首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The A11 region plays a role in numerous physiological functions, including pain and locomotor activity, and consists of a variety of neurons including GABAergic, calbindin positive (Calb+), and dopaminergic (DA) neurons. However, the neurochemical nature of Calb+ neurons and their regulatory role in the A11 region remain largely unknown. In this study, we examined the kind of functional markers co-expressed in the Calb+ neurons using sections from 8-week-old rats. To examine a marker related to classical neurotransmitters, we performed in situ hybridization for vesicular glutamate transporter 2 (vGluT2) or glutamate decarboxylase (GAD) 65 and 67, in conjunction with Calb immunohistochemistry. We found cellular co-expression of Calb with vGluT2 or GAD65/67 throughout the A11 region. Nearly all Calb+/GAD65/67+ neurons were found in the rostral-middle aspect of the A11 region. In contrast, Calb+/vGluT2+ neurons were found predominantly in the middle-caudal aspect of the A11 region. For receptors and neuropeptides, we performed immunohistochemistry for androgen receptor (AR), estrogen receptors (ERα and ERβ), and calcitonin gene-related peptide (CGRP). We found that Calb+ neurons co-expressed AR in the rostral aspect of the A11 region in both male and female rats. However, we rarely find cellular co-expression of Calb with ERα or ERβ in this region. For CGRP, we found both Calb+ neurons with or without CGRP expression. These results demonstrate that Calb+ neurons co-express many functional markers. Calb+ neurons have a distinct distribution pattern and may play a variety of regulatory roles, depending on their location within the A11 region.

  相似文献   

2.
Generally, impaired bones heal by bone repair and bone regeneration. These two processes are necessary during the healing period of dental implant. Vasculature plays a crucial role in bone healing because bones are highly vascularized tissue. Osteogenesis and angiogenesis are highly coupled processes and can be regulated by Hippo-YAP signaling pathway. Recent studies have demonstrated Hippo-YAP pathway may be regulated by alpha calcitonin gene-related peptide. However, the regulatory effects of αCGRP-YAP pathway on angiogenesis and osteogenesis during bone healing around implants remain unclear. Four groups of mice were established: KO Group: αCGRP −/− mice; KO + αCGRP group: αCGRP −/− mice with αCGRP overexpressing lentiviral transfection; KO + YAP group: αCGRP −/− mice with YAP overexpressing lentiviral transfection; WT group: wildtype mice. After 14 or 28 days, animals were sacrificed and tested. Results showed αCGRP deficiency hampered osteogenesis and angiogenesis. In addition, the impaired bone healing can be rescued by overexpressing αCGRP and YAP in αCGRP −/− mice. In-vivo results indicate αCGRP-YAP pathway promotes angiogenesis and osteogenesis in bone healing, especially at the early stage. Taken together, present study demonstrated αCGRP up-regulate the expression of YAP, and down-stream genes to promote the osteogenesis and angiogenesis around the implants.  相似文献   

3.
Cadmium (Cd) and diazinon (DZN) are known to be environmental risk factors for various bone diseases including osteoporosis. Selenium (Se), an essential constituent of many antioxidant enzymes, has in higher concentrations negative effects on the bone. The present study was aimed to investigate possible changes in femoral bone of adult male rats after their acute and subchronic exposures to Cd, DZN and Se. A total of 30 male Wistar rats were randomized into three experimental groups. The rats in the group A (4-months-old) were injected intraperitoneally with a mixture of 2 mg CdCl2 kg?1, 20 mg DZN kg?1 and 2 mg Na2SeO3 kg?1 body weight and killed 36 h after xenobiotics had been injected. In the group B, young males (1-month-old) were administered with a combination of 30 mg CdCl2 L?1, 40 mg DZN L?1 and 5 mg Na2SeO3 L?1 in their drinking water, for 90 days. Ten 4-months-old males without toxicant supplementation served as a control group (C). After treatment period, detailed histological analysis of femoral bone was performed in each group. Our results revealed apparent osteoporotic symptoms (resorption lacunae, osteoporotic fractures) in rats from groups A and B. Moreover, histomorphometrical evaluation showed reduced bone vascularization (constricted primary osteons’ vascular canals and Haversian canals) and weakness mechanical properties of bones (smaller size of the secondary osteons) in these rats in comparison with those of the control group. Our study demonstrates for the first time that acute and subchronic co-administrations to Cd, DZN and Se induce evident manifestation characteristics of osteoporosis in male rats.  相似文献   

