similar effects on Prodan fluorescence in liver microsomal and mitochondrial membranes, synaptosomal membranes, and red blood cell plasma membranes. However, in liver organelle membranes the red-shift of the green peak is the dominant effect while in plasma membranes the quenching of the fluorescence of the blue peak is dominant. These effects are observed at low (pharmacological) ethanol concentrations and provide a unique tool for probing the interactions of ethanol with biological membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1. Solvent-induced changes in the spectral properties of aflatoxin B1 were investigated using protic and aprotic solvents. 2. The absorption data were less sensitive to solvent effects than the fluorescence emission data. 3. Stokes shifts in protic solvents were greater than those in aprotic solvents indicating hydrogen bond formation between solvent and the excited state of aflatoxin B1. 4. From the Stokes shift data for aprotic solvents, the dipole moment of aflatoxin B1 was estimated to increase by 15.7 Debye units upon excitation to the excited singlet state.  相似文献   

6.
The conformation of microtubule-bound paclitaxel has been examined by fluorescence and solid-state NMR spectroscopy. A fluorescent derivative of paclitaxel, 3'-N-debenzoyl-3'-N-(m-aminobenzoyl)paclitaxel (N-AB-PT), was prepared by semisynthesis. No differences in the microtubule-promoting activity between N-AB-PT and paclitaxel were observed, demonstrating that addition of the amino group did not adversely affect the ligand-receptor association. The distance between the fluorophore N-AB-PT and the colchicine binding site on tubulin polymers was determined through time-resolved measurements of fluorescence resonance energy transfer to be 29 +/- 2 A. The absorption and emission spectra of N-AB-PT bound to microtubules and in various solvents were measured. A plot of the Stokes shift as a function of solvent polarity was highly unusual. The Stokes shift increased linearly with solvent polarity in protic solvents, which is expected due to the nature of the fluorophore. In aprotic solvents, however, the Stokes shift was invariant with solvent polarity, indicating that the fluorophore was somehow shielded from the effects of the solvent. These data are best explained by considering the solution-state conformational properties of paclitaxel. It is known that paclitaxel adopts different conformations depending on the nature of the solvent, and these fluorescence data are consistent with the molecule adopting a "hydrophobic collapsed" conformation in protic solvents and an "extended" conformation in aprotic solvents. The Stokes shift of microtubule-bound N-AB-PT was within the protic solvent region, demonstrating that microtubule-bound paclitaxel is in a hydrophobic collapsed conformation. Microtubule-bound paclitaxel was also investigated by solid-state NMR. Paclitaxel was labeled with (19)F at the para position of the C-2 benzoyl substituent and with (13)C and (15)N in the side chain. Distances between the fluorine and carbon nuclei were determined by REDOR. The distance between the fluorine and the 3'-amide carbonyl carbon was 9.8 +/- 0.5 A, and the distance between the fluorine atom and the 3'-methine carbon was 10. 3 +/- 0.5 A. These spectroscopic data were used in conjunction with molecular modeling to refine the microtubule-bound conformation of paclitaxel and to suggest an alternative orientation of the ligand within the paclitaxel binding site.  相似文献   

7.
Pavlovich VS 《Biopolymers》2006,82(4):435-441
The theory demonstrating the role of medium at the fluorescence quenching of polar compounds in solutions is briefly presented. It has been shown, that the rate of S(1) --> X(n) nonradiative conversion between the intramolecular charge transfer states depends on the permanent dipole moments in the ground (S(0)) and excited (S(1), X(n)) states as well as on solvent polarity. A relation for the rate of nonradiative excited-state energy conversion has been obtained and employed to test the known literature data for solvent effect on the S(1)-state lifetime of some biologically significant carotenoids and dyes (phthalimides). For phthalimides, the solvent isotope effect on the S(1)-state energy conversion, when hydrogen is replaced by deuterium in the OH groups of alcohols and water, has been analyzed. Based on the data for fluorescence quenching in solvents of different polarity, the dipole moments in the intermolecular charge transfer S(1) state have been obtained for carotenoids (peridinin, fucoxanthin, uriolide acetate) and for hydrogen-bonding complexes, which are formed by 4-amino-, 4-methylamino-, and 4-dimethylamino-N-methylphthalimides in alcohols and water.  相似文献   

