首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
《Inorganica chimica acta》1986,116(2):109-117
Previously developed methods for the treatment of polyhedral boranes, carboranes, and metal clusters are extended to the treatment of gold clusters, which present a variety of new problems. In most cases gold atoms in such cluster compounds do not employ the usual 9-orbital sp3d5 spherical bonding orbital manifold. Instead almost all non-tetrahedral gold clusters consist of a center gold atom surrounded by a puckered polygonal belt of peripheral gold atoms generally with one or more additional peripheral gold atoms in distal positions above and/or below the belt. The peripheral gold atoms in such clusters use a 7-orbital spd5 cylindrical bonding orbital manifold, but their residual two orthogonal anti- bonding p orbitals can receive electron density from the filled d orbitals of adjacent peripheral gold atoms through dσ → pσ* and/or dπ → pπ* backbonding leading to bonding distances between adjacent peripheral gold atoms. Centered gold clusters can be classified into either spherical or toroidal clusters depending upon whether the center gold atom uses a 9-orbital sp3d5 spherical bonding orbital manifold or an 8-orbital sp2d5 toroidal bonding orbital manifold, respectively. The topology of the core bonding in gold clusters is generally not that of the Kn complete graph found in other clusters but instead mimics the topology of the polyhedron formed by the surface atoms. This apparently is a consequence of the poor lateral overlap of the cylindrical spd5 manifolds of the peripheral gold atoms. Examples of non-centered gold clusters treated in this paper include the squashed pentagonal bipyramidal Au7(PPh3)7+ and the edge-fused bitetrahedral (Ph3P)4Au6[Co(CO)4]2 which may be regarded as a ‘perauraethylene’ in which the six cluster gold atoms correspond to the six atoms of ethylene including a double bond between the two gold atoms corresponding to the two ethylene carbon atoms.  相似文献   

2.
Mouse P2A2-LISN myoblasts are transfected cells that overexpress the human type 1 insulin-like growth factor (IGF) receptor. Because the type 1 IGF receptor is the major binding site for both IGF-I and IGF-II, this cell line is an excellent model to determine the effect of multivalent cations on ligand binding specifically to this type of receptor. Competitive binding assays were performed to characterize IGF binding and Scatchard analysis to quantify affinity (Ka). 125I-IGF-I, 125I-IGF-II, and 125I-R3-IGF-I bind only to the type 1 IGF receptor on these cells. Zn2+ increased binding of the three ligands to the type 1 IGF receptor by 17 to 35%. Cd2+ significantly increased binding of 125I-IGF-I, although by only 8%. La3+ and Cr3+ did not effect binding. Au3+ decreased IGF binding by approximately 56%. Scatchard analysis produced nonlinear concave-down plots yielding binding constants for high and low affinity sites. Zn2+ increased the strength of only the high affinity sites. Au3+ decreased the affinity of both high and low affinity sites. Zn2+ increased binding with a half-maximal effect between 40 μM and 60 μM. Half-maximal dose of Au3+ was > 130 μM. Zinc, gold, and cadmium bind to similar regions within proteins (a zinc-binding motif) and only these cations were found to affect receptor binding indicating similar mechanisms of action. Thus, multivalent cations may alter IGF binding to cell surface receptors ultimately controlling growth. Physiologically this may be especially important for the growth promoting effects of Zn2+. J. Cell. Physiol. 176:392–401, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Complex formation properties of a novel water soluble thiazolyloxime 2-(4-methylthiazol-2-yl)-2-(hydroxyimino)acetic acid (H3L1) with Cu2+ and Ni2+ were investigated in solution by potentiometrical and spectral (UV-Vis, EPR, NMR) methods. All Cu2+ and most of Ni2+ complex species detected in solution were found to have square-planar MN4 core with oxime and heterocyclic nitrogen atoms which was rationalized in terms of destabilizing effect of repulsive interaction between oxygen atom of carboxylic group and nitrogen atom of thiazole ring in N,O-coordinated ligand conformation. It has been found that stability of metal complexes in a series of oxime ligands is dependent upon basicity of nitrogen atom of oxime group. The thiazolyloxime forms less stable complexes with Cu2+ but stronger ones with Ni2+ ions when compared to parent 2-(hydroxyimino)propanoic acid. The lower stability obtained for Cu2+ complexes was elucidated in terms of negative inductive effect of the thiazole and nitrile substituents as well as an effect of intramolecular attractive interaction between thiazolyl sulfur and oxime oxygen atoms in thiazolyloxime. In the case of Ni2+ the complexes formed are square-planar and it is why thiazolyl ligand is more effective in metal ion binding than simple 2-(hydroxyimino)propanoic acid forming only octahedral species. The solid state structure of the Co3+ complex K3[Co(HL1)3]·5.5H2O (1) was studied by X-ray analysis. The thiazolyloxime ligand is coordinated to Co3+ via oxime nitrogen and carboxylate oxygen atoms forming five-membered chelate rings.  相似文献   