4.
Myocardial infarction (MI) is a major condition causing heart failure (HF). After MI, the renin angiotensin system (RAS) and its signalling octapeptide angiotensin II (Ang II) interferes with cardiac injury/repair via the AT1 and AT2 receptors (AT1R, AT2R). Our study aimed at deciphering the mechanisms underlying the link between RAS and cellular components of the immune response relying on a rodent model of HF as well as HF patients. Flow cytometric analyses showed an increase in the expression of CD4+ AT2R+ cells in the rat heart and spleen post‐infarction, but a reduction in the peripheral blood. The latter was also observed in HF patients. The frequency of rat CD4+ AT2R+ T cells in circulating blood, post‐infarcted heart and spleen represented 3.8 ± 0.4%, 23.2 ± 2.7% and 22.6 ± 2.6% of the CD4+ cells. CD4+ AT2R+ T cells within blood CD4+ T cells were reduced from 2.6 ± 0.2% in healthy controls to 1.7 ± 0.4% in patients. Moreover, we characterized CD4+ AT2R+ T cells which expressed regulatory FoxP3, secreted interleukin‐10 and other inflammatory‐related cytokines. Furthermore, intramyocardial injection of MI‐induced splenic CD4+ AT2R+ T cells into recipient rats with MI led to reduced infarct size and improved cardiac performance. We defined CD4+ AT2R+ cells as a T cell subset improving heart function post‐MI corresponding with reduced infarction size in a rat MI‐model. Our results indicate CD4+ AT2R+ cells as a promising population for regenerative therapy, via myocardial transplantation, pharmacological AT2R activation or a combination thereof.  相似文献   

5.
Lanthanum (La) is a rare earth element that is widely used for industrial, medical and agricultural purposes. Its neurotoxic effects are linked to its physical and chemical properties and its interaction with certain trace elements and membrane-bound enzymes. The aim of this study was to investigate the effects of short-term La-administration (as LaCl3, 53 mg/kg) on the adult rat whole brain total antioxidant status (TAS) and the activities of acetylcholinesterase (AChE), Na+,K+-ATPase and Mg2+-ATPase, as well as the potential effect of the co-administration of the antioxidant l-cysteine (Cys, 7 mg/kg) on the above parameters. Twenty-eight male Wistar rats were divided into four groups: A (saline-treated control), B (La), C (Cys),and D (La and Cys). All rats were treated once daily with intraperitoneal injections of the tested compounds, for 1-week. Rats were sacrificed by decapitation and the above mentioned parameters were measured spectrophotometrically. Rats treated with La exhibited a significant reduction in brain TAS (−36%, P < 0.001, BvsA), that was partially limited by the co-administration of Cys (−13%, P < 0.01, DvsA), while Cys (group C) had no effect on TAS. The rat brain AChE activity was found significantly increased by both La (+23%, P < 0.001, BvsA) and Cys (+59%, P < 0.001, CvsA), while it was adjusted to control levels by the co-administration of La and Cys. The activity of rat brain Na+,K+-ATPase was significantly decreased by La-administration (−28%, P < 0.001, BvsA), while Cys supplementation could not reverse this decrease. The activity of Mg2+-ATPase exhibited a slight but statistically significant reduction due to La (−8%, P < 0.01, BvsA), that was further reduced by Cys co-administration (−25%, P < 0.001, DvsA). The above findings suggest that La short-term in vivo administration causes a statistically significant decrease in the rat brain TAS and an increase in AChE activity. Both effects can be, partially or totally, reversed into control levels by Cys co-administration, which could thus be considered for future applications as a neuroprotective agent against chronic exposure to La. The activities of Na+,K+- and Mg2+-ATPase that were inhibited by La, could not be reversed by Cys co-administration. A role for the already reported concentration-dependent interaction of La with Ca-binding sites (such as Ca2+-ATPase) might be considered for certain of the above phenomena.  相似文献   