8.
The three amino acids S65, T203, and E222 crucially determine the photophysical behavior of wild-type green fluorescent protein. We investigate the impact of four point mutations at these positions and their respective combinations on green fluorescent protein's photophysics using absorption spectroscopy, as well as steady-state and time-resolved fluorescence spectroscopy. Our results highlight the influence of the protein's hydrogen-bonding network on the equilibrium between the different chromophore states and on the efficiency of the excited-state proton transfer. The mutagenic approach allows us to separate different mechanisms responsible for fluorescence quenching, some of which were previously discussed theoretically. Our results will be useful for the development of new strategies for the generation of autofluorescent proteins with specific photophysical properties. One example presented here is a variant exhibiting uncommon blue fluorescence.  相似文献   

9.
The UV/Vis absorption and fluorescence properties of dibenzofluorescein (DBFL) in organic solvents were measured and used to shed light on the possible presence of its tautomers or various prototropic forms. DBFL in aprotic solvents mainly exists in two tautomeric forms, viz. quinoid and lactone, but neither are efficiently fluorescent. In protic solvents, such as methanol and ethanol, both the monoanion and neutral quinoid are present and showed the highest fluorescence quantum yield. In contrast, DBFL is fully dissociated to the monoanion and dianion in deionized water.  相似文献   

10.
Fluorescence spectra and fluorescence lifetimes of protochlorophyll (Pchl) were measured in organic solvents having different physical and chemical properties and were analyzed taking into account the nonspecific (dependent on bulk solvent parameters), and specific (e.g. H bonds, Mg coordination) solvent–solute interactions. The energy of the fluorescence emission band decreased, while the Stokes shift increased for increasing solvent orientation polarizability, which is a function of both the dielectric constant (ε) and the refractive index (n). The extent of the dependence of the Stokes shift on solvent orientation polarizability was higher in protic (i.e. those able to form hydrogen-binding) than in aprotic solvents. High value of the Stokes shift was also observed in pyridine and methanol, i.e. in solvents hexacoordinating the central Mg atom. The fluorescence decay of Pchl was monoexponential in all of the investigated solvents. The fluorescence lifetime decreased for increasing solvent orientation polarizability from 5.5 ± 0.1 ns in 1,4-dioxane to 3.3 ± 0.1 ns in methanol. Longer lifetime values were observed in the case of aprotic solvents than in protic solvents. The hexacoordination of Mg had no effect on the fluorescence lifetime. The present data are discussed with respect to results found for protochlorophyllide (Pchlide) (My?liwa-Kurdziel et al. in Photochem Photobiol 79:62–67, 2004), and they indicate that the presence of phytol chain in the porphyrin ring influences the spectral properties of the whole chromophore. This is the first complex analysis comparing the fluorescence emission and fluorescence lifetimes of purified Pchl and Pchlide.  相似文献   

11.
Spectroscopic and photophysical properties of a Kemp's tricarboxylic acid derivative having an anthracene chromophore (I) upon recognition of 9-butyladenine (BA) in chloroform were studied in detail. Molecular recognition of BA by I via hydrogen-bonding and pi-pi stacking interactions were sensed successfully on the basis of absorption and fluorescence spectroscopies, by which the binding constant of the I:BA complex was determined to be 240 M(-1). The fluorescence quantum yield and lifetime of I in the absence of BA were 0.24 and 5.6 ns, respectively, while those in the presence of an enough amount of BA increased to 0.35 and 13 ns, respectively. These values demonstrated that the nonradiative decay rate constant of I decreased from 13.6 x 10(7) to 5.0 x 10(7) s(-1) upon binding with BA. Such changes in the photophysical properties of I before and after complexation with BA were discussed in terms of hydrogen-bonding and pi-pi stacking interactions between I and BA. In particular, intramolecular hydrogen-bonding between the amide and imide groups in was shown to play important roles in determining the photophysical characteristics of I before complexation, while intermolecular hydrogen-bonding between I and BA governed the excited-state properties of the I:BA complex. The change in the hydrodynamic diameter of I before and after complexation with BA was also discussed on the basis of the results by fluorescence dynamic anisotropy measurements.  相似文献   