4.
DFT (B3LYP/6-31+G(d)) calculations of Mg2+ affinities for a set of phosphoryl ligands were performed. Two types of ligands were studied: a set of trivalent [O = P(R)] and a set of pentavalent phosphoryl ligands [O = P(R)3] (R = H, F, Cl, Br, OH, OCH3, CH3, CN, NH2 and NO2), with R either bound directly to the phosphorus atom or to the para position of a phenyl ring. The affinity of the Mg2+ cation for the ligands was quantified by means of the enthalpy for the substitution of one water molecule in the [Mg(H2O)6]2+ complex for a ligand. The enthalpy of substitution was correlated with electronic and geometric parameters. Electron-donor groups increase the interaction between the cation and the ligand, while electron-acceptor groups decrease the interaction enthalpy.  相似文献   

5.
The reaction of gold with thiosaccharin ligand and additional phosphorous coligands is studied. Four new Au(I) complexes with thiosaccharinate as coordinating counteranion: [Au(tsac)(PPh3)], [Au2(tsac)2(dppm)]·EtOH, Au2(tsac)2(dppe)·EtOH, and Au(tsac)(Htsac)2·0.25 EtOH (tsac: thiosaccharinate, C6H4C(S)NSO2, dppm: bis(diphenylphosphino)methane, dppe: bis(diphenylphosphino)ethane) were synthesized and characterized by means of spectroscopic techniques (IR, UV-Vis, and 1H, 13C and 13P NMR). The crystal structure of two of them, [Au(tsac)(PPh3)] and [Au2(tsac)2(dppm)]·EtOH, were solved applying single crystal X-ray diffraction and studied using the density functional theory (DFT) formalism. In the latter, the aurophilic interaction between the two gold centers was analyzed and theoretically confirmed.  相似文献   

6.
The effect of multivalent cations on [125I]-IGF binding to cell-associated IGFBPs was investigated using human fibroblasts. The major cell-associated binding site for [125I]-IGF-I is IGFBP-3 and for [125I]-IGF-II are IGFBP-3 and IGFBP-5. Lanthanum and chromium did not affect either [125I]-IGF-I or [125I]-IGF-II binding to cell-associated IGFBPs. By contrast, zinc (Zn2+), gold (Au3+), and cadmium (Cd2+) depressed binding of both ligands. Ligand binding resulted in nonlinear Scatchard plots. Assuming a pre-existent asymmetric model with high- (KaHi) and low- (KaLo) affinity sites, Zn2+ lowered both KaHi and KaLo. Au3+ eliminated KaHi. Assuming that the nonlinear plots were caused by ligand-induced negative cooperativity, Zn2+ and Cd2+ lowered both Ke and Kf (affinity of unoccupied and saturated IGFBPs, respectively). Au3+ eliminated Ke and reduced Kf. Zn2+ was active at serum levels in lowering IGF binding. Zinc, gold, and cadmium bind to similar regions within proteins (a zinc-binding motif) indicating similar mechanisms of action. A zinc-binding motif is present in the IGFBPs, but not in the IGFs. We demonstrate for the first time that the trace nutrient zinc and related multivalent cations decrease IGF binding to fibroblast-associated IGFBPs by lowering the affinity of the IGF–IGFBP interaction. J. Cell. Biochem. 69:364–375, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Li2O-HfO2-SiO2-Tm2O3:Au2O3 glass samples (containing fixed content of Tm2O3 and different concentration of Au2O3) were prepared and characterized. Bearing of Au0 metallic particles (MPs) on improving blue emission of thulium ions (Tm3+) ions was explored. Optical absorption (OA) spectra exhibited multiple bands excited from 3H6 of Tm3+. Additionally, a broad peak in the wavelength range 500–600 nm due to surface plasmon resonance (SPR) of Au0 MPs was noticed in the spectra. Photoluminescence (PL) spectra (of thulium free glasses) indicated a peak in the visible range due to sp → d electronic transition of Au0 MPs. Luminescence spectra of Tm3+ and Au2O3 co-doped glasses exhibited intense blue emission with substantial increase of intensity with increase of Au2O3 content. Bearing of Au0 MPs on the reinforcement of blue emission of Tm3+ was discussed in detail with kinetic rate equations.  相似文献   