6.
Arend M  Stinzing A  Wind C  Langer K  Latz A  Ache P  Fromm J  Hedrich R 《Planta》2005,223(1):140-148
In previous studies, we have shown that annual expression profiles of cambial and wood tissue with respect to the Shaker K+ channel PTORK correlate with cambial activity. To follow PTORK-gene activity on the cellular level, we isolated the respective promoter regions and generated transgenic Arabidopsis plants expressing the GUS gene under the control of the PTORK promoter. Cross-sections of petioles showed PTORK-driven signals predominantly in the xylem parenchyma surrounding the vessels and in the phloem. Antibodies raised against a unique N-terminal region of PTORK in histo-immunochemical analyses recognised this K+-release channel in growth-active poplar plants only. PTORK labelling was found in differentiating xylem cells (young fibres) and mature xylem (vessel-associated cells of the ray parenchyma). Patch-clamp measurements on fibre cell protoplasts, derived from young poplar twigs, identified outward-rectifying K+ channels as the major K+ conductance of this cell type, which resembled the biophysical properties of PTORK when expressed in Xenopus oocytes.Electronic Supplementary Material Supplementary material is available for this article at Matthias Arend and Andrea Stinzing contributed equally to this work  相似文献   

7.
The colocalization of immunoreactivities to substance P and calcitonin gene-related peptide (CGRP) in nervous structures and their correlation with other peptidergic structures were studied in the stellate ganglion of the guinea pig by the application of double-labelling immunofluorescence. Three types of fibre were distinguished. (1) Substance P+/CGRP+ fibres, which sometimes displayed additional immunoreactivity for enkephalin, constituted a small fibre population of sensory origin, as deduced from retrograde labelling of substance P+/CGRP+ dorsal root ganglion cells. (2) Substance P+/CGRP fibres were more frequent; some formed baskets around non-catecholaminergic perikarya that were immunoreactive to vasoactive intestinal polypeptide (VIP). (3) CGRP+/substance P fibres were most frequent and were mainly distributed among tyrosine hydroxylase (TH)-immunoreactive cell bodies. The peptide content of fibre populations (2) and (3) did not correspond to that of sensory ganglion cells retrogradely labelled by tracer injection into the stellate ganglion. Therefore, these fibres are throught to arise from retrogradely labelled preganglionic sympathetic neurons of the spinal cord, in which transmitter levels may have been too low for immunohistochemical detection of substance P or CGRP. CGRP-immunoreactivity but no substance P-immunolabelling was observed in VIP-immunoreactive postganglionic neurons. Such cell bodies were TH-negative and were spared by substance P-immunolabelled fibre baskets. Retrograde tracing with Fast Blue indicated that the sweat glands in the glabrous skin of the forepaw were the targets of these neurons. The streptavidin-biotin-peroxidase method at the electron-microscope level demonstrated that immunoreactivity to substance P and CGRP was present in dense-cored vesicles of 50–130 nm diameter in varicosities of non-myelinated nerve fibres in the stellate ganglion. No statistically significant difference in size was observed between vesicles immunolabelled for substance P and CGRP. Immunoreactive varicosities formed axodendritic and axosomatic synaptic contacts, and unspecialized appositions to non-reactive neuronal dendrites, somata, and axon terminals. Many varicosities were partly exposed to the interstitial space. The findings provide evidence for different pathways utilizing substance P and/or CGRP in the guinea-pig stellate ganglion.  相似文献   

8.
The afferent output from the bladder is important for triggering micturition. This study identifies different types of afferent nerve and explores the connections of their collateral fibres on intramural ganglia and potential ganglionic targets. The experiments were performed on tissues from male guinea-pigs (n=16). Fibres positive for choline acetyl transferase (ChAT+) were found to originate close to the urothelium, to transit the sub-urothelial interstitial cell layer and to pass into the lamina propria. A different population of fibres, immunopositive for calcitonin gene-related peptide (CGRP), capsaicin receptors or neurofilament protein (NF), were seen to intertwine with the ChAT+ fibres in the lamina propria. The ChAT+ fibres did not express NF. Ganglia with ChAT+ and NF+ neurones were found in the lamina propria and muscle. ChAT+ fibres, with pronounced terminal varicosities, were present on the nerve cell bodies. Two types were noted: NF+ terminals and those with little or no NF (NF) suggesting that their origins were the ChAT+ afferent collaterals and the adjacent ganglia. Fibres containing CGRP or substance P were seen on the ganglionic cells. α1B adrenergic receptors were also found on the neurones indicative of adrenergic synapses. Thus, the ganglia had multiple inputs. Different types of ChAT+ nerves were seen in the muscle: NF+ and NF. The ChAT+/NF+ nerves may represent a ganglionic output to the muscle. This complex neuronal network may therefore represent the elements generating and modulating bladder sensations. The role of such a scheme in bladder pathology and the therapeutic sites of action of anticholinergic and sympathomimetic drugs are discussed.We gratefully acknowledge the support of Pfizer. This work was supported by a grant from the Detrol Research Programme.  相似文献   