12.
A comprehensive understanding of the factors governing the efficiency of metallophthalocyanine-based photothermal sensitizers requires the knowledge of their excited-state dynamics. This can only be properly gained when the nature and energy of the excited states (often spectroscopically silent) lying between the photogenerated state and the ground state are known. Here the excited state deactivation mechanism of two very promising metallophthalocyanine-based photothermal sensitizers, NiPc(OBu)(8) and NiNc(OBu)(8), is reviewed. It is shown that time dependent density functional theory (TDDFT) methods are capable to provide reliable information on the nature and energies of the low-lying excited states along the relaxation pathways. TDDFT calculations and ultrafast experiments consistently show that benzoannulation of the Pc ring modifies the photodeactivation mechanism of the photogenerated S(1)(pi,pi*) state by inducing substantial changes in the relative energies of the excited states lying between the S(1)(pi,pi*) state and the ground state.  相似文献   

13.
Emerging new properties and applications of enzymes in organic solvents and ionic liquids are unabating. By applying a combined Quantum Mechanics/Continuum Mechanics computation on a prototypical catalytic triad serine-histidine-aspartate (SER-HIS-ASP) interacting with ethanol or acetonitrile molecules, the major difference between protic and aprotic solvents in effecting transition-state stabilization has been analyzed. Moderately polar aprotic solvent acetonitrile is predicted to be unable to stabilize the transition state in replacing the role of the oxyanion-hole environment, whereas protic ethanol solvent molecules of similar polarity to acetonitrile are adequate in re-gaining the enzymatic activities.  相似文献   

14.
A representative of a new class of dyes with dual fluorescence due to an excited state intramolecular proton transfer (ESIPT) reaction, namely 1-methyl-2-(4-methoxy)phenyl-3-hydroxy-4(1H)-quinolone (QMOM), has been studied in a series of solvents covering a large range of polarity and basicity. A linear dependence of the logarithm of its two bands intensity ratio, log(I(N*)/I(T*)), upon the solvent polarity expressed as a function of the dielectric constant, (epsilon- 1)/(2epsilon + 1), is observed for a series of protic solvents. A linear dependence for log(I(N*)/I(T*)) is also found in aprotic solvents after taking into account the solvent basicity. In contrast, the positions of the absorption and the two emission bands of QMOM do not noticeably depend on the solvent polarity and basicity, indicating relatively small changes in the transition moment of QMOM upon excitation and emission. Time-resolved experiments in acetonitrile, ethyl acetate and dimethylformamide suggest an irreversible ESIPT reaction for this dye. According to the time-resolved data, an increase of solvent basicity results in a dramatic decrease of the ESIPT rate constant, probably due to the disruption of the intramolecular H-bond of the dye by the basic solvent. Due to this new sensor property, 3-hydroxyquinolones are promising candidates for the development of a new generation of environment-sensitive fluorescence dyes for probing interactions of biomolecules.  相似文献   

15.
4-(Dimethylamino)pyridine (DMAP) shows solvent-dependent dual fluorescence from the initially excited state B* and a highly polar TICT state A*. Room-temperature time-resolved picosecond fluorescence investigations prove the bimodal kinetics of the excited-state electron transfer reaction B*-->A* in polar aprotic media. In medium polarity solvents (such as ethyl acetate) two emitting states of DMAP are shown to reach equilibrium within 50 ps. Both emitting states originate from the same ground state. The rate of excited-state charge separation depends on polarity and proton donating ability of the surrounding medium. The effects of temperature on the quantum yields of both fluorescences of DMAP in polar aprotic media indicate the transition from the kinetic regime (at low temperatures) to the equilibrium regime (at high temperatures). The kinetic behaviour of the dual luminescence of DMAP in protic solvents is more complex than in aprotic ones. In alcohols an efficient nonradiative channel competes with excited-state charge separation.  相似文献   