8.
Chemical rescue of site-modified amino acids using externally supplied organic molecules represents a powerful method to investigate structure-function relationships in proteins. Here we provide definitive evidence that aryl and alkyl thiolates, reagents typically used for in vitro iron-sulfur cluster reconstitutions, serve as rescue ligands to a site-specifically modified [4Fe-4S]1+,2+ cluster in PsaC, a bacterial dicluster ferredoxin-like subunit of Photosystem I. PsaC binds two low-potential [4Fe-4S]1+,2+ clusters termed FA and FB. In the C13G/C33S variant of PsaC, glycine has replaced cysteine at position 13 creating a protein that is missing one of the ligating amino acids to iron-sulfur cluster FB. Using a variety of analytical techniques, including non-heme iron and acid-labile sulfur assays, and EPR, resonance Raman, and Mössbauer spectroscopies, we showed that the C13G/C33S variant of PsaC binds two [4Fe-4S]1+,2+ clusters, despite the absence of one of the biological ligands. 19F NMR spectroscopy indicated that the external thiolate replaces cysteine 13 as a substitute ligand to the FB cluster. The finding that site-modified [4Fe-4S]1+,2+ clusters can be chemically rescued with external thiolates opens new opportunities for modulating their properties in proteins. In particular, it provides a mechanism to attach an additional electron transfer cofactor to the protein via a bound, external ligand.  相似文献   

9.
A theoretical study of a sandwich compound with a metal monolayer sheet between two aromatic ligands is presented. A full geometry optimization of the [Au3Cl3Tr2]2+ (1) compound, which is a triangular gold(I) monolayer sheet capped by chlorines and bounded to two cycloheptatrienyl (Tr) ligands was carried out using perturbation theory at the MP2 computational level and DFT. Compound (1) is in agreement with the 18–electron rule, the bonding nature in the complex may be interpreted from the donation interaction coming from the Tr rings to the Au array, and from the back-donation from the latter to the former. NICS calculations show a strong aromatic character in the gold monolayer sheet and Tr ligands; calculations done with HOMA, also report the same aromatic behavior on the cycloheptatrienyl fragments giving us an insight on the stability of (1). The Au –Au bond lengths indicate that an intramolecular aurophilic interaction among the Au(I) cations plays an important role in the bonding of the central metal sheet. Figure (a) Ground state geometry of complex 1; (b) Top view of compound 1 and Wiberg bond orders computed with the MP2/B1 computational method; (c) Lateral view of compound 1 and NICS values calculated with the MP2/B1 method; the values in parenthesis were obtained at the VWN/TZP level  相似文献   

10.
The inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) channel is crucial for the generation and modulation of highly specific intracellular Ca2+ signals performing numerous functions in animal cells. However, the single channel behavior during Ca2+ signals of different spatiotemporal scales is not well understood. To elucidate the correlation between the gating dynamics of single InsP3Rs and spatiotemporal Ca2+ patterns, we simulate a cluster of InsP3Rs under varying ligand concentrations and extract comprehensive gating statistics of all channels during events of different sizes and durations. Our results show that channels gating predominantly in the low activity mode with negligible occupancy of intermediate and high modes leads to single channel Ca2+ release event blips. Increasing occupancies of intermediate and high modes results in events with increasing size. When the channel has more than 50% probability of gating in the intermediate and high modes, the cluster generates very large puffs that would most likely result in global Ca2+ signals. The size, duration and frequency of Ca2+ signals all increase linearly with the total probability of channel gating in the intermediate and high modes. To our knowledge, this is the first study that quantitatively relates the modal characteristics of InsP3R to the shaping of different spatiotemporal scales of Ca2+ signals.  相似文献   