9.
10.
 Osteopetrosis in laboratory animals is a metabolic bone disease characterized by increased skeletal mass. It is inherited as an autosomal recessive and results from a defect in the development and/or function of osteoclasts. We studied two enzymes essential for bone resorption, carbonic anhydrase II isoenzyme (CA II) and H+-ATPase, in osteoclasts from four osteopetrotic mutations in the rat; namely incisors-absent (ia), osteopetrosis (op), toothless (tl), and microphthalmia (mib), to test the hypothesis that reduced bone resorption in one or more of these mutations results from defects in the synthesis or activity of one of these enzymes. CA II was present in most osteoclasts from normal, tl, op, and mib littermates and was homogeneously distributed in cytoplasm. CA II staining in ia osteoclasts was more variable and less intense than in the other mutations. H+-ATPase was also present in osteoclasts from normal animals and mutants and immunostaining showed clear polarization to the ruffled border region in all normal rats and mutants except ia, which showed diffuse distribution of staining in the cytoplasm. H+-ATPase activity (proton transport) in a related tissue, kidney, was normal in tl and ia rats but increased in op and mib rats compared to their normal littermates. These results suggest that the osteoclasts in osteopetrotic rat mutations are not abnormal with respect to the distribution of CA II and H+-ATPase and that the function of these enzymes in the skeleton, while likely normal, needs to be tested directly in bone. Accepted: 25 September 1998  相似文献   

11.
Multiple types of voltage‐activated calcium (Ca2+) channels are present in all nerve cells examined so far; however, the underlying functional consequences of their presence is often unclear. We have examined the contribution of Ca2+ influx through N‐ and L‐ type voltage‐activated Ca2+ channels in sympathetic neurons to the depolarization‐induced activation of tyrosine hydroxylase (TH), the rate‐limiting enzyme in norepinephrine (NE) synthesis, and the depolarization‐induced release of NE. Superior cervical ganglia (SCG) were decentralized 4 days prior to their use to eliminate the possibility of indirect effects of depolarization via preganglionic nerve terminals. The presence of both ω‐conotoxin GVIA (1 μM), a specific blocker of N‐type channels, and nimodipine (1 μM), a specific blocker of L‐type Ca2+ channels, was necessary to inhibit completely the stimulation of TH activity by 55 mM K+, indicating that Ca2+ influx through both types of channels contributes to enzyme activation. In contrast, K+ stimulation of TH activity in nerve fibers and terminals in the iris could be inhibited completely by ω‐conotoxin GVIA alone and was unaffected by nimodipine as previously shown. K+ stimulation of NE release from both ganglia and irises was also blocked completely when ω‐conotoxin GVIA was included in the medium, while nimodipine had no significant effect in either tissue. These results indicate that particular cellular processes in specific areas of a neuron are differentially dependent on Ca2+ influx through N‐ and L‐type Ca2+ channels. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 137–148, 1999  相似文献   

12.
Singhal S  Chand P  Singh BP  Singh SV  Rao J  Shankar R  Kumar S 《Gerodontology》2012,29(2):e1059-e1066
doi: 10.1111/j.1741‐2358.2011.00610.x The effect of osteoporosis on residual ridge resorption and masticatory performance in denture wearers Aim: To compare masticatory performance, masticatory efficiency and residual ridge resorption (RRR) in osteoporotic and non‐osteoporotic edentulous subjects after rehabilitation with complete dentures. Method: Thirty subjects fulfilling the inclusion criteria were enrolled from the patients visiting the Department of Prosthodontics for complete denture fabrication. Two groups consisting of control subjects (group I; N = 15) and osteoporotic subjects (group II; N = 15) were formed. Complete dentures satisfying certain criteria were fabricated for both groups. Masticatory performance and efficiency were measured 6 months after denture insertion. Areal measurements were taken on lateral cephalograms before and 6 months after denture fabrication. The data were then computed to analyse differences between groups I and II using SPSS statistical software version 15.0. Results: Six months after denture fabrication, the masticatory performance and efficiency were significantly higher (p < 0.001) for group I, with a significant decrease in maxillary and mandibular sagittal area seen in both groups. The rate of bone loss was more in group II compared with group I. Conclusion: Greater masticatory function was demonstrated by the non‐osteoporotic group, and the rate of RRR was more in the osteoporotic group compared with the normal group. In this pilot study, osteoporosis leads to greater RRR, decreased masticatory performance and efficiency in edentulous subjects 6 months after denture insertion. Screening for osteoporosis is suggested as a routine procedure for all edentulous subjects undergoing rehabilitation. Recall check‐ups for osteoporotic patients should be more frequent, and these patients may require more frequent denture remakes.  相似文献   