16.
Two novel donor-acceptor-substituted vinyltetrahydropyrene derivatives, 2-N,N-dimethylamino-7-(1-carbethoxyvinyl)-4,5,9,10-tetrahydropyrene, , and 2-N,N-dimethylamino-7-(1,1-dicyanovinyl)-4,5,9,10-tetrahydropyrene, , were synthesized and their photophysical properties investigated in solvents of different polarities. Our studies revealed the existence of intramolecular charge transfer excited states in these molecules. For both compounds the fluorescence maxima exhibited solvent polarity-dependent red shifts. These were quantitatively analysed by the Lippert-Mataga and Liptay equations to obtain the excited state dipole moments. Our results indicated that in the case of , emission takes place from a planar (1)CT state in all non-protic solvents. In the case of , the nature of the excited state depends on the solvent. A fast relaxation to a triplet state is proposed in cyclohexane. The emitting state in medium polar solvents is a planar (1)CT state. In highly polar solvents a twisted (1)CT state is invoked to explain the low fluorescence quantum yield. For both compounds CT nature of the emitting states were further confirmed by studies in acidic medium. The ground and excited state pK(a) values for and were determined using absorption and emission spectral changes observed in the presence of protic acids.  相似文献   

17.
18.
Fluorescent carbon dots (CDs) are one of the important carbonaceous nanomaterials in the area of nanoscience and nanotechnology because of their interesting physical as well as chemical properties. Herein we studied the effect of various aqueous extracting agents on fluorescence properties of waste tea residue-based carbon dots (WTR-CDs). WTR-CDs are firstly synthesized by utilizing kitchen waste-based carbonaceous biomass. To check the role of various aqueous media during the course of WTR-CDs synthesis from carbonized carbon powder, extraction of WTR-CDs was carried out in various kinds of aqueous media viz., only aqueous (100% water, WT), aqueous-alcoholic (10% ethanol, ET), aqueous-acidic (10% acetic acid, AA), and aqueous-basic (10% ammonia, AM). The consequences of extracting agents on the photophysical properties of final WTR-CDs-WT, WTR-CDs-ET, WTR-CDs-AA and WTR-CDs-AM were also discussed in detail. We have observed interesting blue shift fluorescence spectra in acidic medium for WTR-CDs-AA and polar protic solvents compared to polar aprotic medium. The solvatochromic behaviour of WTR-CDs-WT in model polar and non-polar solvent was also studied. The effect of cationic, anionic and non-anionic surfactants on the fluorescence of WTR-CDs-WT was also evaluated. The proposed findings may help researchers in the near future to obtain fast, easy and direct synthesize CDs from a variety of biomass-based precursors under different aqueous conditions.  相似文献   

19.
The secondary isotope shift in (13)C-nmr spectra in water was used to obtain information on the interactions of hydroxyl groups with their environment in polysaccharides. Specifically, the possibility of detecting the preference of intramolecular hydrogen bonding with respect to solvation was investigated. Different aliphatic alcohols were studied in both protic and aprotic solvents in order to obtain reference systems. The polysaccharides investigated were selected so as to include both different types of glycosidic linkages and different conformational properties of the polymeric chain. In addition to polysaccharides, beta-cyclodextrin and inulin were also investigated. The experiments demonstrated that isotope shift data can advantageously contribute to the understanding of the conformational properties of polysaccharides and in particular, in setting up of constraints in molecular modeling calculations.  相似文献   

20.
We report the photophysical and electrochemical properties of phenol-pyrrolidino[60]fullerenes 1 and 2, in which the phenol hydroxyl group is ortho and para to the pyrrolidino group, respectively, as well as those of a phenyl-pyrrolidino[60]fullerene model compound, 3. For the ortho analog 1, the presence of an intramolecular hydrogen bond is supported by (1)H NMR and FTIR characterization. The redox potential of the phenoxyl radical-phenol couple in this architecture is 240 mV lower than that observed in the associated para compound 2. Further, the C(60) excited-state lifetime of the hydrogen-bonded compound 1 in benzonitrile is 260 ps, while the corresponding lifetime for 2 is identical to that of the model compound 3 at 1.34 ns. Addition of excess organic acid to a benzonitrile solution of 1 gives rise to a new species, 4, with an excited-state lifetime of 1.40 ns. In nonpolar aprotic solvents such as toluene, all three compounds have a C(60) excited-state lifetime of ~1 ns. These results suggest that the presence of an intramolecular H-bond in 1 poises the potential of phenoxyl radical-phenol redox couple at a value that it is thermodynamically capable of reducing the photoexcited fullerene. This is not the case for the para analog 2 nor is it the case for the protonated species 4. This work illustrates that in addition to being used as light activated electron acceptors, pyrrolidino fullerenes are also capable of acting as built-in proton-accepting units that influence the potential of an attached donor when organized in an appropriate molecular design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号