11.
《Gene》1997,190(1):151-156
Receptor-stimulated phosphoinositide (PI) hydrolysis is an important and ubiquitous mechanism of intracellular signaling. Inositol 1,4,5-trisphosphate (IP3), generated by phosphoinositide (PI) hydrolysis, binds to and gates an intracellular Ca2+ channel, the IP3 receptor (IP3R), which is therefore a central component of this signaling cascade. Here we describe the development of a baculovirus (BV)/Sf(S. frugiperda) cell system that can be used to look at IP3R function. Agonist-evoked changes in intracellular Ca2+ levels [Ca2+]i were measured (using Fura2) in Sf cells expressing the gene encoding the muscarinic acetylcholine receptor (vmlAchR). Furthermore, we have constructed a recombinant BV (vlP3R), with the core of the IP3R ligand-binding domain from the Drosophila IP3R, under the polyhedrin promoter. The recombinant protein from such a virus was expected to act as a large ligand sink for IP3, generated by stimulation of vmlAchR. Cells coinfected with recombinant BV carrying the potential dominant-negative vIP3R construct and vmlAchR have been used to assay the modulation of IP3R-mediated Ca2+ release, by the ligand sink.  相似文献   

12.
The mechanisms for the acetylene hydrochlorination reaction on pristine Au7 and Au8 clusters and on the Si-doped Au clusters Au6Si and Au7Si were systematically investigated via density functional theory using the PBE functional. The band gap (?Eg) of the Au7Si cluster was found to smaller than that of its undoped equivalent (Au8), thus enhancing its catalytic activity, and Au7Si presented a significantly reduced activation barrier (16.69 kcal mol?1) for the acetylene hydrochlorination reaction compared with the pristine Au8 cluster (21.83 kcal mol?1). On the other hand, the activation barrier for the acetylene hydrochlorination reaction was not lower for the Au6Si cluster than for the pristine Au7 cluster because the band gap (?Eg) of Au6Si was found to be larger than that of Au7. Hence, the current work shows that the catalytic activities of gold clusters can be systematically modified by doping them. Our findings also suggest how to enhance the acetylene hydrochlorination reaction by doping foreign atoms into Au clusters.
Graphical abstract The Si-doped Au7Si cluster showed stronger catalytic activity for the acetylene hydrochlorination reaction compared with the pristine Au8 cluster.
  相似文献   

13.
The Fe3+ chelating ability of some curcumin glucosyl derivatives (Glc-H; Glc-OH; Glc-OCH3) is tested by means of UV and NMR study. The pK a values of the ligands and the overall stability constants of Fe3+ and Ga3+ complexes are evaluated from UV spectra. The only metal binding site of the ligand is the β-diketo moiety in the keto-enolic form; the glucosyl moiety does not interact with metal ion but it contributes to the stability of metal/ligand 1:2 complexes by means of hydrophilic interactions. These glucosyl derivatives are able to bind Fe3+ in a wide pH rage, forming complex species thermodynamically more stable than those of other ligands commonly used in the treatment of iron deficiency. In addition they demonstrate to have a poor affinity for competitive biological metal ions such as Ca2+. All ligands and their iron complexes have a good lypophilicity (log P > −0.7) suggesting an efficient gastrointestinal absorption in view of their possible use as iron supplements in oral therapy. The ligand molecules are also tested for their antioxidant properties in “ex vivo” biological system.  相似文献   

14.
Protein metalation processes are crucial for the mechanism of action of several anticancer metallodrugs and warrant deeper characterisation. We have explored the reactions of three cytotoxic gold(III) compounds??namely [(bipy2Me)2Au2(??-O)2][PF6]2 (where bipy2Me is 6,6??-dimethyl-2,2??-bipyridine) (Auoxo6), [(phen2Me)2Au2(??-O)2][PF6]2 (where phen2Me is 2,9-dimethyl-1,10-phenanthroline) (Au2phen) and [(bipydmb-H)Au(OH)][PF6] [where bipydmb-H is deprotonated 6-(1,1-dimethylbenzyl)-2,2??-bipyridine] (Aubipyc)??with two representative model proteins, i.e. horse heart cytochrome?c and hen egg white lysozyme, through UV?Cvisible absorption spectroscopy and electrospray ionisation mass spectrometry (ESI MS) to characterise the inherent protein metalation processes. Notably, Auoxo6 and Au2phen produced stable protein adducts where one or more ??naked?? gold(I) ions are protein-coordinated; very characteristic is the case of cytochrome?c, which upon reaction with Auoxo6 or Au2phen preferentially forms ??tetragold?? adducts with four protein-bound gold(I) ions. In turn, Aubipyc afforded monometalated protein adducts where the structural core of the gold(III) centre and its +3 oxidation state are conserved. Auranofin yielded protein derivatives containing the intact auranofin molecule. Additional studies were performed to assess the role played by a reducing environment in protein metalation. Overall, the approach adopted provides detailed insight into the formation of metallodrug?Cprotein derivatives and permits trends, peculiarities and mechanistic details of the underlying processes to be highlighted. In this respect, electrospray ionisation mass spectrometry is a very straightforward and informative research tool. The protein metalation processes investigated critically depend on the nature of both the metal compound and the interacting protein and also on the solution conditions used; thus, predicting with accuracy the nature and the amounts of the adducts formed for a given metallodrug?Cprotein pair is currently extremely difficult.  相似文献   