13.
To examine the effects of chronic ouabain treatment on blood pressure (BP), sodium excretion, and renal dopamine D1 receptor level, male Sprague-Dawley (SD) rats were treated with ouabain (27.8 μg kg−1 d−1) intraperitoneally for 5 weeks, and systolic blood pressure (SBP) were recorded weekly. After 5 weeks, sodium excretion and dopamine D1 receptor agonist fenoldopam-mediated natriuresis were measured, and the expression and phosphorylation levels of the renal cortical dopamine D1 receptor were confirmed by Western blot analysis. The effects of ouabain on fenoldopam-mediated inhibition of Na+-K+-ATPase activity were determined by colorimetric assays in human proximal tubular epithelial cells (HK-2 cells). After 5 weeks, the SBP in ouabain group was significantly higher than that in the control group (P < 0.01), but the sodium excretion and renal cortical D1 receptor expression levels were reduced, and D1 receptor phosphorylation levels were increased after ouabain treatment. Intravenous administration of fenoldopam caused an increased sodium excretion in control rats, but failed to induce natriuresis in ouabain-treated rats. In addition, fenoldopam induced a dose–respone (10−9 to 10−6 M) inhibition of Na+-K+-ATPase activity in HK-2 cells,but these effects were significantly diminished in HK-2 cells pretreated with nanomolar concentration of ouabain for 5 days (P < 0.01). We propose that the ouabain-induced reduction of the renal dopamine D1 receptor function serves as a mechanism responsible for sodium retention, and this contributes to the hypertension induced by chronic ouabain treatment.  相似文献   

14.
AimsThis study investigates the actions of KMUP-1 on RhoA/Rho-kinase (ROCK)-dependent Ca2+ sensitization and the K+-channel in chronic pulmonary arterial hypertension (PAH) rats.Main methodsSprague–Dawley rats were divided into control, monocrotaline (MCT), and MCT + KMUP-1 groups. PAH was induced by a single intraperitoneal injection (i.p.) of MCT (60 mg/kg). KMUP-1 (5 mg/kg, i.p.) was administered once daily for 21 days to prevent MCT-induced PAH. All rats were sacrificed on day 22.Key findingsMCT-induced increased right ventricular systolic pressure (RVSP) and right ventricular hypertrophy were prevented by KMUP-1. In myograph experiments, KCl (80 mM), phenylephrine (10 µM) and K+ channel inhibitors (TEA, 10 mM; paxilline, 10 µM; 4-AP, 5 mM) induced weak PA contractions in MCT-treated rats compared to controls, but the PA reactivity was restored in MCT + KMUP-1-treated rats. By contrast, in β-escin- or α-toxin-permeabilized PAs, CaCl2-induced (1.25 mM, pCa 5.1) contractions were stronger in MCT-treated rats, and this action was suppressed in MCT + KMUP-1-treated rats. PA relaxation in response to the ROCK inhibitor Y27632 (0.1 μM) was much higher in MCT-treated rats than in control rats. In Western blot analysis, the expression of Ca2+-activated K+ (BKCa) and voltage-gated K+ channels (Kv2.1 and Kv1.5), and ROCK II proteins was elevated in MCT-treated rats and suppressed in MCT + KMUP-1-treated rats. We suggest that MCT-treated rats upregulate K+-channel proteins to adapt to chronic PAH.SignificanceKMUP-1 protects against PAH and restores PA vessel tone in MCT-treated rats, attributed to alteration of Ca2+ sensitivity and K+-channel function.  相似文献   

15.
The effects of enhanced UV-B radiation on hormone changes in vegetative and reproductive tissues of tomato (Lycopersicon esculentum Mill.) and their relationships with reproductive characteristics were studied. Two cultivars, TongHui (TH) and XiaGuang (XG), were grown in the field for one growing season under ambient (Control), ambient plus 2.54 kJ m–2 d–1 (T1) or ambient plus 4.25 kJ m–2 d–1 (T2) of supplemental ultraviolet-B (280–320 nm). The number of open flowers increased significantly in the TH cultivar under T2 while it declined in the XG cultivar under T1. Although pollen germination from both cultivars was inhibited by UV-B treatment, fruit number was enhanced in the TH cultivar at both UV-B doses and in the XG cultivar at the low dose. On the other hand, seed size (dry weight) was reduced in the XG cultivar by both UV-B doses and in the TH cultivar at the low UV-B dose. The final germination rates of seeds from control and UV-B treated plants of both cultivars showed no significant differences (p > 0.05), while germination was delayed in the TH cultivar at both doses of UV-B and in the XG cultivar only for T2. To determine the mechanism of UV-B's effects on developmental processes, hormone concentrations in leaves, pistils and seeds were analyzed using ELISA on partially purified extracts. The results suggested that enhanced UV-B radiation induced hormone changes in both vegetative and reproductive tissues. The alteration of flower number may be associated with the changes of ZR in leaves under enhanced UV-B radiation and the delayed germination may due to the changes in seed ABA and GAs.  相似文献   

16.

Black cumin (Nigella sativa L.) is considered as a noteworthy herbal medicine. However, no study has been conducted on the physiological adaptive mechanism of it to salinity stress, especially under in vitro condition. To this aim, the callus cultures of ten different genotypes of N. sativa were applied to evaluate the changes occurring in biochemical traits under salinity stress. The calluses were exposed to the in vitro salt stress using different sodium chloride concentrations (0, 84, and 250 mM). A reduction occurred in the content of K+ and callus growth by enhancing the NaCl concentration. However, most of the content of Na+ (4 mgg− 1 DW), malondialdehyde (1.38 μmolg− 1 FW), total phenolic content (1.18 mg GAEg−1 FW), thymol (25.26 mgg− 1 DW), total flavonoids content (0.06 mg QEg− 1 FW), total flavonols (TFL) content (0.023 mg QEg− 1 FW), total anthocyanins (Ant) (0.05 μmol g− 1 FW) and DPPH activity (58.17%) was observed at 250 mM of NaCl. In fact, two secondary metabolites including TFL and Ant can be considered as the major contributors to the potential antioxidant activity of N. sativa at the callus level. The elicitation through NaCl opens new avenues for the selection of best dosages of NaCl for the enhancement of commercially important secondary metabolites, in superior genotypes (Nig1 and Nig2) of N. sativa at cellular level.

  相似文献   

17.
Summary Microradiographically detectable alterations of the bone structure in the femur of young rats induced by monomeric 241-Am(III) (i.v., 30µCi/kg) were studied. The morphometric and dosimetric measurements were carried out by means of an electronic image analyzer. 8 weeks after injection of 241-Am a characteristic alteration of the frequency distribution of the chord lengths over the trabeculae in the epiphysis and over the metaphyseal marrow spaces was found. The structure of the spongiosa is irregular with both large, coarse and small fragmented trabeculae. The complexity of the bone architecture and the area of the endosteal surfaces is reduced. The surface/volume ratio in control animals varies between 36 mm–1 in the epiphysis and 64 mm–1 in the region of the epiphyseal cartilage plate. From the specific surface burden (pCi/mm2) the average dose rates were determined. There is no significant difference between the calcified tissue fraction in controls and animals with 241-Am, with the exception of the metaphyseal band where the locally high dose rates cause a devitalization of the tissue with inhibition of bone resorption as well as an abnormal trabeculation in the metaphysis. Treatment by Ca-DTPA reduces the 241-Am deposition nonuniformly and the pathological manifestations are markedly less pronounced. The mean trabecular width is about 100µm in the epiphysis and has a minimum of 40µm in the central part of the epiphyseal plate. The mean chord length over the marrow spaces varies between 90 and 210µm.  相似文献   