15.
Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparticles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au0. Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.  相似文献   

16.
N-hydroxy-imino-di-α-propionic acid, the ligand present in the natural oxovanadium(IV) complex ‘amavadin’ which occurs in the toadstool Amanita muscaria, has been synthesised, as well as two related ligands—N-hydroxy-iminodiacetic acid and imino-di-α-propionic acid—useful for comparison purposes. The formation of complexes of these ligands with VO2+, Ni2+ has been studied and their stability constants have been determined.The two N-hydroxy-substituted ligands, of low basicity, form ML2 complexes with VO2+, unlike the more basic derivatives of iminodiacetic acid. Since substitution of ligands bonded to the apical site trans to the oxo ligand is very fast and the formation of ML2 complexes of VO2+ exposes that apical site to the reaction media, this may be the reason why oxovanadium(IV) and the unusual derivative of iminodiacetic acid present in ‘amavadin’ were selected for the biological role that this complex plays in the toadstool.  相似文献   

17.
The electronic structure and spectroscopic properties of [Au3(μ-C(OEt) = NC6H4CH3)3]n-(C6F6)m and [Au3(μ-C2,N3-bzim)3]n-(Ag+)m were studied at the B3LYP, PBE and TPSS levels. The interaction between the [Au3] cluster and L (C6F6, Ag+) was analyzed. Grimme’s dispersion correction is used for those functionals. Weak π-interactions (Au-C6F6) were found to be the main contribution short-range stability in the models; while in the models with Ag+, an ionic interaction is obtained. The absorption spectra of these models at the PBE level agree with the experimental spectra.  相似文献   

18.
The affinity of the Ca2+ ion for a set of substituted carbonyl ligands was analyzed with both the DFT (B3LYP/6-31+G(d)) and semi-empirical (PM6) methods. Two types of ligands were studied: a set of monosubstituted [O=CH(R)] and a set of disubstituted ligands [O=C(R)2] (R=H, F, Cl, Br, OH, OCH3, CH3, CN, NH2 and NO2), with R either directly bound to the carbonyl carbon atom or to the para position of a phenyl ring. The interaction energy was calculated to quantify the affinity of the Ca2+ cation for the ligands. Geometric and electronic parameters were correlated with the intensity of the metal-ligand interaction. The electronic nature of the substituent is the main parameter that determines the interaction energy. Donor groups make the interaction energy more negative (stabilizing the complex formed), while acceptor groups make the interaction energy less negative (destabilizing the complex formed).  相似文献   

19.
Dinitrato(ethylenediamine)palladium(II) has been crystallized from aqueous solution following treatment of enPdCl2 with AgNO3. The en ligand is chelating and the two nitrate ligands bind monofunctionally. When brought in water, the nitrates are immediately replaced by water ligands, thus providing a convenient source of highly reactive [enPd(H2O)2]2+. 1H NMR spectra of the title compound in dimethylformamide and acetonitrile indicate proton exchange between NH2 groups of en ligands.  相似文献   

20.
Background information. In endocrine cells, IP3R (inositol 1,4,5‐trisphosphate receptor), a ligand‐gated Ca2+ channel, plays an important role in the control of intracellular Ca2+ concentration. There are three subtypes of IP3R that are distributed differentially among cell types. RINm5F cells express almost exclusively the IP3R‐3 subtype. The purpose of the present study was to investigate the effect of PKA (protein kinase A) on the activity of IP3R‐3 in RINm5F cells. Results. We show that immunoprecipitated IP3R‐3 is a good substrate for PKA. Using a back‐phosphorylation approach, we show that endogenous PKA phosphorylates IP3R‐3 in intact RINm5F cells. [3H]IP3 (inositol 1,4,5‐trisphosphate) binding affinity and IP3‐induced Ca2+ release activity were enhanced in permeabilized cells that were pre‐treated with forskolin or PKA. The PKA‐induced enhancement of IP3R‐3 activity was also observed in intact RINm5F cells stimulated with carbachol and epidermal growth factor, two agonists that use different receptor types to activate phospholipase C. Conclusion. The results of the present study reveal a converging step where the cAMP and the Ca2+ signalling systems act co‐operatively in endocrine cell responses to external stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号