18.
Physiological and biochemical responses of Hordeum maritimum and H. vulgare to salt stress were studied over a 60‐h period. Growth at increasing salinity levels (0, 100, 200 and 300 mM NaCl) was assessed in hydroponic culture. H. maritimum was shown to be a true halophyte via its typical behaviour at high salinity. Shoot growth of cultivated barley was gradually reduced with increasing salinity, whereas that of wild barley was enhanced at 100 and 200 mm NaCl then slightly reduced at 300 mM NaCl. The higher salt tolerance of H. maritimum as compared to H. vulgare was due to its higher capacity to maintain cell turgor under severe salinity. Furthermore, H. maritimum exhibited fine regulation of Na+ transport from roots to shoots and, unlike H. vulgare, it accumulated less Na+ in shoots than in roots. In addition, H. maritimum can accumulate more Na+ than K+ in both roots and shoots without the appearance of toxicity symptoms, indicating that Na+ was well compartmentalized within cells and substituted K+ in osmotic adjustment. The higher degree of salt tolerance of H. maritimum is further demonstrated by its economic strategy: at moderate salt treatment (100 mm NaCl), it used inorganic solutes (such as Na+) for osmotic adjustment and kept organic solutes and a large part of the K+ for metabolic activities. Indeed, K+ use efficiency in H. maritimum was about twofold that in H. vulgare; the former started to use organic solutes as osmotica only at high salinity (200 and 300 mm NaCl). These results suggest that the differences in salt tolerance between H. maritimum and H. vulgare are partly due to (i) differences in control of Na+ transport from roots to shoots, and (ii) H. maritimum uses Na+ as an osmoticum instead of K+ and organic solutes. These factors are differently reflected in growth.  相似文献   

19.
Stephen M. Suru 《Biometals》2008,21(6):623-633
Cadmium (Cd) is a well-known nephrotoxicant inducing kidney damage via oxidative stress. Since kidney is the critical target organ of Cd toxicity, this study was designed to evaluate the protective effects of onion (Allium cepa L.) and garlic (Allium sativum L.) aqueous extracts on Cd-induced renal oxidative stress in male Wistar rats. The control group received double distilled water alone and Cd group was challenged with 3CdSO4 · 8H2O (as Cd) (1.5 mg/100 g bw/day per oral) alone. Extract-treated groups were pre-treated with varied doses (0.5 ml and 1.0 ml/100 g bw/day per oral) of onion and/or garlic extract for 1 week after which they were co-treated with Cd (1.5 mg/100 g bw/day per oral) for 3 weeks. The results showed that the levels of renal lipid peroxidation (LPO) and glutathione-S transferase (GST) were significantly (P < 0.001) increased in rats that received Cd alone relative to the control group. More so, the levels of renal glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and Na+/K+-ATPase were significantly (P < 0.001) decreased in rats that received Cd alone. Treatment of Cd-intoxicated rats with varied doses of onion and/or garlic extract significantly (P < 0.05) restored the alterations in these parameters relative to the group that received Cd alone. While treatment with high dose of onion extract exerted a significant dose-dependent restoration of these parameters, treatment with high dose of garlic elicited a pro-oxidant effect, relative to their respective low dose. Our study suggests that onion and garlic extracts may exert their protective effects via reduction in LPO and enhanced antioxidant defense. These extracts may, therefore, be useful nutritional option in alleviating Cd-induced renal damage.  相似文献   

20.
In this study, we investigated the effect of astaxanthin (Ast) and aluminum (Al) on the erythrocyte glucose‐6‐phosphate dehydrogenase (G6PD) and 6‐phosphogluconate dehydrogenase (6PGD) enzymes activities in vivo and on G6PD enzyme in vitro in rats. For in vitro studies, G6PD enzyme was purified from rat erythrocyte by using 2′,5′‐ADP‐Sepharose 4B affinity gel. The effects of Ast and Al3+ ion were investigated on the purified enzyme. It was determined that Ast increased the enzyme activity, whereas Al3+ inhibited the enzyme activity noncompetitively (IC50 values; 0.679 mM, Ki values 1.32 mM). For in vivo studies, the rats were divided into the groups: control (Cont.), Al, Ast, and Al + Ast. The last three groups were compared with the control group. In Al group, a significant degree of inhibition was observed in the activity of G6PD and 6PGD enzymes when compared with the control group (P < 0.05), whereas there was an increase in the activities of G6PD and 6PGD enzymes in Ast and Al + Ast groups (P < 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号